Skip to content

Geometrija

Trigonometrija

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2c/VLbSFx1MDAxMsD/z1OkuH9cdTAwMTft9PT0fGzV1Vx1MDAxNVx1MDAxOFx1MDAwMlx1MDAwMUNcYt9wtZXyh4yFZcmxZWzY2ue4t7hHuL/23utaToJkg1x1MDAwMe+dbXzYqVwiMDNcdTAwMWWNZvqn7tb09G/v3r9fSW5b/sov71f8fqVcdTAwMTRcdTAwMDbVdqm38lNafuO3O0FcdTAwMWNxlVx1MDAxY/zdibvtyqBlPUlanV9+/rlZajf8pFx1MDAxNZYqvndcdTAwMTN0uqWwk3SrQexV4ubPQeI3O39Lf+6Xmv5fW3GzmrS97Fwiq341SOL2t2v5od/0o6TDvf+d/37//rfBz9zowiDyXHUwMDA3bVx1MDAwN6XZ2IxcdTAwMTkt3I+jwTBBkkSSRrj7XHUwMDE2QWeDr5T4Va6u8Wj9rCYtWunhMchelXaTq1x1MDAxMM93XHUwMDBma1EvOMmuWlx1MDAwYsLwKLlcclx1MDAwN1x1MDAwM6q0405ntV5KKvWsRSdpx1xy/yyoJnVuo0bK77/biXlcdTAwMGWyb7Xj7lU98judXHUwMDFmcz0ojVulSpDcpndcIsR9aSm6XHUwMDFh9JGV9Fx1MDAwN/cqPNDOokWnXHUwMDE13zbeV6dcdTAwMWRcdTAwMTjhaSBcIlCgXHUwMDE0SqdHXHUwMDA2VohDXlx0XHUwMDFl2F/AT/9lQyuXKo0rXHUwMDFlX1TN2vjOr/i1rE3v++1KzypcdDzfXG6F4n/gr0I2XHUwMDA1dT+4qifprFjwXGYpzSMxkn/J7rjjXHUwMDBmVsbwnUgyLlvZdFx1MDAwNK2P1YF4/JotR5tcdTAwMDXrY/qNqFx1MDAxYob52Yyq32dzqKKcVmzmJC3rqtuqlr6JXHUwMDA1XHUwMDE46VhmSFx1MDAxYmvhvp6lrzHaXVx1MDAxOFdcdTAwMWGPSFInKbWT9SCqXHUwMDA20dXoV/yoOqYmLHWSQtxsXHUwMDA2XHRcdTAwMGbjIFx1MDAwZaJktMWg37V2O+7V/dKDm+aex9a10u4ytNJP9tv7TJJcdTAwMDZ/3P/+60+Ptl59cpXTz4P1zbp8l///958mI53caOFcdTAwMGbSrXZcdTAwMDYkj+rFoFx1MDAwNye9m6vyQfWsXHUwMDAwO2v7Nd0+bYjaooDOMyuEsrxcYsZgdum0XHUwMDAzRtyjqcDNS/1cdTAwMTDlbGzf0ZUolSbMnj5Lcl9ccrm5XHUwMDE1XHUwMDFjaf9fYVx0QKOl91x1MDAxYViTsII/WYvnwEx0uyhcbmb39uN6ObmWd7ulvaS/XGJgkpTDYM6My2y8mYo12bPyO5mAaDWAxLlr1Wy8SzZ/fFZzy/jtb+Mm5DPx+8ljfGo73kBGXHUwMDEwXHUwMDEyXHUwMDE1ZS2ew/NEhtTqN49l/zTst2k7adPXxTCQXHUwMDA1eUJcdTAwMWHnpFSWkCAzgVx1MDAwN1x1MDAxZOgp4SmRLW8t2Fx1MDAxNzGYWig2m+uM1tylv8HKj1x1MDAwYrSOzFx1MDAxY/UosJtAOlx1MDAxYsBcdTAwMDSs1uIoOVxu7tJFQD1U+qHUXGbCwXzfXHUwMDE3XHUwMDBmxJZncG1lqGgtXGauUuldaVx1MDAwZiYpL8JJwC7kfX1cdTAwMTK3stpcbl+jxHqq/XBOYu4oiErh8cPrpZpt+8digCcpt9JcdTAwMWR/oPf4TuSfou9cdPfU6lQ5ulx06CtcdTAwMWVcdTAwMWTZbd+/XFy76Vx1MDAxY0SiXlx1MDAxN1uXhYWwWklcdE9cdTAwMTlg+pST2uRueaBcdTAwMWOVm1x1MDAxNn3aY2lm+liYQVx1MDAwMOnHdOVcdTAwMDP6IP1cdTAwMGVcdFCZXHUwMDEynVx1MDAxM34qL6NTxW99xvitz1xiP1x1MDAxYy38gZ9cdTAwMTQsj5bNoUxSn8PvZr3bPG6V1dmmL+6+UG1cdTAwMWKjXrhcYvg55Sly/Fx1MDAxMVYpI/Ww7iOS01N+YNkkZkVmUCj9MuUnhTZK6Vxcxf89fYVcdTAwMTnTV5hccn003jN0/IBV6HKi+Fx1MDAxY31cdTAwMWJ6o1hcZjZOd6i3bS62NqKq0KuLQFx1MDAxZlx1MDAwMnuGyMpPXHUwMDAzKWNHTU+iqdmeymPVJ4TVWrPqfaHtaU364o5UJqVzwo/yMjpV/Eozxq80XHUwMDFi/JRcdTAwMWEt/IGfY0fIgTEvNz3Pi4pcdTAwMWHJ1fbuxVx0+9Fm56ZuXG47i0Cftlx1MDAxZVx1MDAxMis/XHUwMDAyY6VcdTAwMWPVfSxtU4JcdTAwMGasJ21q32vF13+p7tPsolx1MDAxYXb95u746byETlx1MDAxNb7yjOErz8jy1KOFP+BTgFxiRruMgefgu4xXy7tcdTAwMTeH68W9ijncb0WNRmO1vFxi8CFcbo9Sv89cdTAwMTJrP1x1MDAwN8ObXHUwMDE1jOP04Fx1MDAxM+zDXHQtJVx1MDAxMV9cdTAwMWJfXHUwMDA0XHUwMDFmyz9cdTAwMWHJmu9cctFXmTF9lf8tfWP3XG7Hqj6WQlx1MDAxNGyN5TzD5/CLqvs7/lrb3yqay/phs9+t7OxVXHUwMDE3XHUwMDAxP1D6qc1CS9Pak3hIXHUwMDFiPrIh4Vx1MDAwNCiYq65bbkiM35DIN8dJNyPGRuvAaOH9+1x1MDAxOPZUXHUwMDE0WZyAS7Vab1J4c+Xb6OIoXFwv9Hy5f7xcdTAwMTBcXFx1MDAxYfSUXHUwMDA1Z60xYMGOvFx1MDAwZlx1MDAwNVBcdTAwMWVKlCSZXYVCypGRzZBSqdhRQL3cNXxDkNqxpisoS1JcdTAwMGIzXHUwMDAxpFx1MDAwN3b961bxYk9Eru2utyWcndcvXHUwMDE3XHUwMDAyUpdu3TknnEBcdTAwMDfCjoTUMVx1MDAxNFx1MDAxZShcdTAwMTZQQnSpk4cjI5ulKlx1MDAxNcYqMsosKX07lFx1MDAwMozdWrSK1YqaJPD17Hp1M2x3Nj5cdTAwMTW2rlb9+PD69Fo1XHUwMDE3gVJcdOSlTl5cdTAwMWHX6qwml3Uz6ICcR+C0Q8aYrFx1MDAxOFx1MDAxZNhcZiFVWvLtyDm+Vl1cIjprRHOxWSOIkjKOhSHH8LO7j02/317D1Z2Kkdd7xX79/OtpdyFcdTAwMTDFdFx1MDAxYtBcdTAwMTnryCkgVqXDiFrlKWWNY0ZcdKSzI1x1MDAwM5shoiRcdTAwMWObu1LMcedxyejM1ejYsHJA1M5cbudeXHUwMDBlaVx1MDAxM/SHTzvHZ8mJ+6j1h3I/XHUwMDBlaudcdTAwMGJcdTAwMDGpXHUwMDE2aXxcdTAwMWNb9qRcdTAwMTQ4OWzsSkBPpkExYFx1MDAxNJFcdTAwMTZinlx1MDAxZSlcYkKa71x1MDAxZcmS0llTimNf6LJUai2dniDI3FXLau/oy2692/jarFx1MDAxNFx1MDAwYufbrZ36QlBq02NexOasXHUwMDA19sWlXHUwMDFj2VBB8lx1MDAwNM+ES6Nn+CfM0yfVqUOKc40jWGI6a0z12IhcdTAwMWY2eLXWXHUwMDEzXHUwMDE5vDU8lM1qXHUwMDE0msS2Sl9ge7P52SxcdTAwMDKlKMAzhk1ZJ0FKzJlcdTAwMGZcdTAwMDNIyXpKW8U61pGBeapS9o4tOsFPzyWjb4dRXHUwMDFj65SmMbHagtAvP0jZv3JxIdzcqq5tn4rgcL+9cXuxIFF5znNcbqUhUII5XHUwMDE40aRcdTAwMTY8J602aJxlWMU8NSlaIaWwS6/0XHJBOj501lqn2apSL3+5XHUwMDFifTr1O5aON2sn1436SXWnVr48XFxcYkaV9IxcdTAwMDVJ6SaMRpezLm5cdTAwMDdcYqPH+DqpWZWyPSznXHUwMDE5zWBcdTAwMTFcdTAwMTFcYvWS0jdE6Vx1MDAxM2cr2UlcdTAwMTNgaYJ3R1xy/TWqXFx0y+V48+Yk6Z912lx1MDAwN8W7hcBUS8+BXHUwMDAz45CMy2dcdTAwMTdcdTAwMTlQitojQ047VmRaWZxS8pFHKM3m/l6VgkJl3fxcdTAwMTNcdTAwMTQsKX3YenXoXGI0mv9cdTAwMTWlbrxTqqU0ht2wXHUwMDE3Q3pb7YetXHUwMDBmnZPNz1x1MDAxN7vNsHSx5tNcdTAwMWQuXHUwMDA0pNZ6JJWxylx1MDAxMFu0wz4pXHUwMDEysTHMaGq2LmSauWV+mlSmXHSM2PZeKtLXiOiUXHUwMDE0ae5cdTAwMTTmqFwiTX1ScMpNXHUwMDEwr/vFYrLV01x1MDAwN431Ylx1MDAxOH/42j13u6eLwKhcdTAwMTLCXHUwMDEzgv1RaTRcdTAwMTEwrcOUWvTSoHZrXHUwMDE1m1x1MDAxN0bqeVIqXHUwMDE0auG0Xr46ekOY2vHZXGaEds7CJKp0Jyiq4Ojw/KBcdTAwMGJccnfbtY2G/PJhITCV2rPo2Jo1aVI9XHUwMDFjplSB9Fx1MDAwNDukSljSIPKKbFx1MDAwZTFHqJzTS136hiCV44OO0lx1MDAwM05cdTAwMTKsmCBR3s31581T6G2cuMrdXHUwMDFhStIlKldcdTAwMTZcdTAwMDJSpT1nXGbyc8lKy8pqOKJBIXpsXG47i4ZIo55SSsxcdTAwMTdRikqQNcYud0rfXHUwMDEwpTg2M1x0WEKd7lx1MDAxZb5cXJXu1lx1MDAxZF6d2+Otzka/2TiG6po4Ky5cdTAwMDSlmr1SK1x1MDAxZEg2brVgY3+YUjKelFx1MDAwMi2Q0JJwntswXHUwMDEyeICWPeVlkP1cdTAwMWLCdHx0YJqmRlx1MDAxODfJQdLKZs0vrZfV3V7w+bL4eafX2bBcdTAwMGJxYE1cdTAwMTnrXHUwMDE5XHUwMDA0cKwphdZy+Fxyb5rwNz1fimQtKII5XHUwMDFhvEZpJXCpSt9cdTAwMTSj4/Oc8CNbgWaT9+VcdTAwMDZvUoZufFx1MDAxN5z3TrbuLno2PLpcXI+3XHUwMDE3gVFcdTAwMTLCI+3YvEdWo1x1MDAwMoej7JWznlDCWZt6XHUwMDAwXHUwMDE2zFx1MDAxY0/CoGZjl8xyq/RcckGqx7/gldpIaVx1MDAwMSc4U1x1MDAxYd983P8kNlxuXHUwMDE3ta01XHUwMDEyJ/vm5oJcdTAwMTaBUUB6Mnu7wCllZMBHwHyQvD097WBALVx1MDAwM+tfI5eoxjT/r7CksS90pUXnXHUwMDA0qpdrzsLXPYpPmregNm5u1Ye17e5R+GkhqGQn9Ekqp5W7PVx1MDAxYsZTMVx1MDAwYpQqczZrl+ryXHUwMDE1YjnUeuKQhXHJw+RcdTAwMTNcdTAwMWItrENcdTAwMTBcZuQyXHUwMDFjPet2Xm0pVzRcdTAwMWZcdTAwMDW5y89cdTAwMDdbx/2t8s5rTVx1MDAxZuaxYWhIs9kuXGY5m7vLb6e9hYfWXHUwMDEwknAkQY1E7eLUSFx1MDAwNdCeJK20M1KTzkVcdTAwMWFm5D5M5pdcdTAwMWVIt/kjXHUwMDBmc0onllxy4M+lXHUwMDEzk3ao9Il0Yn/889//KjXLQfTHP1aGKqeeWOzRK78oxZikP8UojM8tnUasgjQql7jnOUaPv7Tj+vVdo+GfXFz2VH3v+PRzXHUwMDFmXimjw0iS9JhUMso6wf62XHUwMDE5TsBAYmo5/oTxrFVKOofA6vGx3O5cdTAwMGaZdJok4yvmnt12dkxcdTAwMWUlpSSIgs6MgXx42WnSKOEpXHUwMDFhXHI/hvVcdTAwMDS5piEsRJ1cblU+tW9cdTAwMGLRWqOva/q48zppVJ5JN0+ss2wlqlxcOM4g8Ts8xSZcbvuq2LQoXHUwMDFjKD13NG1eYpdoPkDz3XdreKXUaqVdpXXfQOVcdTAwMTVcdTAwMGKq32chXHUwMDFiwcpN4PfWXHUwMDFmXHUwMDExn9rgs/LuO+4pV366Qr/9/u73/1x1MDAwMFx1MDAxNWO13CJ9 ABCabcĮžambinėStatinisStatinis

Stačiojo trikampio smailiojo kampo:

  • Sinusas - statinio, esančio prieš kampą, ir įžambinės santykis
    sinA=BCAB=ac

