Appearance
8xy12c=2xy3x
4a2p3a7p3=43a5p2
4(x+y)5(x+y)=45
(a−2)3a−2=(a−2)21=a2−4a+4
3x22m⋅5m34x2=15m28x2
x2−916x:4x+1214=x2−916x⋅144x+12=(x−3)(x+3)16x⋅144(x+3)=14(x−3)64x=7(x−3)32x=7x−2132x
5(25−4x2)3x:2x−59=5(5−2x)(5+2x)3x⋅92x−5=45(5−2x)(5+2x)3x(2x−5)=−45(2x−5)(5+2x)3x(2x−5)=−45(5+2x)3x=−15(5+2x)x=−30x−75x
x2−10x+253x⋅12x35−x=(x−5)23x⋅12x35−x=(x−5)2x⋅4x35−x=(5−x)2x⋅4x35−x=5−x1⋅4x21=4x2(5−x)=20x−4x3
3x−2+5xx−2=3+5xx−2
x−35x+2−4x+75x+2=x−3−(4x+7)5x+2=x−3−4x−75x+2=−3x−105x+2
4xx−5+x−25−x=4xx−5−x−2x−5=4x−x+2x−5=3x−2x−5
Skaidymas dauginamaisiais grupavimo būdu
4xy+12y−4x−12=4y(x+3)−4(x+3)=(4y−4)(x+3)=4(y−1)(x+3)
x2−2xc+c2−d2=(x−c)2−d2=(x−c+d)(x−c−d)
3a2−3ab2+a2b−b3=3a(a2−b2)+b(a2−b2)=(3a+b)(a2−b2)=(3a+b)(a+b)(a−b)
x3−4x2+3x−12x2+3=x2(x−4)+3(x−4)x2+3=(x2+3)(x−4)x2+3=x−4
Skaidant kvaratinį trinarį dauginamaisiais
x2−4x+3=0D=b2−4ac=16−4⋅1⋅3=16−12=4x1=−b+D2a=4+22=3x1=−b−D2a=4−22=1
x2−4x+3=0
D=b2−4ac=16−4⋅1⋅3=16−12=4
x1=−b+D2a=4+22=3
x1=−b−D2a=4−22=1
x2−x−6=0D=b2−4ac=1−4⋅1⋅(−6)=1+24=25x1=−b+D2a=1+52=3x1=−b−D2a=1−52=−2
x2−x−6=0
D=b2−4ac=1−4⋅1⋅(−6)=1+24=25
x1=−b+D2a=1+52=3
x1=−b−D2a=1−52=−2
x2+3x−28=0D=b2−4ac=9−4⋅1⋅(−28)=9+112=121x1=−b+D2a=−3+112=4x2=−b−D2a=−3−112=−7
x2+3x−28=0
D=b2−4ac=9−4⋅1⋅(−28)=9+112=121
x1=−b+D2a=−3+112=4
x2=−b−D2a=−3−112=−7
4x2+27x−7=0D=b2−4ac=272−4⋅4⋅(−7)=841 //29x1=−b+D2a=−27+292⋅4=0.25x2=−b−D2a=−27−292⋅4=−7
4x2+27x−7=0
D=b2−4ac=272−4⋅4⋅(−7)=841 //29
x1=−b+D2a=−27+292⋅4=0.25
x2=−b−D2a=−27−292⋅4=−7
y2−26y−180.5y2−26y+9=(y−36)(y+6)(y−36)(y−6)=y+6y−6
y2−26y−18=0D=b2−4ac=(26)2+4⋅1⋅18=24+72=96y1=−b+D2a=26+462=662=36
y2−26y−18=0
D=b2−4ac=(26)2+4⋅1⋅18=24+72=96
y1=−b+D2a=26+462=662=36
y2−46y+18=0D=b2−4ac=(46)2−4⋅1⋅18=16⋅6−72=24y1=−b+D2a=46+262=662=36y2=−b+D2a=46−262=262=6
y2−46y+18=0
D=b2−4ac=(46)2−4⋅1⋅18=16⋅6−72=24
y1=−b+D2a=46+262=662=36
y2=−b+D2a=46−262=262=6