  • Kosinusas - statinio, esanšio prie kampo ir įžambinės santykis
    cosA=ACAB=bc

  • Tangentas - statinio, esančio prieš kampą, ir statinio, esanąčio prie kampo santykis
    tgA=BCAC=ab

  • Kotangentas - statinio, esančio prie kampo ir statinio, esančio prie kampą, santykis
    ctgA=ACBC=ba

Pagrindininių kampų sin, cos, tg, ctg tikslios reikšmės

0°30°45°60°90°
sin01222321
cos13222120
tg03313-
ctg-31331

Įrodymai

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2a707jOFx1MDAxMMC/81x1MDAxNKj3ddv1v9jxSqdcdTAwMTMtLFx1MDAxNFx1MDAxNrZAWcSeVigkps02TUriXHUwMDAyZbXvdM9wT3aTQOu00Fx1MDAxNjhSqESQSmuP7Yk9P8+Mk18rq6slPeip0qfVkrp2ncD3Yueq9CEtv1Rx4kchVJHsd1x1MDAxMvVjN5Nsa91LPn382HXijtK9wHFV5dJP+k6Q6L7nR1x1MDAxNTfqfvS16iZ/pZ97Tlf92Yu6no4rZpCy8nxcdTAwMWTFt2OpQHVVqFx1MDAxM+j9b/i9uvor+8xpXHUwMDE3+KHKZLNSo1x1MDAxYsbWZOleXHUwMDE0ZnpcdTAwMTImkWBIipGAn6zDSFp5UHtcdTAwMGXaKlOTXHUwMDE2lVx1MDAwNiTYxdFR1+5tftk9/V4/OkDr52bUcz9cYlx1MDAwZfUgyFx1MDAxNHLjKEnKbUe7bSOR6DjqqGPf022QYVx1MDAxM+WjtklcdTAwMDRzYFrFUb/VXHUwMDBlVZJcZuc6K416juvrQXqPXGKNSp2wlfVhSq7TVoRUKLJcdTAwMTHixOacYDyqTdszi1esXHRdalFcdTAwMDCTXHUwMDBmuvyBVfpntDlz3E5cdTAwMGJUXG49I6OkclVuJq7u7tCiRo+28lttPaZaorKpXHUwMDE2SFwiYtGcVmn/vbqXrfdcdTAwMGYzvzFYSj1tXHUwMDEx9oMgPz2hdzc9Y1x1MDAxNWdpxUbOdExX/Z7n3K4zXHUwMDE2RFx1MDAxMoE4koTRUT2YU2eyuyByO1x1MDAwZphGop1YV/3Q88PWZFx1MDAxM1x1MDAxNXpTalx1MDAwMifRtajb9TWo0Yj8UE9KZP2uxXF01VbOvZuGnqfW9dLuXGYr6WW+rZr5z36Mvv/48KB0blx0J+RX8v9/f3hcdTAwMWGXkk1cdTAwMTZcdTAwMGWxXHUwMDE0gnJucdtYwzwsL7dPXHUwMDAydKKpvX/djM/9prtz6lxmllx1MDAwMUvB5EwsrYKwfFx1MDAwMEpKzC1cZrGk2Fx1MDAwNjCpfMfy7WE5Jl2G1XspLsVk4ZBLjmBJLNt6vLssXHUwMDFm9L/Y9Vxyu+U1zmpf94/abIM7y8Eln8ElpqQod0nMPc5cIpNSTiByyYU272S+XHUwMDE5Msu5VUyvl2NT4MnCIZuYW4iJJ8HZ6Mj+12q/vnPRaFxcfD84XHUwMDFl7K5cdTAwMDfeMsDJ5cxYXHUwMDE2LdJp5u76lkwsLSwsXHTXO5pvXHUwMDBmzTFpyl5cbsupXHUwMDE5JiSfglx0iGZcdTAwMWaPJatcdTAwMWbjptM8RcHZRctqfrMuUG0pUkwu6UwsaUFY0lx1MDAwN1xc5r1cZlx1MDAxM4NKjGCJ37F8g1hSNkX8UVhqda1cdTAwMWbCktvTsLRcdTAwMTnkmJhcdTAwMTFjkPOoRFx1MDAwZd8/sNRgfVx1MDAxZlx1MDAwN8267bXrXHUwMDFijcYyUIltu8LB7CVcdTAwMTWYUmFcdTAwMWL7z6hcdTAwMTRFRbKEVjjmXGJcdTAwMTNLUFx1MDAwMuTZZjFGlLLc0LeYXHUwMDEyJLBFbcrNfrlwTFx1MDAxOURcdTAwMTC2NKo9XHUwMDAx0/Mo1If+TbpcbpSPlX52un6QrdioODNbmMK10ljRWuC3Uustxdks5U1Y+65cdTAwMTOM6nXUM7UujOGAe4rvz0lcdTAwMDRcdTAwMWT5oVx1MDAxMzTvj5c6tK3hauBKjoczJ1GZu0vTj+fRNzWPtFx1MDAxOOyF1KKPp8+v6e11/2qndjw4V3pvs9Os2nJcdTAwMTnoXHUwMDEzXHUwMDFjVTCFcJBKS1g4Z1Vpe0CzIPh4XHUwMDA1bFx1MDAxOeCjRGLIXHUwMDEyudF+XHUwMDA2fFggi2DCX/O8Z9HwVVx1MDAxN1xmX3VB8E11fTjdXFylfMrpKvm5vnlYXHUwMDFkXFxcXMrto9bRt5te+YBfLFx1MDAwN32kglx0Q1xiWUxSzM3Ime/jRSWK4PuwXHLDgutcdTAwMTNcdTAwMTQx/jjfR1Pf91x1MDAxNujjeVx1MDAxMy2UvtqC6asthj57qutcdTAwMDObRYhAOvh437eF2nuDq1x1MDAxM9n7bG+fVJvfNGs5naWgXHUwMDBmYktcIsH3XHSOJeSE45EnXHUwMDExuCj6WFx1MDAwNTxcdTAwMWZCkPFxKVx1MDAxZlx1MDAxZHliJrAkXHUwMDFjvXrkKfI2Wih+zoLxc15cdTAwMTa/81x1MDAxOJZu+DbCUNMhgmSycPTQXHUwMDFmXHUwMDEzKVx1MDAxMXhBY4/zXHUwMDEwdMuHymvtRvXg8OuhXG5r/GrzpPt8XHUwMDA08UR5cVxiUiZmXHUwMDFjyVDJXG5CXHUwMDEwm0OOWfGmRdIgVS7nU//iziXlk6Qxf5I4YfPEy1ZentK58nhsXHUwMDAwhuc3oGNccqz/0WBlouFjzrz8bj9cdTAwMDAraMRgO/04pUbH/dzC3pXfms7zd6Cp7zfAXHUwMDBlZDPIf3OUzNuB+p1cdTAwMWTHb8utXHK3V7/+TvTNXHUwMDA1Or1cXIZcdTAwMWRIoFkvOGBR1KHwQ89RsXGMo4xcdTAwMTdcdTAwMDJcdTAwMDVcbonAcj5HfdmnljgvPlx1MDAxN+KxXHUwMDEz27l7XG5cdTAwMWXrfO5cdTAwMDaH7TFd5nZPxvaH+TvidPnX3U+mJVx1MDAxNHnO7j1hYlx1MDAxNuVcdTAwMDQ9IZ9XgbtudVx1MDAwM17uhFZ01o78KtlcdTAwMTDLsJlQXHUwMDBlifXUs2xqi4I2XHUwMDEzzio4f5Ztxp1cdTAwMTXd2Fx1MDAxYzZ5S7zmS423XHSFyX+KTigo+vefXHUwMDA151x1MDAxNONDXHUwMDE2mdVja+rbXHUwMDE3NuJMsnwkO4/BtcHnRvNG1zb3m2rHJclgK7Z/Llx1MDAwM4PgxCuCpFk9eC1cdTAwMWIxk61mWT1cIlx1MDAxM5q8XHUwMDEwgaTCXHUwMDE5QphxXHUwMDA2oVPu9GRcdTAwMDaAXHUwMDE2XHUwMDA2WGGjeEXffsufzJtnofzxxfPHn8/fyp2fLTm93qGGiYO6W1x1MDAxYWGlfO/u7s3opUtfXVVcdTAwMWawmvPsKq3cMZ3Sk3nbX79Xfv9cdTAwMDeXPN5cdTAwMDcifQ== ABCa30°60°

ABC - statusis
BC=a;     AB=2a

Pitagoro teorema:
c2=a2+b2
AC2=AB2BC2=(2a)2a2=4a2a2=3a2
AC=3a2=a3

sin30°=a2a=12
cos30°=a32a=32
tg30°=aa3=13=33
ctg30°=a3a=31=3

sin60°=a32a=32
cos60°=a2a=12
tg60°=a3a=3
ctg60°=13


eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2b61LbSFx1MDAxNoD/81x1MDAxNFx1MDAxNPs3Vvp6unuqtrbAhFx1MDAwMcKQXHUwMDAwXHUwMDFlyLA1lZItXHUwMDE5ayxLjiRzm8o77TPsk+1pXHUwMDA13LJsXHUwMDA3SDCYWpRwcXer+6j7fOfSLf5eWV1dK66G4dovq2vhZcePoyDzL9be2PLzMMujNMEqVn7O01HWKVv2imKY//L27cDP+mExjP1O6J1H+ciP82JcdTAwMTREqddJXHUwMDA3b6NcIlx1MDAxY+T/st/3/UH4z2E6XGKKzHODNMIgKtLs21hhXHUwMDFjXHUwMDBlwqTIsfd/4+fV1b/L71x1MDAxNeniKFx0y7ZlqZONal4v3U+TUk6qiKQgiZDjXHUwMDE2Ub6JQ1x1MDAxNWGA1V1cdTAwMTQ3dDW2aO39p8H70+xSh6E5pHo/6lx1MDAxZlx1MDAxNOTKXHLbjeL4qLiKS4k6WZrnjZ5fdHquRV5kaT88iYKih21ErXx8b57iJLi7snR01kvCPL+d7LI0XHUwMDFk+p2ouLJPQsi41E/Oyj5cXMklfuKMe5xcdTAwMTNtiFx1MDAxNFpcdTAwMDOFca29XzNcdTAwMGYoY1xcUS4oNVxc1eRqpjGuXHUwMDA0yvVcdTAwMGZcdTAwMWHaf06ytt/pn6F4SeDahCbshF3X5uLmaZ1EvTA661x1MDAxNVYsJT1jNDPGgFZGVlx1MDAwNlx1MDAwZctF0IQxlNeYcYVcdTAwMWRtuFx1MDAxM5Sq8Keb+VxmlWjH3pGM4rg6cUlwM3FcdTAwMTNcdTAwMTVtW/GuolWuq9Ew8L9pXHUwMDAwVcwwRYCTqmSoaf16d3Ha6c9Qmrzws2IjSoIoOavfXHUwMDEyJsGcmtjPi2Y6XHUwMDE4RFx1MDAwNYrxMY2Sot6i7Hc9y9KLXuhPPTT2PLduaLtzXHUwMDE42cv9tuqWqPww/v3PN3e3nlpKd/dK9efXN1x1MDAwZlx1MDAwM5hcdFMvvVx1MDAwNZhxzkFcdTAwMTDpXGK/i99k80z/Nlx1MDAxY4Xdz+3fP2xe7m58ujKjl8AvXHUwMDE47Umi8YklUswq6mjvXHUwMDE30nhCMqWkxGWQXGLMQlx1MDAwMOZcbjyujSFMcmCUVKRcdTAwMThcdTAwMTPtxL4hmDLQwFx1MDAwMCR9RXj5XHUwMDEwbsxf09r9P1x1MDAwNTHlsl469sKageGoIE4/7qL4g/K7h+llXHUwMDFl7EPrum1yXHUwMDE1xHLnJVB8h1x1MDAxNyZcdTAwMWVcdTAwMTWG40woXFxcbrkgL8yV8Fx1MDAxNCCTXHUwMDAyRbBizPLKk02kW7xbqCnWYVx1MDAwM+JM7yvUS1x1MDAwM/XcJZ5VKeVjMU5ZvXTMuGBcdTAwMTSIYVx1MDAxNZW+i/F87zrp5myw2/rjYGdgXHUwMDAy0WafP71cYsaJ8OzUKqMlgozzPFx1MDAwMTnDWJtcdTAwMTKhNJIuqFS0JtgjQa5xXHUwMDEwXFxliraGKUqYszRjyinx0N5cdTAwMWLMgqhAmyQr1uiWcoHJkVx1MDAxMoS+uu5lpHzuXHUwMDFh26sxvbyPxbmBeukt54bhgFx1MDAwNsBF7HdhXHUwMDBlm/RcdTAwMWTd3jnb3r06XFz/NDTru+ucPS3mTrlcdTAwMWaCuSTcM1x1MDAwMlxym8LIVinQzkeWXHUwMDExuSCeXHUwMDE0RmjOXHJcdTAwMDPGoS7Z43CuPUWEpDYlIFx1MDAwNMWZ4csxK+NcdTAwMThuSMVAoO2HaV+uXHTm15RUQrRXypeG8sa8JbbX9OI+mi/X9dIx40pax8Xuv2mWNbaana10u1VcdTAwMWOebCd8L1x1MDAxNOe/5i/ClXPuYXqCXHUwMDEzy1xy0byOOCNcdTAwMWVmTZhuK0Y15t2LideZ8tCoSk0kSFxcYyZmXHUwMDA07FNJtyYo9+u22XJcIj1/RWu3/1x1MDAxY8KM1EvH+2borzBcdTAwMWPX98+4t//YbfZaJ9lu0DttXHUwMDEwXHUwMDFhfEnUl8GLQPjbzpgxyoBcdTAwMTGiXHUwMDAyT4kwNVx1MDAxZSNcdTAwMDJcYlx1MDAwNuqSXHUwMDEwYIvx0jM2vr9D9Tj4ZoDpXHUwMDAzVa/B91x1MDAxMjI80Xp6MVx1MDAxZshwXHUwMDExXlx1MDAxNrNcdTAwMTlW9dJxSo1DXHUwMDAxhpX33/veP2ptjM59f/+obUhnr30ybO+Jl8Aw08bTgIG0oHa/n9Ujbc/GrkpqQ1xmXHUwMDAxsqC9b8Y9oGgomFScXHR0+DPcsJiKrWVpakE/4zaZwv9GutV6XHUwMDAww900KY6ia7tcIlx1MDAxYyZKt/xBXHUwMDE0X00kT6VcdTAwMGXjXGaur01cdTAwMTStx9FZUkaB5SRV1bmIOn48ri/Soavt4Fx1MDAxOD46tmx6TlLsKEr8uDU9nnWF2+PtXHKvoihtP1x1MDAwZktHafdgf1x1MDAxMMW558hAuGaCi/u70/TXk+b7i/Zfbd7cO92nRG5vnfZfXHUwMDAyiorYQz6bcFx1MDAwMFBN+eTeXHUwMDE2pilcdTAwMWUzOFx1MDAxN1x1MDAxNN0uM6BkTbBHQlx1MDAxMTxUbUSRM0xbqVx1MDAwNPcs30FRaUE1Ji/PmOV+Q1FW9XWhKG48MYpcdTAwMWJPheJ8ryglgOHVVb6LxfXjaETPg1x1MDAwM539fnlQfFxmT862dsKXwFwi08rTnElOXGI6Pl05Xy1ZXHUwMDA08LRBbyko1lx1MDAxYW5qcj2aV6RaXHUwMDEwgk5RcVxmpO/nXHUwMDE1KddcdTAwMWEkpf9HKDafXHUwMDE4xeZcdTAwMTOhXGJzvaJcdTAwMDRuMLd6wJFPS1x1MDAxZvr9Q+Un6Y5cYv5qbe028tPLl0Ci0MIjXFwwwlxyulx1MDAxOFx1MDAxYqU+XHUwMDA3iihcdTAwMDPm/Fx1MDAxOP+iXHUwMDA1NPdcclApoJ/WaFGfnUWoKuxCWfSfmEX/cVmct+FcdTAwMDNzt2wxUFx1MDAwM1x1MDAwNuRcdTAwMDHHMqOto+ODzXx0csp/uz6/OOp8XG749Vx1MDAxY1x1MDAxNGs4PdeBXGbnXHUwMDFhs3BcdTAwMDD0Q6hRorL1Wd6PiFxuxol9wYVzXHRG11x1MDAwNHtcdTAwMTCEReYn+dDPULenQVx1MDAxNNxjQI1cdTAwMTZAqVx1MDAxMaRy4OJ2f1BcdTAwMTijlCScMWtcdTAwMTbM9NGrxrBWUzBuXHUwMDAyf5jLW1xycjrEbkq+/lx1MDAxOK5G68qu1Oum0O2Fy6qk5oBxXHUwMDEwRqBo8Hn19oZNndA5oJfQ+GVcdTAwMDSTd3U4V5XK/qa1yPW3Uv354K1jNfeEl2KOR1x1MDAwNT7B/W3Jdmz8ZiO53lx1MDAxZey+XHUwMDEzx93m8cF+6/3S2Vx1MDAxMo8yTdBLK04lpq+i4sPL9y8x0rX7yEooe+LDaokvUVx1MDAxZVx1MDAwMS5cdTAwMTQ2XHUwMDEx2IL+1FHQd61cdTAwMGIlXHUwMDFlXHUwMDAw11TbM32NyjbrzFdggswpUSin4KKSXHUwMDE5jF/f0lxuXGKmSi7eWVwi61wiNHfW+dW63F6N+UtvLyo9xlx1MDAxOaFcYi82XHUwMDAyzuHOXHUwMDBltadcdTAwMTgzXHUwMDFj1Z0pwqlzmfaaUqJcdTAwMDdcdTAwMWGXeSmDmv8mqFx1MDAwMqlcdTAwMDHHu79tUV/6zcHWR+W3Wo34sznf3Vx1MDAwZo+7S2dbJuNcdTAwMTRJPULQt+O0gmSUTb5cdTAwMDSKcbuHTZRAm1wi0Fx1MDAxY7Gf2s7+rilcdTAwMDFr9FxihkRcXEmDcz/jXHUwMDFksVm5O9fMpjHuqZ4hYbB/aOBcdTAwMDRYdMIg5H//MydniMPuXCJShslcdTAwMTFcdTAwMTe7mTb/rU1cZpVcdCHy/jhcdTAwMWXI09NOo9/9fHX1gX7stuneqLux3DhKTFx1MDAxYlx1MDAwMDSxfp0zRSf/sMK+LFv+OYtQaFRZZbdjOWDESJMxxsG1flx1MDAwZVx1MDAxOFx1MDAwMVxywiuMs2BcXLlxvmv+cHhU4LyNXHUwMDAzJlxcqCi4eXg3+tp5XHUwMDE0XmzM2PXpltfaylxy4Fx1MDAxNqWwjL6+rnz9XHUwMDFm+nFcdTAwMWRcdTAwMTYifQ== ABCa45°45°

ABC - statusis
AC=BC=a

Pitagoro teorema:
c2=a2+b2
c2=a2+2a2
c2=2a2
c2=2a2
c=a2

sin45°=aa2=12=22

cos45°=aa3=12=22

tg45°=aa=1
ctg45°=aa=1

Trigonometrijos formulės

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2Z6U5cdTAwMWJJXHUwMDEwgP/zXHUwMDE0yPs3TPqs7o60WnGYXFwmu1lCQrSKovF4jCfMYWbaXHUwMDE4iHiofZF9pq1cdTAwMTmMe2xjMHeQXHUwMDE4kM30Wd1VX1dV83Npeblhj/th49VyIzxcbvw46uT+sPGiLD9cZvNcIspSrGLVe5FccvKgatmztl+8evky8fP90PZjP1xivcOoXHUwMDE4+HFhXHUwMDA3nSjzgix5XHUwMDE52TAp/ig/P/hJ+Hs/Szo299wkK2Ensll+NldcdTAwMTiHSZjaXHUwMDAyR/9cdTAwMDffl5d/Vp816eIoXHKrtlVpTTZCpks/ZGklJ+eMMUo4XHUwMDFiN4iKXHKcyYZcdTAwMWSs7aK0oavpVFx1MDAwYiv2T9rC8tfBu1Xj29Zu6zWxbtZuXHUwMDE0x9v2OK5cdTAwMDRcbvKsKFZ6vlxyeq5FYfNsP/xcdTAwMTJ1bFx1MDAwZtuIqfJx31wiwz1wvfJssNdLw6I43+uqNOv7QWSPsYzW1uine9VcdTAwMTiu5KhcXCowz2hcdTAwMDZAKGOCMDmurfpz5SlcdTAwMDVageGKS4ApudazXHUwMDE4XHUwMDE1gXL9RsPyx0nW9oP9PVx1MDAxNC/tuDahXHSDsOvaXGZHq3VcdTAwMTL1wmivZ0uxlPKASC2oXHUwMDA2QoSkbuKwUoKiQoJQ1K26nK3/tlNZwje38zna0NuyRzqI4/rGpZ3Rxk1UtMuKZs2o3FCDfsc/s1x1MDAwMKqYYYqAUkw7ydDQ9qeHi7Ng/1x1MDAwMqMprJ/btSjtROnedJcw7cypif3CrmdJXHUwMDEyWVx1MDAxNOOvLErtdItq3NU8z4a90J9ZNI48t65fXHUwMDBl5ygqXHUwMDFm99eyU1H1Mv7724urW8+o0vVeqn+fvrhcdTAwMWW/nJh5/Fx1MDAwMjFEXHUwMDEwKlx1MDAxN+e3ubPS8jNLU/t668gnyVpXxOFT4Fx1MDAxN6R7L3tIXG5cdTAwMWVjWkpNuVx1MDAxNIpMS3I3xDKtPcYl0Vx1MDAxY4gwgJqdRdjJNUKWgyFcdTAwMDSEcFx1MDAxNY+ArCZcdTAwMDBup5+RPX9W5qt0qv+toKVazYOWSmBSXGLDnH1cXEXtOmttXHUwMDFkt1x1MDAwZfTbzpchk7sn8vuwS55cdTAwMDK1V3ld6XHChVx1MDAwMsZAaM7uXHRiQz1ccoZcbiqJXHUwMDAwot0sNTdsJprUXHUwMDA0PYdcdTAwMWHNXHUwMDA1ZX1cXD+smeH8XHUwMDE56pnWczVcXD6zur0rxrmcLlx1MDAxZDOOJ1x1MDAwYlx1MDAxOMVBL8z42trgpFx1MDAxZETNryZcdTAwMWR+zU7aXHUwMDFi707W8yfBuGJcdTAwMWVcdTAwMDbOXGaYXHUwMDAxqVxy1PgqXHUwMDA3QLo94EwpgVx1MDAxZkQocT+xNVNcdTAwMWUjSlx1MDAxMKUpXHUwMDFl6oTxRTw1xShCKGTKNX6Orn9cdTAwMWSq56p0qvstKZ7vqVx1MDAwNedqMvm60lN/XHUwMDFhsp3deCdMNv7eVFZuymY3e1x1MDAxMlx1MDAxNFx1MDAxYuMxiUFcdNeaau28zFx1MDAxOcPS01x1MDAxODGhNlx1MDAxOMffeyH4guz4XHUwMDEyqEdcdTAwMDRLXGb+XHKrX3E8XHUwMDAz/MtcdTAwMDA80XpWl9dcdTAwMDTYhkf2QoBcdTAwMDWbLlx1MDAxZFx1MDAwM1xmRmi0XHUwMDBm6iz2KoBXm4dN0abRx3dv2lx1MDAxZpOhOGhcdTAwMTet7SdcdTAwMDEwM1x1MDAxZddcdTAwMDT9LJLKyGSkjXBTwqVC/0xcZoHajcKd+mDuKZxbM8zHVVx1MDAxOSs7IcZIXHUwMDBi6VHDuMHUnUrBVG2DzohGZVFVMu1qXHUwMDFlXHUwMDFjacGVXHUwMDA0fqP0uZuldjs6qW5XwaOSY+CJp1x1MDAwM1x1MDAxZZvUiIlWm35cdTAwMTLFlW7HxZWJl0bYmChajaO90tJcdTAwMWJ5tYl1a7dR4Mfjepv1XW2Ac/jo9PLZPcpwoCj140+z85Vu8s25sqhXU2HbL8LKieLK6M1IVXNvoqnE1IZcdTAwMDDaxMKk/nk8/MFcdTAwMTNcdTAwMWJsNlx1MDAxM67eh600aVx1MDAxZqZPgVRcdTAwMDDtKcNcZqHcXGLEZDJelox6XHUwMDA0rVx1MDAwNlxi0Vx1MDAxYYPpe1xul8FDM2dcblx1MDAxNOfcaMFdorI4qloq4NKIRyf1RjnxnZC69sCkrj1cdTAwMTCpl/hUQdBapITFSc3k3ofNTXNcdTAwMTS/T1x1MDAwNlx1MDAwNz3yubuxmzyJS2fMWD00XHUwMDA3gjZOSHk6TZFa+jtROTolZS1LuGOnimYujaKgMLlWN/GpXG5MXHUwMDE5vMMjRsmPXHLq+lx1MDAwM4O6fregzsteYb5HRbvVXHUwMDA0MIFdmNNcdTAwMWamd7B+tNVSX/Qhf//dz+JgqzmH0ynWJlx0nSZhXHUwMDExQp3Krnf5JD2hXHUwMDE1VVx1MDAxONxcbmKUmXSmTFKPQlx1MDAxOZFKXHKYx98q7rW5n1x1MDAxNn0/R2OfxVRcdTAwMTBPUC21wnxcdTAwMTBcdTAwMDSXcMEtMzWeXHUwMDAyUFJIRTUwOnPJbDBCMndwXHUwMDE3dW4+zoDYqOT0JuxiMFx1MDAwZobqukE/Z7jVw5iHtkcoXGKhmTSS13uvXGKPcsJcdTAwMDGAgZHAOL1quPlGVI03Yz9uvKX693W9/WU3YGWgimm0XHUwMDAz56pDJFx1MDAxZLw+ON4h29T00mO1n29Evc/z7rF/lUPEYDQsXHUwMDAwKMWN13QydUa1elx1MDAwMkN1SoXWhtHb/ZPq0jOEoVx1MDAxZlx1MDAwN5xcdTAwMGJcdTAwMTTjmH7qWkRR8/XTh1x1MDAwNkrNJEYo8OhhuFx1MDAxM+Cm3n1Rb/7fv3PceVx1MDAxY3bvw5vX51vMnZ9cdTAwMWS4p0sj1lx1MDAxYn6/v21xz8anMyop6oxcdTAwMTbu5m5cdTAwMWNG4XDtgvCwWz2NpVx1MDAxMd0lR2F11J8unf5cdTAwMGagXHUwMDFifqUifQ== ABCα

sinα=BCAB     cosα=ACAB
tgα=BCAC     ctgα=ACBC

Trigonometrinio vieneto formulė:
sin2α+cos2α=1

sin2α+cos2α=(BCAB)2+(ACAB)2=BC2AB2+AC2AB2=BC2+AC2AB2=AB2AB2=1

sinαcosα=tgα

sinαcosα=BC:ABAC:AB=BCAB:ACAB=BCABABAC=tgα

cosαsinα=ctgα

cosαsinα=AC:ABBC:AB=ACAB:BCAB=ACABABAB=ACAB=ctgα

tgαctgα=1

tgαctgα=BCACACBC=BCBC=1


tg2α+1=1cos2α

sin2α+cos2α=1
sin2αcos2α+cos2αcos2α=1cos2α

sin2α+cos2α=1

sin2αsin2α+cos2αsin2α=1sin2α
1+ctg2α=1sin2α

Apskritimas ir skritulys, jų dalyys

Centriniai ir įbrėžtiniai kampai

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2cbVPjOFx1MDAxMoC/8yum2K+LVq13bdXVVTIvMLCwYYBcdHC1teUkXHUwMDBleEniYDtcdTAwMDGytf/9WoaJXHUwMDFkO1x1MDAwNsJcdTAwMDQm3GFmUkSyJVndT7daL/y99u7denIz9Nd/fbfuX7e9XtCJvKv1n1362I/iIFx1MDAxY2BcdTAwMTZLv8fhKGqnd54nyTD+9Zdf+l504SfDntf2yTiIR14vTkadICTtsP9LkPj9+N/uc8/r+/9cdTAwMWGG/U5cdTAwMTKRrJJccr9cdTAwMTMkYXRbl9/z+/4gibH0/+D3d+/+Tj/zrev1gmHsp7enXHUwMDE5WfOA8WLqXjhIm1xuILlcdTAwMTGCaza9I4g/YG2J38HsLrbYz3JcXNJ667ftxmY/uoDG0NdcdTAwMWJcdTAwMWaPPrdbu3FWbTfo9Vx1MDAwZZKbXtqoOMR3yfLiJFxuL/xm0EnOMVdcdTAwMTTSq56KwtHZ+cCP3cvDNDVcdTAwMWN67SC5cWmUTlO9wVlaRpZy7eSj5fR7+lx1MDAwNFx1MDAwMLHaWkWZ1VpbKDblfdjDnsem/Fx1MDAwNL77yVx1MDAxYdPy2lx1MDAxN2fYokFnek9cdTAwMTJ5g3joRSif7L6rby+Za9y5XHUwMDFmnJ0nmMhV1t2xn/Y0cGqkXHUwMDE1XFyYaY6rZvi5k8r8j6x/I9SWz+6RwajXy3fSoHPXSd90I9NcdTAwMGV2l/JP9lx1MDAxZe7+jzmtympcdTAwMThccjverfhBM8s01YYzmalQL1x1MDAxOFxcXHUwMDE0q++F7YtMY9ZydZVcdTAwMTS1XHUwMDFi4Vx1MDAxYn+DqKCp0lYpqlx1MDAxMsBcdTAwMDQoRlx1MDAxZq2n/p+NRvu0XHUwMDFm7Zx3P1x1MDAxZVxytrsx95ufV1tPheIzesqMeDE9naOlJVx1MDAxZFx1MDAxNZqC4Eyr79fRmYxnVcZp8jBcZvJcdTAwMTbUXdlv7zJRpF+mv//x89y7N+DnmW9cdTAwMGLez1x1MDAxNryfL7t8uljzXHUwMDE3fFu+WOOrun6t8NR6z4uT92G/XHUwMDFmJKhcdTAwMTNccifPouzjoD/qocY0XCLUs1HkXHUwMDE4S6JRTlx07tJv1exeQ4WqNdedmkpvyiRYa/KcP2SkJmFcdTAwMDKtg82DKLqZmO1BfcxiXHUwMDExrrqRyr7fXHUwMDFhKfNSRlxu+Fx1MDAxYzNcdTAwMDUsM0eZM1x1MDAxNWBcZueZm329zjTXm16U1INBJ1x1MDAxOJxcdTAwMTVcdTAwMWbxXHUwMDA3nYqcRyDjyq1FUXh17nulvsCSK/OWbFEz6bpcdTAwMGLlWrZcdTAwMDRPXHUwMDAyVkMxcTr8pYpzK6R5PLHdy3jreu9gl27a68PBxuG425fvV53Y7LlbYtmLXHUwMDExK/RcdTAwMWNiRYlYrThIynNyeFx1MDAwM3bVgc3J9vbrorwm/nUyj1cliolTXHUwMDA3XHUwMDBiVCtjXHUwMDA0z+TxXHUwMDEwr40vO929011cYvlG4zKg7Vx1MDAxMziKayvOq8mCwJRXrl6KV6ZcYnBFQVx1MDAxOSE15cCywHmKr8jSvvlbKrlcdTAwMTRcdTAwMWGWge9TXHUwMDAzXHUwMDAzzS0wljn8XHUwMDA1OO2Gg+QgmPhpZD6T+snrXHUwMDA3vZtcdTAwMTlBpkqL3fj7+kxSrVx1MDAxN5xcclIn5HdnlTpcdNpeb5qdhMMst41VeOi0onKXhFFwXHUwMDE2XGa83mG5Oufmtqa2lORE1PJiP3WC+Fwi7EnoicpcdTAwMDBcdTAwMWOocKMqZbPqXHUwMDFlQu/4Q5yML/1Dn3Xrk+GnXHUwMDBi5u3uXa42eszMRuCCv1hcdTAwMDTOOFGA6DGpOVx1MDAxM1xmckbgXvSAXHUwMDAxWuJlXGZ1v1x1MDAwZj2RV9BnRa/2sujVfjR61s3SgjWPJ+/wPW1MPp1cdTAwMGXNpj6wcVj3zWY4WW3yVC6MS8lj+iWdnmZcYlx1MDAxMmdcdTAwMTZ5krnZ2XvIY1x1MDAxNFx1MDAxZJ7iXGZ+OHkyr5/PSl79ZcmrL5e8+2aec/PuRceH4ZLQVOVmPVx1MDAxZsIvXHUwMDE4bPuy3Vx1MDAxYn9cdTAwMTlcXNZacnOgXHUwMDFhV3FnxfGjmfl5YfwooZRmrZ5cIldIv8OOXHUwMDBizjhQ9lx1MDAwM4eaqzJcdTAwMDc920FZSvbcWuH5l51AfVwib5ZcbuxfpVx1MDAxZT8nU7s+/qtcdTAwMTnDdWBbsNs4XHUwMDFmtXq2frbavPGiu4NcdTAwMTXlXHI0pVpyuoR1yTfefsyChdRVrClrXHK1fIFcdTAwMDWLk/f7tXE72J7E6nzna6u5RZtXXHUwMDFmVlx1MDAxYzUpiDBcdTAwMTY0hldCKFx1MDAwNrJAniHUWG65oJpJy55ccjxQxGB0h/+tQJWWdM5qXHUwMDA2o4RcdTAwMTmL+HMqhcYwsLxcbmtBXHUwMDFhaZZcdTAwMTLxvc2VvtjiRqXs3VWWetmmPFx0/dzGl1x1MDAwMvpaU7TqYFx1MDAxZj+qZT2wW2J/k1x1MDAxZMlWjVx1MDAxZN+Y/sl2d8XRV4bwdCZcdTAwMTOdXHUwMDE4Y2J2XHUwMDFkRGDgZ61cdTAwMDZFleIzgdzSydeEM6qQW4nNYbltXHUwMDFlXHUwMDE5+EC0XHUwMDE20k38XHUwMDAwjn+MKq2RXGKD5kng9cb9K+K+SvLuKst8SdjLyi1cbkprZTnq/KOxP2pcdTAwMWW3hv7Rl62OOlx1MDAxZfVcdTAwMGaudrcmf+6vOPZcdTAwMDbtKWOaKVxuaOTyofvtpK4lXFxZKq1ydoHLQsOWyD0l3DJuJXA3XaTmLYZKYriirpVaXGI3+C85fMq1YpSp/4Wtgf8/4FeJ3l1loS9cdHxV6e9cdTAwMTlQy1x1MDAxNlx1MDAxYep78HmLnTbr2/ZPXHUwMDFkXHUwMDFmTTjzXHUwMDFhyclqgy8oxyhcdTAwMWE7lVFcdTAwMGVCQ8ZSyr2QhGMwq1x1MDAwMbhcdTAwMDDITUEsf9tcdTAwMDMxXHUwMDE4aWij0Vx1MDAwMmFET+csozJBXHUwMDE4hiVcZqxG2y8kLe1cdOaAxlx0M964f03cV4reXWWhP7vHXHUwMDA3oyRYJnLu4yHyr1o7vLGz8+m3i/7v4131+feaN9IrTj7nROHIhlkp0djqXFxsnaIvOUGjgIJcdTAwMTFuo5F6Tp8vXGKXICgz6WZpo7KJ9Yx9STTnUliDdIv8/qxpkK+0UWJcdTAwMTk7rd/Qf0H0KyTvrpLMl+XyVTFxSr7UaGZAmseTz082NjekaJ6Go1rXXHUwMDBlN8dt//qvXHUwMDE1J19iXHUwMDE0z4xwc+dcdTAwMTZ0fsfhLfmagFx1MDAxMdJcblx1MDAxMM7sUlVo2fLI18SCcVx1MDAxMVx1MDAwN8dIXHUwMDFkh1x1MDAxN/PAt1x1MDAwNNugXGZIhfdJXj5cdTAwMDdkXHUwMDE1oPbkd3+8kb/y5FdK3l0lmS9cdTAwMGL8ym3NXHUwMDE4dOA/yG3JeYj708F+7SD42D5cdTAwMWGaVnPj/U1rl32JVpx7I4niwKlkgMN9VTjjJ1x1MDAxNCXp4UZrLIKveaFhS9w+QqyyTEotMUjHiG7O7lx1MDAxMWaIdm5BKvxUUvNSkC8041x1MDAwMp9+21x1MDAwMP2KsK+UvLvKMl9cdTAwMTb3tJiYbVXhLvSVjz/Me+KFzZ1xm7L9zs1wsC+Oe5tcdTAwMTN/tbmXbkqVcq6UxFx1MDAwMT9jRXdvXGJowVx1MDAxMX9pJdfwnNxcdTAwMGKsXGKHWFx1MDAxNod1LqSYM7vHNHGTu1x1MDAxYcWiXGZGJjrXT9+2kUnh3Mbbct4rXCK/WvRpbknoS1wi/56DTFx1MDAwMu1cZlC5wLz+yfV4clxml8P63mh8XHUwMDE5foWoXHTmYsXR55pQa1x1MDAwNFx1MDAxNVx1MDAxNjh2bmHLmqRES1x1MDAxY1x1MDAwYiilLY5cdTAwMGV0oV1LXGbxgVx1MDAxOI3GnVNqqFx1MDAxM/Scrdqz4Vx1MDAxZSpJ+ZRcIlx1MDAwZVx1MDAxNzFXvlx1MDAxZHp6ReRXi95dZaEvifzqLTxugVx1MDAwYqPbx3P/NfwgLltH4/pfl8P9rWZnZ2c0qa8491x1MDAxOOI7VJTmXHUwMDE0jKKFZXxBiZFcXFx1MDAxOY1cdTAwMWROXHJ/vlx1MDAwMJ9xNDBofdxcdTAwMDGpdC9RVlXGffU9d9xbprjAW96ofzXUV1x1MDAwYnV+7rL8feUmWWmU2ya7wEj/pj06OKx9XHUwMDAySft7XHUwMDFmrnh8uLt3s+LnlqU2xPlyI1x1MDAwNYbGUJjRZ4pIyphcdTAwMTFcdTAwMWF7Xj7j5p17tuTlXHUwMDAzfEa1ZVx1MDAxNsVcdTAwMGZWMlFexVf4JLNCvo3zX1x1MDAxMfeVok9zS0JfkPt7/1x1MDAxNFK1x1x1MDAxN1xug3yaX79+XGJ+9el6+HVvl32oq7E3XHUwMDExwak0zSdcdTAwMWRIKVL2nFx1MDAwYnqSKIyxQGJ8LDG0mZ3e44JcdTAwMTHj5lxcLJNcdTAwMTaMlc+3oIeDXHUwMDBmafGHyjTumHc6TGHAXHUwMDA3bviBhlxikTKydFpcZoMza5n5kYfFVmVcdTAwMWI9XHUwMDEwbig31s3ZUslcdTAwMGJcdTAwMWLq0a9cdTAwMDFaSTBcXDIl5UOFSVwiXHUwMDE5qohCKFBcdTAwMWS0mVltL9b0UGFcdTAwMTbdXHLTXGZ7SVmeO5DoLkYoloGtkqhcYtqqXHUwMDA3W1x1MDAwNpzkKlx1MDAwN82/rzg0Re5oolx1MDAwMMpcdTAwMTnDXHUwMDA2zlhcIk4w2LBu9zpoxbAjXHUwMDFl/PtPXHUwMDE4qbjZMatB40BcdTAwMDKLVd9XXHUwMDFlx7dFXHUwMDFiyIHb9FxcovrO8oRwZzJcdTAwMDVcdTAwMDKnhcRBgPiuzpOcXHUwMDAwluXO1aR/Z2SmtI1F1aTSIKSlMaJcdTAwMTXFuNDt3Vx1MDAwMVx1MDAxY1x1MDAxMcpcdTAwMDff9enlrVx1MDAxNcp9pvMma3dVrHvD4UGCXHUwMDBmT8cgaMWCzt0x0qya9XHgX9XLZvanbnqtr925ROd40or+/mftn/9cdTAwMDIh9dxcdTAwMDUifQ== OAB

AB (senose knygose AB) - apskritimo lankas

AOB - centrinis kampas

Apskritimų lankai gali būti matuojami ne tik cm / mm / m / dm / ..., bet ir °

Yra laikoma, kad apskritimo lankas turi tiek laispnių, kiek jį atitinkantis centrinis kampas.

Jei AOB=70°, tai AB=70°


eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1cXGtTXHUwMDFiuVx1MDAxMv3Or0ixX1x1MDAxM61aLamlrbp1XHUwMDBizJtcdTAwMTCeYVx1MDAwM7e2Uo49wITxXHUwMDAze1xmcbby32/LXHUwMDAxz3jsXHSQa4Ozl6HKgDSjkdR91Ofo4b9cdTAwMTdevVpM++1o8Y9Xi9GXWjWJ653qzeLrkH5cdTAwMWR1unGryVlq8H+31evUXHUwMDA2d16kabv7x++/N6qdyyhtJ9VaJK7jbq+adNNePW6JWqvxe5xGje6/w+e7aiP6V7vVqKdcdTAwMWSRveRNVI/TVuf7u6IkakTNtMul/4f/f/Xq78FnvnZJXHUwMDEyt7vR4PZBRlY9XHUwMDAwXUx912pcdTAwMGWqik5bkN7D8Ia4u8IvS6M6555xhaMsJyQt9s82vDm4udnV6ztb6Wm88aFcdTAwMTJ1s7eexUlymPaTQZ26LW5KltdNO63L6M+4nl5wri6klz3VafXOL5pRN7Q9q2arXa3FaT+kSTlMrTbPXHUwMDA3ZWQpX0IjQVx1MDAwYoeSNF9KKmtomFx1MDAxZFxuICdcdTAwMDCV0pq8096gKlSs0krYXGZcXLHfIFxuP1nVPlVrl+dcXL9mfXhP2qk2u+1qh42V3Xdz12SphTaarCftwKqsOVx1MDAxN1F8fpH+8JZuNLBcdGhn0Wgts5xQhfZmfeBcdTAwMWN/ZZbosFtthkeavSTJd2ezftudd06UuZG6TfmWtTHcv5pzv+xccr12vfrdUYCUVySdRK73MD+Jm5fF1yet2mXmW1x1MDAwYrl3jXn0WYdbfIe2gktrWebRpIzVzjzCo9+Y9V6jXCK/flxcWa1UXGaeOb90cTLfXHUwMDFlbcBcYuW9RYnc9fwx4tDKOiGNXHUwMDA0tNZJpaFYr+k5tFx1MDAxNFLKXHReXFxIv3Vdw0ON9HZcdTAwMWGeO5IxU1x1MDAxN1x1MDAxZCa3W3F+XHUwMDAwXHUwMDBlV/bXq8xAg3+Gf//1evLdI1x1MDAxZJSlZM8tXHUwMDE0nl9Mqt200mo04pRcdTAwMWK0XHUwMDE3KlOseDdu9Fx1MDAxMm7uXoc7qddcdG6Tdnq5XHUwMDE23KZ/76NcdTAwMWZij/tlYiixrlxmd1x1MDAwMJbQk1x1MDAwNfNg4NFZv3/65vTY14/kzenX3evraHXOgYfGXHQlSVx1MDAxYZQ8OjszgjtcdTAwMWWThWX/ttJ4kspcdTAwMTDOXGZ4XG6tcFx1MDAwMOCdXHUwMDAxr4CrNVx1MDAwZUKUXnA8c1xunSTlvKRcIiCBXGJcclrE/1x1MDAxZJDPXHUwMDFlSnJdXe2ky3GzXHUwMDFlN8+Lj0TNeknOXHUwMDAz0Fx1MDAxNcpd6nRaN1x1MDAxN1F1rC+45NK8qY5cdTAwMWPlllx1MDAwZtebcaOPXHUwMDBmKT+FfGaJpdA3Tlx1MDAxYlx1MDAwZbk+u+M+6Fx1MDAxZra3Nk47prXzsW277Z1cdTAwMDN7fP3lfL6hbzxcbm6nXHUwMDA351F7XHUwMDBiWWPD817xuCDZOOQ84Vxib5t2zJ2AdJJMXHUwMDFhXHSYxFwim4G0XHUwMDFkZ43kkSmBzkas+YJ6Nn69QH3i3eM2fiSwf0iny8O6wkAkecB5MLbjy6X3raN1d4nvXHUwMDBmW2dmpVx1MDAxYTVWtn9cdTAwMDbbRSE2Q2xrLThmo1x1MDAwMVx1MDAwMq8lZt0xeJ60IFx1MDAwMmvZXVx1MDAxNVlrXHUwMDBi9ZqiQFx1MDAwNMFcdTAwMWHVXHUwMDAzIFx1MDAxOFLEXHUwMDAz+aSwLpj2O2nZNKhcYmksrGty4JB17nPz7J9cdTAwMDL1lHm21qxcdTAwMDdZ9rOitkpqhyPPXHUwMDBi50E5p8GgXHUwMDA3b7S/r0BcdTAwMTDkmNnZMJ/g0Es/XHUwMDEyfsdz7ysvqP1h/aRS/vVIplx1MDAwNEmenPXKapZy5r7iSFx1MDAxODKe5SHzU1x1MDAwNKf165FMYM+RhFxumTdYvL+xRlx1MDAwMLNcZn7GsvejdaONRcE2Zj/jIcJxLenexirDXHUwMDExlKOjlppLI25vvjxcdTAwMDXCoTXWMi1cdTAwMDWJ5v7ymFxuXHUwMDE5rbjHWVx1MDAwMUviqtqR8pwwisdLzz9Go7Z0rzFK4Td421x1MDAxOPBmV95CodynVX9p9CWdqP5UMXFcdTAwMTgmgjG1lo+ggP23p832TjtxdvfNxkpFre3pP8/mPEygXHUwMDEyrHCVVKC9XHUwMDA3M1x1MDAxYSbYilx1MDAwMjQqhr1FUFx1MDAwNDOUf5ahbCUrUKZcdTAwMDTs/GpCnMhRvTtcdTAwMTLIXHUwMDE4ZVx1MDAxODj3jFx1MDAxMzAhjkJu9u5cdTAwMTGB4azVTFx1MDAwZuOvg2lrO5K6Vm3ESX/ErFx1MDAwM1x1MDAxN+Zu3F1cdTAwMWNJWkri8+ZA5kRnoy6exrVqMsxOW+0st8avqLIs6ox3SatcdTAwMTOfx81qcjT+uiCkNu6MXHUwMDAxXCJnok/VbjSQWdxcdTAwMTD105xccqmYeFx1MDAwN0YvXHUwMDAzXHUwMDE2XHUwMDExXHUwMDFmPlx1MDAxM3O68XVls+L6yY4+2oyvo+1Pu0f9+ZZjYSZGsi+TM6hcdTAwMWTjblx1MDAwNIthXHUwMDFhnSNcdTAwMWMwXHUwMDEzXCIjZW6i5nmnQFx1MDAxNVx1MDAwMFx1MDAwZvR5zvZ/TM3me1xu9Oewh+xw0jxmXHUwMDE2VF2eblWvVOfjRbWys9o8SXYvt+Z8XHUwMDE2lKWS8Fx1MDAxY3U4xjHNVTRcdTAwMWFcdTAwMDeZaFx0JnmOYWdZPIKmOVx1MDAwMVx1MDAxZodMZYnHg1x1MDAxN2H0XHUwMDBmRZ9cdTAwMDLPfazp4ZNcdTAwMTVcdTAwMDf99SR23Vxy3F5Ve42t91x1MDAxZuJcdTAwMWSN844+IzzTPlx1MDAwMzrIL1x1MDAxYY18zlx1MDAwYutcdTAwMTRcdTAwMThlnNde2nlcdTAwMDFcdTAwMWZrb8+V0jSFxYZcdTAwMTfwPY/+M6XAY0qvnbOsZVx1MDAxZow8+Hhl64e2erJ6nlx1MDAxZTW3XHUwMDFilVx1MDAwM3aR+UZcdTAwMWVKJ1xitHbGSe9cdTAwMDBcbpxcdTAwMTNIYNg/XCKVQyPd7JCnUFhg+Vx1MDAxN5ZcdTAwMTiVVuAmrP5NkH9cdTAwMTBWhKR5TvL51PJv6Wnl39J05V8pXHUwMDBlS5filFx1MDAwNKtcdTAwMDF9zvnuw+Hy0UW05rdWTt5cIqyp7bdXn1x1MDAwZpeX51x1MDAxYodcdTAwMTZQkNJcdTAwMTaVM5I/XG78k7SwmrvBOK1ccuRcdTAwMTbqZoBDcFoypFjTSW1cdTAwMWaIQ+InQPFw8dw4hLy3zlx1MDAxNIeVp8Vh5WlwqMuXxIkkSW3Uw3Vg0tnu7X/4UN+izbd9X7dLp/tJOuc4lGEvgpGsXHUwMDAy2feLOEQn0KBcdIsrhsmBdIV6TXc6lHjoU6g8SDC5eepcdTAwMWbhkNUgoJQ5K/7jcbj8tDhcXJ4uXHUwMDBly/amXHUwMDE4KCbe4TDMj2tcdTAwMDTzcFqapFG3cXx4Uturf8aaV1xyV9M/tXr9hLSUSDjvJZH1xmC2qnZLSzlKKVx1MDAwN8oqZb2aIVxm+UWStTd4a5QnRMqANYQhXHUwMDE4QahcdTAwMTE9XHUwMDBiXHUwMDA2Mp58rptuYemsJ6vmd6uKz/v0y1aVwfWm3PbhXHUwMDFht3pW4EL+9/SQXHUwMDBmUitWao+YiN18276s+JUvqYtPtpY/XFzt9+yf+3OOfFx1MDAxZjqWLDpUzHRlQZAqI1x1MDAxNFx1MDAwN0XmmsY7q/TsNq6AXHUwMDE2noNpMDJcdTAwMGY00pqsXHUwMDBmhtBXSoSNXHUwMDBlrFuZKed3Tlxmka8kao9aT2F98lx1MDAwNflPhvxS04drzOjTXHUwMDAyfulcdTAwMDFcdTAwMTBwXHUwMDBlvWXq/XBcdLyy33B777Y+qN7e1fk6fGo3r6qn8418JtWCIz2DXoW1XHUwMDE2cFx1MDAwNegjU1x1MDAwMlx1MDAwMo9sXHUwMDE5xj3NTlx1MDAwM/PAr9DIsENwwC8m7ERQXqBmgey1YsFOfHNcdTAwMTH5Wlx1MDAxM3PhqZxcZnlcdTAwMDH+XHUwMDEzhvzJllx1MDAwZte4zZ9cdTAwMDL4lrlcdTAwMDfltlx1MDAwMtxcdTAwMDf8XvMzXa7tbb+n+O0lrDn62pNcdTAwMDdzXHUwMDBlfNSCVa5nULuwxmNcbmdQtFx1MDAxNSaEUVxuXHUwMDFizviG2Vx1MDAxZP5cdTAwMDIpPFwiXHUwMDAyhDMk/DGB7aNcdTAwMTLhYKW3Nmx8yFx1MDAxZujIlmTBauntXHUwMDBi8n8l5JdZPlxcYzafXHUwMDEy8HPsdWzSm6uATtPDN1x1MDAxZrq19/Kj73853EVX7282XHUwMDBlfL+xOufAt1KwLpbWS0lcdTAwMWP1s+5cdTAwMTjg3nhWXHUwMDAyzphcdTAwMDH78Tld9FxmsL8/4Fx1MDAwM4ElXHUwMDAyM68nz15gP373j2E/s4Cvy/daXHUwMDAxcsjXj5D418ZcdTAwMWO7d53KOu1cXNfd8ea7ja/7h3NcdTAwMGV7x0xeMvCdJebyfvTYWdhrpcCzwOdcdTAwMGKVmV20N4JcZqtcbs2ji0XnVYbcXGb2JGSoXGLfwZJcdTAwMGbcpGNo4chcIj//Mrf3XHUwMDBi4b7U9OFcdTAwMWE3+rRwX3omLWy9186ah+O+8v50d9vvfNpJLrpcdTAwMWK2c765frw/51N7Jqxxy3BSR1x1MDAxYo76OPqdJdpaYTU66Vx1MDAwMMKJmVx1MDAxOVx1MDAxZUlcdTAwMTM2yFx0Zlx1MDAxNIQgR3r9MfFcdTAwMWVAS/ZcdTAwMGX1XHUwMDAy/F9cYvjltlx1MDAwZtfsXCI+XHUwMDE2XHUwMDEzh1x1MDAxMt86XCJvXHUwMDFlcbJhKz7YVu3TzrXtr3++2K/s1/ZcdTAwMGbnXHUwMDFk+YhCcbB34ZxcdTAwMWORXHUwMDE5R760XHUwMDBlSVoynqn+zJAvw1nCbNyXMCnku3AyNsw0Olx1MDAwNM+VXHUwMDFhW2VXkriqyqgprLK/IP+pTp6Xmj5cXONGn1x1MDAxNvBLJT5K5bW3j1D47ZujnVx1MDAxNa/dxum742VzZT6fyI9zPqdvXHUwMDA2XHUwMDFhnkfUMI/Jgb9cYnwtPIRDpMRGsX52p1x1MDAwYo1cdTAwMDBynqFhwreQ2dxcdTAwMTbyPNVnUuJ9OKjrmH/k9lx1MDAxY1xmXHUwMDE1voHB91x1MDAxNbzM7P06uC+1fLjGbV5cdTAwMDb7hdtcdTAwMTcsVtvtw5T7fmhD9oG4frtrKWvG4nVcdTAwMWPdLI976W9ng2tx4dbQXHUwMDAxtYP9639/W/j2X1x1MDAwNCaZiyJ9 OACB

ABC - įbrėžtinis kampas

Įbrėžtinis kampas - toks kampas, kurio viršūnė yra ant apskritimo.

Įbrėžtinis kampas ABC remiasi į lanką AC

Įbrėžtinis kampas yra dvigubai mažesnis negu lankas į kurį jis remiasi

Jei ABC=30°, tai AC=60°


eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da1NcdTAwMWK5tv2eX5HifD1o9NySTtWtU7wmhJBcdTAwMDRcdTAwMDJDXHUwMDAyp05Rxm7jXHUwMDBljW3sdlx1MDAwME/Nf79LhtDttjs2TJs496JUUUFS67X32lx1MDAwZmlL/Pnq9euV9LZcdTAwMWKt/Ov1SnRTryVxo1e7XvlnyP9cdTAwMTb1+nGnjVwiOfq931x1MDAxOfTqo5qtNO32//Xbb5e13kWUdpNaPWLf4v6glvTTQSPusHrn8rc4jS77/1x1MDAwZT8/1C6j/+l2Llx1MDAxYmmPZZ2sRo047fTu+oqS6DJqp320/lx1MDAxZvz++vWfo5/50SVJ3O1Ho+qjgmx4gtti7odOezRUz4X0njv1UCHub6KzNGqgtIlcdTAwMDFHWUnIWjk+PL044XZ/u93Y2Grb/Yvk8nM/67VcdTAwMTknyUF6m4zG1O9gKllZP+11LqLPcSNtoVRcdTAwMTfyy77qdVx1MDAwNuetdtRcdTAwMGZzXHUwMDE3XHUwMDBmuZ1urVx1MDAxZae3o9nxh9xa+3zURpZzg9+U1owspuo4145cdTAwMDSnh+LQgCemNddcdTAwMDJVjLTaicLANjpcdMiAgf1DROFfNrSzWv3iXHUwMDFj48NSfK+T9mrtfrfWXHUwMDAzsbJ61/dTVlx1MDAxZVx1MDAwM9HCk8KaS+vcQ41WXHUwMDE0n7fSXHUwMDFmVulHI5pcYm+cs1x1MDAxMrN5KFx0Q+i+bYyY479cdTAwMTklemCrt+GT9iBJ8svZbtwv53cmythI3uf8lc0x1N/KsV/Ww6DbqN0xisCApOVOai6ztU/i9kWx+6RTv8h461Wur1x0jm72MOPvaCuwtNFlXHUwMDFjLVx1MDAwNdhdSuLzs3STjnbS4zTl77ZcdTAwMGVv7dqns91279tys7TRllx1MDAxOSOk9GSl9jn8hu+lXHUwMDE3TConhDTWkFZqYVx1MDAxY81cdTAwMTnnOU58YONC/j3vWkVcdTAwMGXoo1xuWHesYKE8+pDd7cR5XHRcdTAwMWNS9r/XXHUwMDE5gUa/PPz/v/+cXntsgbKc7LtXhe9Xklo/3ehcXF7GKSa0XHUwMDE3XHUwMDA2U1x1MDAxY3g/vlx1MDAxYySY7l5cdTAwMGaLNOhcdTAwMDW2SXuD3Fxm7vPv1uiH4Eujm3RcdTAwMWHwtCpcdTAwMDOesEqQJJB4buC1/ji46lx1MDAxZXzbeU/HRp2Z/Z3NhjtdcuCRYGBiUlJbI0VOWYyAp0KpM1x1MDAwNtrGciXJLFxmeZKYUMRcdTAwMDU5bdBcdTAwMTWgPolCbYpcYlx1MDAxNNqSscpWoT2eXG5BazRcdTAwMDdcZp9cdTAwMDLBZqedXHUwMDFlxMNAXHUwMDE2RWO5v9cu4+R2jKwjXHUwMDE2xjJ+XFxcdTAwMTnLWkvi88DJK0nUXHUwMDFjZ/E0hu31UJx2ullpXHUwMDFkXdTidtSbXFySTi8+j9u15HCyO8ws2v5OXGaIZJOjdj9cbqVhXCLyh0BcdTAwMWPVmlx1MDAwMkQri5lcdTAwMGY2nbXeOin8/Dad7DZcdTAwMGaP38brx83LROxt/q5b8eaS41BzXHUwMDA2W45LJ61cdTAwMTDKZpOdolx1MDAwMKUrXHUwMDBlrDpcdTAwMWNcbqVDV05cdTAwMTJJ47TXma39gEOhXHUwMDA1U1x1MDAxY3rHwaST3OeY/1x1MDAxZZdOeaVAsuzjX9eoyy11rZeux+1G3D4vflx1MDAxMrVcdTAwMWIlJXOoudDuWq/XuW5FtYm1QMulZZWq8NVy0oc0SfRJ3f4k5Fx1MDAxM1x1MDAxNTNcdTAwMWZUsDaShMK/uaG/uvP189rxtr3abd/E/eFu3Z30estcdTAwMGV9w1xmdCuHiuXkXG7enHSGXHQnpTRcdTAwMDTtXGLXdnEqWCjP0F3w1FxmfqopdjAkXHUwMDEzXHUwMDAze1iM1CnIopx0uEe+hNHHXHLcucywWi7oZ+N6gf73VEr5u8JcIs2rXHUwMDAyfqnt7a200IUq4/VZuH/78WJwMvxwUz/pb1xc8r3+0dHZm5tKcd+o9VtRpcDX3EDeWuesMFx1MDAxZSpfZGC6XHUwMDFkuSZcIshcdTAwMDWIYyHIa7VI5FsmjFNcdTAwMWH+XHUwMDBl19qKTFx1MDAwND0gXHUwMDFmnlx1MDAxMMOIuFx1MDAwM4qkgEeQ1flui1x1MDAxYu/hKpB5Qf6vg/zVUtKPSiepXlx1MDAxNfZNMfNB6Vx1MDAxYk3oTcj5N7zc5+tcdTAwMDGdXVx1MDAxZVx1MDAxY5srm0ivkqgujpZcdTAwMWP85Ig5XHUwMDA1S8tB1jkvsq5H2JeaabJcdTAwMDSvXHUwMDFjq+7UXHUwMDAy/W4vXHUwMDE53GeobS+U4ZQ5XHUwMDFlXHUwMDE59I1iXG7ySVx1MDAxOU9cbjVyq3SP/FCo4btnw3xB/tIjv5Tyd6VFoj9cdTAwMTL4P9rtVr6YmYFfaaUhdebX/PSm9ccx763xs93h2tbRV/n1ZPP2KeCXhfxFan7hmYHB5YNFT6TNOPqlXHUwMDEwTFxiXHUwMDA3WDljgzHtXG5Dq1DzXHUwMDEzgzunIH/AXHUwMDA1XHUwMDE2XHUwMDE4nrLthtFoXHUwMDBm80RI6ZTkbso2nLFcdTAwMGVcIourXG78/b+3XHUwMDEzni3kz9pcdF/ljDy5oDW11bCbM6k43/eCWS1cdTAwMDW3loQj8sKNueGcKY21hlaA6ahgbZGZ2aKGXHUwMDA3XHSnzEHZaMdNpmtCglx1MDAxMHBWWamF87BEScxszjF4d+TBmtq44Fx1MDAxNeSbI5abvJVy9nRcdTAwMDVzmpSCXHUwMDE2hJhR3oxZIJ5pbpVcdTAwMTOBQWGEiNmTLefokCZ5eYFccr4qNPy8R1x1MDAxZT+SwLp0t1x1MDAxNeY7XHUwMDA3oGSG5FlcdTAwMDJ46+D2POk0fk/NSUutr570vq5emSVcdTAwMTfARilcdTAwMDZIQFx1MDAwMoORhVx1MDAxY1x1MDAxN79KaFx1MDAwNl9GKZhlwmu9uM1WJcHe4Fx1MDAxYa0st8C0n+J4YaBcblxuXHUwMDExXHUwMDE1wkm/127S/HKAr4Ow+OnnkD9f+k5cdTAwMTGPj/peM2dDaIWFQJJcdTAwMTZiZ1xm60yBXyBGuddgXHUwMDBmo2a1NiG9Slx1MDAwNS9ZTrNagyBCbam0XHUwMDExysNGXHUwMDE435+Fo5ZNXHUwMDFjvCvtrPbgY3Bcclx1MDAxMIxcdTAwMGVcdTAwMWNcYs258faKfDerPYXFXHUwMDE3kqzhhjQmS/ZvtleKjudub3lcdTAwMDW5Kt88t9qTtY7ml+RcdTAwMWY/XGavv7xtf1x1MDAxY25vb+5dXHUwMDBmpW+u7zzJj35OSS45gyXigvHpgM7xPTQlXHUwMDFkbFx1MDAxZlx1MDAwYkjDxlx1MDAwNl8uLnLEhI5ClJOEMaO9n+JHe1x1MDAwNlx1MDAxYsxcdTAwMTNXJFx1MDAwMlx1MDAwM05a0VxcwqiCjVHBXHUwMDA22q8ux1x1MDAwMVWoX8NhXHUwMDAxXHUwMDEzvFOfUe6ulHtupIemxnCxbDNlJzFIbVx1MDAxZeS24eBcdTAwMTKjx7A/biDD45opilx1MDAxNTPOac2NloYgQsckOzGoXHUwMDBlmMZeh5My7mY2XHUwMDA3Llxyjlx1MDAxZexlryGIIT3HbeBxvpmpw4L3qCyM8DBcdTAwMTdjlflbrVFcYlx1MDAwMdHOhXhD6cd1mGOKoInQXGZ8XHUwMDFljq5mtWZcZrrnqCohnpyXNEZcdTAwMDeDZYDfoGHQeKu0mOk9lKIupMdrxCc393NcdTAwMTVEaXBTqZXvVFx1MDAxMJeUXHUwMDAz+izdwPvv41x1MDAwZVer8dl+PFx1MDAxMMlq68BeqiXXXHKKYM4p4Fx1MDAxZKxcdTAwMGKGL+yyQFx1MDAxZjDIXHUwMDEwx71ccnFcdTAwMTWLXHUwMDBik5WKkSBcdTAwMWU6UbDfxLQ42ck9XHUwMDE1XHUwMDA1XHUwMDAzXHUwMDA1X1Sxp/r3XCKbnqRcZp5cdTAwMTTZtPa8kU257qqIbCpFYamJXHUwMDA25SXDXHUwMDA2z/wobPff1rtvN75cXDQ+tfdPdtfrq2fbX5ZcdTAwMWOFlmuGeVx1MDAwNq1cdTAwMDa1RCbj/rtTTsU8VCUn/IBcdTAwMTNbXHUwMDFjWLVcdTAwMTGGUMdCKmgxXHUwMDBl9yTr6lx1MDAwNzB0XHUwMDEyfjVcdTAwMDb4XHUwMDEzdzbvYGjyzLpQXHUwMDE4rj8vXGbXn1x1MDAwN4bKXHUwMDE1M7MwI68sjMzcXG7N9JQuXHUwMDFhb95Rd+i7w4Fzrc9cdTAwMWaPXHUwMDBl6+tLjkNlZDBzpfLWaSPyLD1qQFx1MDAwNptWedjGXHUwMDBl9qxeoK+EniD0eLBcdTAwMTet4prmU4ghXHUwMDEyXCJsLfx0hWjz/LpQJG48L1x1MDAxMjeqReKP9i1k6fm/xDLTY0J/5NpxfP5FNFx1MDAwNt6am8tk+OFd0lx1MDAxOS756b9ylsFvXHUwMDEyRlx1MDAxMFx1MDAxOdKF039kMuVhuUroKvghZnHnf4+78FwiguyAJat++lx1MDAwZcWTtOH/q1x1MDAxYi9PQ9/oTE/r+WNv1o/OTvZqX7qfjzZO+W3r+uvXXHUwMDFiVe2dl0VcdTAwMDTeXHTmRnu8IdzemvFge62IhesuRJLDX1tcXOjN47AnOVmIXHUwMDAyY376XHUwMDE5+1x1MDAwYvZcdTAwMTaDvVx1MDAxMInDpVdmft23ezXcO22tnV7sf+h+4n5Vxt3WYMnRR86HXVx1MDAxOVwiJ3w4zVx1MDAxYVx1MDAwN1x1MDAxZrw0wFx1MDAwZchcZmdwmuSy3PVcZlfkwkXlXFyA3Fx1MDAwYvxcbjnLXHUwMDAyv7Kg0/L9UFx1MDAxZu7Ru8eEna1cdTAwMWZ8Wv3c0f2ba9o5P1x1MDAxZLzZ3d9vPslcdTAwMDN8vosmWjpmpVx1MDAwYnGayprgS41DL1xc8LHSXHUwMDFhKEROJrfTX33UmVx1MDAwNr9cdTAwMTjyVlx1MDAxYXjd1sgpWzFSMljGkFx1MDAwMZrIu3AvYVx1MDAwMpLWeS2ck8v6dMCTkPp/Pey0nPYhTVJ9Uqg8XHT7qlx1MDAxNPuWnPGWP1x1MDAwMvv2W+vNZnT1Ndpo7n7c2mu2P705XFzye95aOyws9G24uEf5XHUwMDFkl7ujXHUwMDEwwVDgXHUwMDE1XHUwMDA1ts1f26xcdTAwMWP5XHUwMDA2w1x1MDAwMGbDTpNcdTAwMDRcdTAwMGZMu14qNVx1MDAxM1x1MDAxOKdU3HAvuFVcdTAwMTPIXHUwMDBmt1x1MDAwM6yzWlagjF+Q/2zIL6V9SJNUr1xi+br0bVx1MDAxNeGVVVx1MDAwMlxub/6r5Wt67ZO6llx1MDAwN5Fo/b7Z2Dqorde/7C459K1gQmlhjNZcdTAwMWVaf/xtXHUwMDE1TZw5aYTQznnr8qy7XHUwMDAwrW/Dyb4wOoTX5S+0PVx1MDAwMvuCXHUwMDBi762iKmLNX7D/jFq/hPYhLVxm++VaXHUwMDFmXGavwmsjYv675Wvrw01fa7idRuek1Ty1183kdm/Jse9cXHh+S1rLg+AtbHSRY95cdTAwMWLBw7aSXHUwMDE2YoEnPlx1MDAwMkImvFxiXHUwMDExTk9cZnc8XHUwMDE34paHvvOj0Fs4KjZ3SyF7KkxBcXCxtE+FZec6L8j/nlbLSVx1MDAxZtJcdTAwMDTRq1x1MDAwMn7pLptxwfzQZn6dT1fvk2FcdTAwMWHdnF4lzaNcdTAwMDbvb65eiSXHvYGtpVx1MDAxZLyncLmPdO5mwFxi+FayYFxugHPJS6NcdTAwMTZcdTAwMTdzYSH1ObxcdTAwMGUvPGk3dqyX4d4yklJBL1B4g0q5yZvlWuhwIWNp75e+XHUwMDAwf7L2ajntQ5qkelXIL31cdTAwMWNUXGLruYHJPz/0k3f1d2+uok3+aWPT1s2wfvzxor3k0FeO6fCGh7BcdTAwMWPGvS+Y+1YxXCJFlofgX85cdTAwMTfn6XNmx+mfLUFcdTAwMDZ9XHUwMDBmj9CaXHUwMDEwo6mJtFx1MDAxMlx1MDAxM0FcdTAwMWbChYsuyrhl9fRfoD+ldinpQ5okekXI/4GjXHUwMDBmu4NgejzC0Zfmpn7S+XYtzeDisJ52oz8+mWrflFjAW47hSVx0b41SJJQsvCFcdTAwMTeU/ugpR/hcdTAwMDOQt2aBz8k4JsjDquNkKFx1MDAwNJpPM/ZcdTAwMWRcdTAwMGK79845QMh7bSaekFx1MDAxM9pcdTAwMGLlja/iNsxcdTAwMGLyn1x0+aWUXHUwMDBmaZLmVan88sdkrJfKPsrL3zmtdTfkt9qHi/VcdTAwMGbJcHjEk1YnWXLge2Lw7yX8LJE/un5uJ9+EXHUwMDAwa1x1MDAwN1NcdTAwMGX+XHUwMDFlLPZpYZ2SmDZGclx1MDAwM9fDhdfLp9yCXHUwMDEzXHUwMDA0dY+xvuD+l8F9OelDmiR6VcAvfUEuvFx1MDAxYmmJzPy4l20z7Fx1MDAxZn7+uPX+6uJ0/Z25OXq3s+RcdTAwMDf6JDlcdTAwMWJdXHUwMDA1l1xuhr4s7uxcdTAwMWI4XHUwMDAy4W8hSC5cdTAwMTQ0Py3wVM8y50lQeMlOQG1PXHUwMDAz/vhGj/GTwIficOCeKlx1MDAwMtxegP9cXMAvo3xIkzRfOO5cdTAwMDFcdTAwMDfnwlx1MDAxZlx1MDAxMJj/NH94drVNze3rVDc7N1fNnt29vXi/5MDXnCnycOQ9xCovXqkyXCK8YsFcdTAwMTU3Slxup1xyXHUwMDE1XHUwMDA2ViHwPSQ7nFx0oMSL8Kcqpjn5hpG1QlxiXG5Pc3DOJ470dFBcdTAwMTjhbu1cdTAwMGLwf1x1MDAxZOCXUj6kSZpXhfzyXHUwMDAzPeKarDZ8/vcu3myv8Vx1MDAwM7NxyG1rf7t72j7fMlvV3lx1MDAxY6lcdTAwMWX5xjBY+Wb05pQqanxFXGZlQmvyIVh1gTe4JOw9XHUwMDAzqVx1MDAwZuPCe3h10/b1x6y+sVOGO9iHQi3kXHUwMDBi7H8h2JdcdTAwMTN+VFokeVx1MDAxOepf3XewUut2XHUwMDBmUqz9XHUwMDAzXHLBXHUwMDAzceP+olxcNo2Vb3F0vT7JpP9ojtLKq3tCXHUwMDA3zI5cIoT//OvVX/9cdTAwMGJcdTAwMTRB2b0ifQ== OABC

Jeigu centrinis ir įbrėžtinis kampai remiasi į tą pačia lanką, tai centrinis kampas dviubai didesnis už įbrėžtinę.

AOB=2ACB


eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2d6U/jyFx1MDAxMsC/z18xYr8uvV3V90pPT1x1MDAxMGC4hyNcdTAwMDNcdTAwMDNPK1x1MDAxNFx1MDAxMlx1MDAxM1xmiZNJXHUwMDFjrtX+76/aMDixMVx1MDAwNDZhzSqeXHUwMDExh492x1W/OrqrzZ+fPn+ei2+7wdzvn+eCm3qtXHUwMDE1Nnq167lf/f6roNdcdTAwMGY7XHUwMDExXHUwMDFkwuT3fmfQqydnnsdxt//7b7+1a73LIO62avWAXYX9Qa3Vj1x1MDAwN42ww+qd9m9hXHUwMDFjtPv/9V+3a+3gP91Ou1x1MDAxMfdYepP5oFx1MDAxMcad3v29glbQXHUwMDBlorhPrf+Pfv/8+c/k63DvWq2w21x1MDAwZpLTk1x1MDAwM2n3nMzu3O5ESU9Ba2WNNSY9I+wv0c3ioEGHz6jDQXrE75q7PllcYubPXHUwMDBm3NrN6llcdTAwMTBvXGZO66stmd71LGy19uPbVtKnfoc+SnqsXHUwMDFm9zqXwWHYiM/pqMzsL7qq11x1MDAxOTTPo6DvPzs87u10a/UwvvX7OH/cW4uaSVx1MDAxYumeXHUwMDFiL1x1MDAxZSeZRMs1R4PWXHUwMDE583g0uV5cdTAwMTiGzmippdNgXGZk+lXptEhcbtSvXyDw/9Kendbql03qXtR4PCfu1aJ+t9YjWaXnXT98YqGRKSlAKCXpjlx1MDAxNsXjKedB2DyPnz+nXHUwMDFmJEJcdTAwMDHtpDaSu/RD+k5011x1MDAxYYl2/JGKokd6teYviVx1MDAwNq3W8POMXHUwMDFhXHUwMDBmz/OnXHUwMDE2pXqEXHUwMDBme/5KP6U/f3lI/9I7XGa6jdq9poBBh4ZbiVxcp4+3XHUwMDE1RpfZ27c69ctUuT5cct0rp9J0+ZP6LE2RPnv5XHUwMDE5XHRifHVuX0RLh3zjKmi61Z2aizq2N2iXW52FQ8ZccmkzV2CtNVqP6rNcdTAwMDZGkkBcdTAwMGJKXHUwMDE5Ulx1MDAxNGWnptDKMrq7kEKTXHUwMDFk0ca5vD4j9Vx1MDAwNr1aSFx1MDAwN0ZxY1VOn4E7+tBiyEp9XFx9XHUwMDFletS1XrxcdTAwMThGjTBqZi9cdKJGwZFWrVx1MDAxZlc67XZcdTAwMThTN3Y6YVx1MDAxNGfPSNpd6PU61+dBLfcsqOXCY13fXFzqQPyW/vQ51bHkl8ef//j1ybPnXHUwMDBiRe+3vNDT9j5ccn9/Lflcblx1MDAwYsm3ymorecrCS+R/V/P8yobtoNo72zrZ3to8RaiVnXzBvLt2ilRTo0l5e2fwkTtGgtUkYu5cdTAwMWNHlVKdkm+9mbJSOuWcQilz5JO1RqvBpjKbgV928Isln1x1MDAxY83JfOrgXHUwMDAzSkDlUl1/ifu1b9eiXZVrJ329eHIk993hyrEpN/dcdTAwMTS4MoNKSFx1MDAwZUhcdTAwMDZcdTAwMTfSh+Gvl1x1MDAxMlx1MDAxOEWKSiiXUC90pmNcdTAwMTPk3jBAXHUwMDBmiJVcdTAwMWFI0JA+g5R7cEyThVwiK0Q9NmSLclx1MDAxZd9J5VxisSFcdTAwMDM1XHUwMDAzv/TgXHUwMDE3it5v83mpT4h8bbM7U/JcdTAwMWQqI1xypLC8xP7WSXy4WFs0cn93frm2vi6au/uXJWdfUEKoOf03lFx1MDAxN1qe5oP+ekSkSIv+ccp6XHUwMDFj/TC95JVcdTAwMDMjsy/J6FNQ556M9blkXHUwMDAyfV8lXHUwMDA1YnYokb7nXHUwMDFlubJcdTAwMWP1zN1/XHUwMDFj6udcdTAwMGLF7reswF+J/FmP9OLncFpyZGhITWV3PmIvyFx1MDAxNWo17Htewv7bzen2XHLuXnxcdTAwMTeNgbNH5mYgblx1MDAwZsqN/UtJPuVfJFx1MDAxMOtcdTAwMDDIXHUwMDE0O4HZnk1cdTAwMGV8zjjn6Yd4pD2z/4Fxa1x1MDAwNemJhFx0uPaRXHUwMDAz70PzRNlcdTAwMTl9QOmePCWvsVx1MDAwYmF70KKPu9OjhzToecWJe4OhT/Cw//5cdTAwMTlNXHUwMDAzP6OA9E6Pn2hcdTAwMWZcdTAwMDTXfKP34+Suc9BcdTAwMGVcdTAwMGVcdTAwMDa9+qqr7pWbPi2AabJq9F05xW3W6XImjdSoXHUwMDEwJaVcdTAwMWZ6elx1MDAwMffr4HPKWuekm8H3b4WPXHUwMDBixYVQOD598lh8me99ue3d9PfX6tXNXHUwMDFmW8dHSyWnjysmhaHIl7JENDDq+ihcdTAwMTZhXGIgQFx1MDAxYvTDXHUwMDEwUFx1MDAxNtenXHI4TSnJjL5/KX3ojPAjMOOPNamt5u3O9dry9mDleG1BNE+v17r75YZPkOuTTnNNbo3Sazc0bJvQh45Cflx1MDAwMO00hahcdTAwMTTolVx1MDAwND6KSFBTXHUwMDFlPIHk8u/BZ2fw/Vx1MDAxZPhcXFx1MDAxMXxKXHUwMDE4pVC+XHUwMDAyvs1oPd7Va6tLq+s3vcuTpe9hXHUwMDE0nZRcdTAwMWI+aVx1MDAwNHk+J6zkymBmnFeAY+ReXHUwMDA0samcM2jK4vhASVx1MDAxNCiUxlx1MDAxOXxlhy9cdTAwMGVu4qfAXHUwMDAzKFx1MDAwZTp9XCKUpH1jo3c+f1ZccvjBl/ZxtX5Z0fMr+9y0So6epKCTnLuy5PlQiFH20Fx1MDAxOFx1MDAwMpO+XG7DgWsnp8dcdTAwMWVqXHUwMDA2xDhoK5XhXHUwMDAy8Im51fxcXCpIaylXhVx0XHUwMDE0UbxcdTAwMTVBo7k3T29B8KxcdTAwMTPF++Gdl8rQ7JXfu1Jrh63bXHUwMDExqSYqTE/x69zIroVW2PSaPNdcbs5GVTxcdTAwMGXrtdbj4bjTTY/W6Vx1MDAxNrUwXG56+UfS6YXNMKq1qvnb+bmK1Z+yXHUwMDAwNiSh01o/SGYy6IPgsyBcdTAwMTbNd4jimU7KiKRcIlM3Noa7KvqhXFx4VN09UneXt0cojOmXXHUwMDFiQ6Ek484qXHUwMDBlSkjKdFOLfp/7IbNcdTAwMTTkXHTvbCg9nFx1MDAxZYVgXHUwMDE4XHUwMDE4Y5VcdTAwMTScdJpATJOqR1xuQTMkg6A0XHUwMDFk1WQj09jlJ5RItkKR5SxradOb/OW/fcqjWPR+y1x0Pe/Z38Y9z+58TDvJNVx0uuP43O9vnnV21JE8uVx1MDAwMvyyVj2/PVxcb1x1MDAwNyXnnlwiX0rhOIFcdTAwMGZcdTAwMDJRjpY20Vx1MDAwMyCroMCisSBcdTAwMTSfXtZcdJZcdTAwMTmpiFx1MDAxMYHKM/JUgVx1MDAwM2fKa1x1MDAwNqLw07LO5Et0rZVWXHUwMDAwyLJOdc64z589Xyh6v+WFPinui/09+FxcT76mprH6tXn05bDZOlxcvmkt6IvzaLdcbiVcdTAwMWbsXHUwMDE11kfW5FwikVx1MDAxMl5reaY6n2Jg5otNXGbF5ejtw/TIl0xLeb8gwmfX5onqfFTMXHUwMDE4SobAkeH3c6+p8H6iL8AqXHUwMDFmu08gXHUwMDE3nqH/buhcdTAwMTfK3m95qU+dfZuEuFx1MDAxY9NcdTAwMTNeQv/w8HK/cnd0cHFYXHUwMDBmXHUwMDE2sX9cdTAwMWOdqLWdcqMvgTOrteZcdTAwMTbQUuad3jkhX2umNHl8JVx1MDAxY+dcXMJcdTAwMTTRV8z6pJ/SZ4fW6aGK5Fehb/3yXCJR2nrmXHUwMDE5+vmz54tl77fpoV840O1ZUChfU9K8dHB8s9fVy5TnY3WjWTnv9ZvLJWffr7ojxeTaXHUwMDAwXHUwMDE3lGxl3L7hTGuyxmBcdTAwMDU9fT1F9lxyU0Yo5zj1gVx1MDAxMrpcdTAwMTTrdE1cdTAwMWUpgUBnpSFcdTAwMWbhMFx1MDAwNz5da7W0ZpblfyTui+Tut6zEJ1x1MDAwNb3I7nyE3s/6cDM+8lx1MDAwYkvrX+3ZfLS0KDfW7np3lXZ3r+TLcKU2jJD2VlR4XmzG31tgXGLoJKCmIGx6NVXUXHUwMDBiUIh+dptTxPdcdTAwMTTxSKkgp4BEXHUwMDAx2SirKFwizDl7v1x1MDAwMEur2dDeh4K+UPR+y1x1MDAwYn1S2Fx1MDAxN6f4fo03xbevWMJwvCG+XFxXXHUwMDBlt65hsPd1sHPw7eqgdVty8J1k3Fx1MDAwZohxgdw4m1x1MDAxOdt7L+4lo676pWs+nvNTIU94eqCOau3AL21FXHUwMDEweewpv+fSWTHD/uNgXyh4v+VEPinoi9ctuSTstWJ86LeWL8Ty5t2BWbnQcGJ+LEFzp+RcdTAwMDG+osTKIFLablx1MDAxMbTJXHUwMDBl61x1MDAxOUrukcIuXG7wjeFKi0zH3jXAXHUwMDFmI7enxNBRaj/j/lx1MDAwM3H/bIg/vcy++G07iFxc+prl8Uf1vlx1MDAxZi/W1y+/nt7VTlx1MDAwZi+2Lq/C9ZXbklx1MDAxN5Aq6Vx1MDAxOJlZVJJTmCUw4+21Ys5cIkX/Rkkr1Vx1MDAxNFx1MDAxNy6Nip96kjKSOnzOpOZ0XHUwMDA297WjODRh9ziFr6ygrs7G9D4q98OC91tO5JPivjDKp6BcdTAwMTbQuPHdfVx1MDAwNfa+4d3X6Gi7uXq3XHUwMDFlqeZ57aDk03hKO8qtpKGsWGl0KjuLJyj1505TlK9cdTAwMTV3mW5Na1x1MDAxMlx1MDAwZqx+av7ekn0yhtI/ayiHXHUwMDE3eealQGGlnEQx+Vxm+veCvlDyfsvJ/JXQXHUwMDE3lc1i4avIjHOSoFx1MDAxOCpcbnuJejhxX9Tlxt35+qbrfO+vVlfbeyWvV0dcdTAwMDfMKXBIYVx1MDAxNHdDK/5/Llx1MDAxNeHG+HFN4TPmKab2SOZcdTAwMDU0hyTgkL6OII99vmZcdTAwMTatN1fC/INcdTAwMGK27mtm055Nu2Z24X1rZoduN4ma2VwiXG6HorNcZoWCa0rduFx1MDAxOJ/CQzEwW3vV4/a1vlv9trnwY7eyWvKBdS1cdTAwMTRDRGudcP69kFx1MDAxOVxmXHUwMDE1Z34tl1/UpVx1MDAxNEWy0y1dN+iXyJFh4DC8IOS50nVrfMBgxD/O4ZtcdTAwMTZOvonDxfflcPGdOITsznSgm2slXHUwMDA0XHUwMDFmmlx1MDAwMXtxzCv+2rzWlcjWXHUwMDBl9kP3bW/p5vjouNwgXG7l38ZjnFx1MDAxZmhEQV9GQFx1MDAwNO6YjyspXHUwMDE1kMLXvEzTXHUwMDFkgpWckzc0gks9njtcdTAwMDRcdFx1MDAwMig6+idfXHUwMDFmcM/hm+LbN3FYeV9cdTAwMGUr78Nh8Vx1MDAxMFx1MDAxNCVcdTAwMGaU+FJqMz6HKyBcdTAwMDZcImqcXl9Vtr+sX19uX9zcbZabQzI1zFG+qcGAf1x1MDAwM+noWi4wkqHmRtKmXGZMMyy1jFvOgdI2Z6UwY63kQp8mc+cm8T7cv4ehXHUwMDFiVtapYrj0vlx1MDAxOC5NXHUwMDE2w+dcdTAwMTY0P+NcdTAwMTKtXHUwMDAyJYx7xbvX3VW0uXDMj/dcdTAwMTaX+MLJRuuiclPdflx1MDAwYopZ1zPNXHUwMDFhT7+c0fpSLp+dZ8q8kFx1MDAwYqZcdTAwMTTn5HW4oFx1MDAxOFx1MDAxNac4XHKkmfP1ZCh9QmBcdTAwMTR/yicyTVx0oUucs1x1MDAwMfLkOTiTXHUwMDA27ERKvf7eSuc3sfnCgMv8s1x1MDAxM6VjvFx1MDAxM5qesOVcdTAwMTJAUVx1MDAxYUJJOLzucsuENFI5pSh3kFKMXHUwMDE0Ylx1MDAwMqNsgjujXHUwMDFkmVHDnbIvtlx1MDAwN5xcdTAwMTlOikfhXHUwMDE2atTajc7/MEpcdTAwMGL9XHUwMDFi/6ldXHJcdTAwMTa1fLlByTg9IC3IPlu/vmfk+dDD00o5YUmfwY5cdTAwMTSNXHUwMDE1teeXNihcdTAwMTC+Jan93yZcdTAwMThtL6uMLzaIwJKOWavJsbmhXG6rd2/wU6bhj/CKXHSQiv776H1si1xcqdY7J/3G4kJnZaeiv387OLdcdTAwMTEvt0VWzjCQ2ihcdTAwMGLcmuHh78RcIivrx/E5+KJW5Vxi5+lZ5Jcn5kFRxsSlQpUkJ0/9MVxmIEvO5ST+XHUwMDE4RvlcZvJrXz2hrDJWa0GBhXXAR97VXHTMZCbFXmqPnr3x9VpcdTAwMDZINr42fri50Uo6MYYxXHUwMDAxv3Sb0lHSP7K7ZPZG3EPmqLL6xfaem93PKc60WnsnO/fp4Vx1MDAxNnO1bnc/povnfk4tkb6HjYeAO73N3FVcdTAwMThcXC/mgfzlLNnmPj3YTm+hklx1MDAxYv3516e//lx1MDAwZvmPLvAifQ== OABCD

Jeigu du įbrėžtiniai kampai remiasi į tą patį lanką, tai jie yra lygūs

ACB=ADB


eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2d6XLbOFx1MDAxMoD/5ylS3r9rXHUwMDBl0I3GMVVbW76T+L6PrSmXLMlcdTAwMTatMzp8Tc077TPsk21DsU2KXHUwMDE0XHUwMDEzKSN66F1hqjJcdCCJIFx1MDAxYlx1MDAxZvpgXHUwMDAz+P3Dx49cdTAwMGL9x0514dePXHUwMDBi1YdyqVx1MDAxMVa6pfuFv/v6u2q3XHUwMDE3tlvcXHUwMDA0w3/32oNuefjJWr/f6f36yy/NUrde7XdcdTAwMWGlcjW4XHUwMDBie4NSo9dcdTAwMWZUwnZQbjd/XHT71Wbvn/7PnVKz+o9Ou1npd4PoXCKL1UrYb3e/XavaqDarrX6Pf/1f/O+PXHUwMDFmf1x1MDAxZv5cdTAwMTnvXaNcdTAwMTF2etXhx4dcclH3pFx1MDAxMMnanXZr2FWprFKKpNCvn1xie6t8tX61ws3X3ONq1OKrXHUwMDE2qFJ77CzVT75+2X7o7K3KvdrV9XV02euw0TjsPzaGneq1+V6itl6/265XT8NKv8atKlGf9a1ue3BTa1V7/ubla227UyqH/cfE7ZVaN8PfiGpcdTAwMWW8fFxmXHUwMDA1wqHUREpqMM68Nlx1MDAwZn9cdTAwMDB0YLTSViuyWlqZ7NlKu8GC4J79TVb9f1Hfrkrl+lxyd7BVef1Mv1tq9TqlLosr+tz98z0jucAqSZZcdTAwMTRcdTAwMWEkXHUwMDA10aVq1fCm1lx1MDAxZn5cdTAwMDZcdTAwMDIjyEmthULponvuVYdSkdxHa1FK+9ri+9D5XFxcdTAwMTmOj99cIll0eWR99l9pXHJcdTAwMWGN+Fx1MDAwM21Vnlx1MDAxZujLOIpGXHUwMDEyPNf8XHUwMDEx3aT//FpsXHUwMDA0RldcdTAwMTh0KqVvQ0VcdTAwMWFwYITVRil4bW+ErXry8o12uVx1MDAxZY2uXHUwMDBmsWulXHUwMDA29XWX7/hcdTAwMDW4xKhGlzWolbPaotEw8Zg+WtlcdTAwMWQsNZ9ql/BUPlx1MDAxMubr3lateVTsMa2IXHUwMDAyKflpXHUwMDEzkFSxQeK/XHUwMDBlTlx1MDAwN4KrkVx1MDAwNzVYck7nNqJFIISQ6VGcqH9cdTAwMTm63FnptIgh9tNDd6Qh1zH6Wt1ph/FJ2Jfob1x1MDAxZiNcdFxy//H699/+Pv7TI08oqom+9yHx/YVGqddfaTebYZ9vaM93JtnxXthcdTAwMWM0+Hb3uvyQXHUwMDA2XT9u+t1B7Fx1MDAwZZ7rvz2j78LXrz70x4GnMsGzTkowaOXE4Fx1MDAxZFeu7JczrKnm56fNnY32/ueNo4IrXHUwMDEzpVXgnLI8kMFanslHyVMmYJ0qrDDcJiRCbuSx1pLIKGmryFxiZLTSXHUwMDE0KkpcdTAwMTFopJRKaYC/jkBjeHo29mdcYrxut/qH4ZNcdTAwMTdcdTAwMGLqkdr1UjNsPI6IdTiC+THuLoxULTXCXHUwMDFiP5BcdTAwMTdcdTAwMWHV69FcdTAwMTHeXHUwMDBm2fp6be63O1FrmS9RXG5b1W76kbS74U3YKjWO0pfjO6t+elx1MDAxMYZcZmJcIroq9aq+1d9cYnyXw+GnxnBIOln5wqHm4cdyxuhcdP+Iw/rB6sBcdTAwMWW0vp4t1Vx1MDAwNvum+VSBTX1WbFx1MDAwZXlcdTAwMThcdTAwMDUohUXHVpvVLlx0oqNcdTAwMDDAXHUwMDAy21FcdTAwMGWFcZinUadcdTAwMDNWtc5cdTAwMWFhSFx1MDAwMF95jDpMcohcdTAwMGWI+41Rw/u14WJPttTtL4etSti6SX6l2qpktEyg1fzvLnW77ftatZR6XHUwMDE2/MuZbTPV2NmCTnz9Q/z/U3OdqV8lKGvQTeGsXbSX6tg6bGEv7IadXHUwMDFkPCc9KDzXlvWaYlx1MDAxM5GVrCaRxPrNLFuNXHUwMDAxsmpli0byPMNCT1P9zXN0XHUwMDAy2JNjjSrT9q40zlx1MDAxMTpcdTAwMWR1c4550THPXHUwMDE0vC+LKZnPXGL7mLuawFx1MDAxZXi4s8vP4pqY+8XzvS83K81+XHUwMDE4bq6H2+fb5ea5qVx1MDAxNpt7Rj7QzFxuXHUwMDAxmy4uXHUwMDE1o9EuYG2uXHUwMDA0q02t0WF+ZrVT3Fx1MDAwZp5dXGKVVEZFV4phXHUwMDBmgSbkVmdcZkpDsd5841x1MDAxZVx1MDAwNJvjXHUwMDAy/1x1MDAxN1x1MDAwMjT/L9Rnyt2XtMSnpP67kSyTrHxV+OysXHUwMDAxXHUwMDFhaVwiVH5E/uPa2oravdKrW921jbPzI1pcdTAwMWHAesHJR1x1MDAxN1jD2Gt++tIlYllS68B6V5tcclx1MDAwM1x1MDAxZcI8enNDf7pYXHUwMDE2m++sI4SagWqfh7LyXHJl/SR9WinWNax2Jqav3Vkr81SorpaN3Nf2uHQx6FCx6eNcdTAwMWJcZlx1MDAxY4AmKZTi6Vx1MDAwNkboK24k2Vx1MDAxMs9cYjwlzMCBnuNXSPwksaFcdTAwMDdyiijWzu2n20r5qy5cdTAwMGYu71x1MDAwZu/vn57c8lKx6Vx1MDAwM6NcdTAwMDN26r1Jyz6FdUn6MCAruVx1MDAwMSSSjFx1MDAwNdb/YvgkSWPYJp+/xik8fFn+pspOXG6wZKwj4yb3N939/Z4+czfb+7WnL2sr3dPNy4Nascnz/iZbnlx1MDAxYX20XHUwMDFjyMaiasNcdTAwMWZwXHUwMDE0XHUwMDEw61x1MDAxN8UmXHUwMDFlgKBYUHfW7ElcdTAwMTVIYm9cdTAwMTG0XHUwMDA2ME7SmKRcdTAwMDDWwpKsL5I1MYFJXCLpQ+DkXGbMXHUwMDAzTe/H5cxcdTAwMTa8LymRp2eUn1x1MDAwMp9ksjLKXHUwMDA2XCIjXHUwMDE0gZtcXOV+XHUwMDA2c/eldVx1MDAwYuH+/tW+615cdTAwMWbuXHUwMDFkbVVcblx1MDAwZT5RwEwrXHUwMDEwaEiTcIlcYrPwrj4hsZOPqEiYRM9mXHUwMDE4Yc6EOlxuNWFghbeE/EteXHUwMDAwiN5ccjxzb3ywQqCdwevcOfdvXHUwMDE1YM6Suy+LKZHPiPvsvFxyZkaAXHUwMDA0XHUwMDAzkzu6evlk1dJccj30vnR3Lk9cdTAwMWYvu1x1MDAwZrRabO7B2lx1MDAwMFx1MDAwNfOurZFopFx1MDAxYVX4KFx1MDAwNXMvUPv0XHUwMDA05yg/R1x1MDAxN2SgSFx1MDAxOcvONlvQXCKWx/CKPdtcdTAwMWWCXXFy4JxVkIovo1GCrVx1MDAxMzl/e/x+qF/MlLsvSYnPStmrZOUr9I7IapzGv77qdbVcZvee9j6fr1x1MDAxZJ5cdTAwMWN3anrvdLHg0DufTKuFMVqyTo+5NEPmUVx1MDAwNsRcdTAwMTZcdTAwMTholOxrXHUwMDFiyk/Xg1xuXGZfSmqe1lx1MDAxZHJfxlDvXHUwMDAyJFx1MDAxMMPsMWd4XGakjHywxKNn/jL5XVGfKXhfUlwin1x1MDAxNffZYTVUllhcdTAwMDfS5O+U6m5cdTAwMWT6m+Q2yoPry+NccjhpPlx1MDAxZdxcdTAwMTade1x1MDAxM0hhXHUwMDA0WYZcdTAwMWWViTTokHuSgWPDn90uQsvuf47cXHUwMDFintg1zy5aOVx1MDAwN1x1MDAxONflk3Mv2V5xltDN9f17XCI/U/S+5EZ+pntvpWWXXHUwMDAycPKw3oV7OD1fqYd0/LDUabrlytbiQcFcdTAwMTU+XG5khc9OlVPswIM1XHQr34hA+JifsVx1MDAwMFx1MDAxNuPG98zJh0BcYuVcdTAwMDS7XHUwMDFhziFcdTAwMGaCyNCK3Htvf1x1MDAwMDFB3GH2PFRcbn3l33O5eSrJ+1wiP1P0vqSFPiv0MVn5mlx1MDAxMc7OhVx1MDAwNa0md/Btdb2++Xi/vnO6XzYnXHKz6o5cdTAwMWVcbp45itJcdTAwMDSKzXynUIhYpGzIvfVBXHUwMDE3IzVcbumM1VwivyxcdTAwMTKgwFx1MDAxMrG/YY1wYGNcdTAwMWSJsHeBT1x1MDAxZnTCkHI+XHUwMDA0lFL47CdqXHUwMDBixs2xf0/YZ0nel5TMZ1x1MDAwNL3KtPSB7UU2bqcx9HdWj2st89Av93dcdTAwMWF3W+Hmp7YtePpcboJcdTAwMGKIJzbHfo3mSTWRL65cdTAwMDTLXHUwMDA0JFx1MDAwYsVcdTAwMDf22MvP0dJcdTAwMTfsUyhNbKejU9LZcZmjo4NcdTAwMDDj6TTfyNdgXHUwMDAw9XxZyLviPlPyvqRlPivyM1x1MDAxN4BcdTAwMTlcdD5pZFx1MDAxYUu/fXAvXHUwMDE23adw8bBrdnuftrYr3WbByVc2XHUwMDAw/5LEkbAjeZhD8Hky5ifOg1ZcdTAwMDJok2PqjKRAXHRUXGJaoCNmZYzCZ4MwK874ks4mubM4f3//rsDPXHUwMDE2vS8poefOvZRCXG7NzsXkdv5mb1XA8Vx0VXa2hX06kOHV2kO54OBcdTAwMWJcdTAwMTVIUFx1MDAwMD4qJjFh6SuFgbFCIIFcdTAwMWRaXHUwMDA0+YGPPo/AcUdQOlxydox/n3BcdTAwMDSlS73Jk8arXHUwMDA1jKdcdTAwMWbNwS8++Fmi9yUt9FmBn/kyz7HTa4xyk5v6/c55ZedcdTAwMTS/7l6Knf1Go4z1uv1ScO6dXHKYdu2dY57mdFwiY0+RYvD9XHUwMDEyWam8UZBjqrpje1x1MDAwZoC7YNCn3MkxXHR7bH6gXHUwMDE4JjBcdTAwMWLjeKSkXGZ9abXfXHUwMDFlQpi5i/+OwM+UvC8pmc+K+0xcdTAwMTffXCJKRUJOzn23tbLSXFx8rG3SxfbuXHUwMDE2iZ7BT1x1MDAwNU/cUcD6nn0r9t/ZuXJcblx1MDAxMy6+XHUwMDE2XHUwMDAxsOksUVx1MDAxOOXzePPL1DWBJElsy1x066ww41x1MDAxMvbA+XxcdTAwMDNccj6jykmDMavgJVOXXHJcdTAwMTdLxswgd37O/Vtxnyl5X9Iyn1x1MDAxMfiUuSac2OOVRk9cdTAwMTHbXHUwMDFiXFzu4Vbr+O6xXHUwMDA22/Z2/fP5TUXdXHUwMDE1XHUwMDFjfPJbLVx1MDAwMZv6bFwi+9UxSfAxiHtflN+icOSJXVx1MDAxOGR3zjgnpVFjsndQXHUwMDA2SNpZ73w49vhMOqpcdTAwMGZ+ZYWcyZq1OfpvhX627H1JS31WSj/by3d8XHUwMDE1nmmmWFx1MDAxNf5U/3q3uX65tLtyjvX27cnyfvvJXHUwMDE2XHUwMDFjfstP1lnJY1OiRUpcdTAwMTj7mlstY2+Z/lx1MDAxMWU6e51vYi9cdTAwMGXluM2dQFx1MDAwN0qQtcpHd0FrndL5PFXz9Fx1MDAwNDAn/1x1MDAxZJGfKXlf0jKfXHUwMDE195lOvrbApoUzkyfsflp6vFlcdTAwMGVcdTAwMDdfOz3Z2W1cdTAwMWZcdTAwMWNcdTAwMWSHy1tcdTAwMGbFxp6EXHSsUEJKZVxmUzOauPeGPr7UQWw1XHUwMDAwy3qckz9cdTAwMWHhlTLt5XOzssLOvfx3XHUwMDA0frbofUlcdTAwMGJ9VuRnpu/wKILhlo6Tv9BrnF11Wr3DtWvTvC1dVHsuXFzcL/jCPEJcdTAwMTWAcNZcdTAwMDczpbbJsL5cZqKIK8by4XJYjutf5HJ/pWD7wsGYZfE8+zvSwidcdTAwMThrv5FjXG577qCwiHMn/z1hnyl4X5JcIp9cdTAwMTX0lKyMtn1cdTAwMDNcdTAwMGLWyimg37x9qj3KXHUwMDFl3qvOWaVzq9ZLX8uu4NBrn5BL2jvGoHmIjlJcdTAwMGZsXHKAZlxyyipU5/oqz1x1MDAxMFxuvlx1MDAxMCinIb7EJmI+e1x1MDAwNc/rxvyah1x1MDAwN6KaL8Z9R9Rnit6XtNBnxX32XHUwMDAyXHUwMDFkclJNXHUwMDE32+vtVzfbV6p2c3Red9f1xVx1MDAxYlx0m1Bw7o1cdTAwMGJQXHUwMDBlN1LXhrRcdTAwMWHd9E2xVFxiXHUwMDEwvGfljMwzW3eCrL3vfOZV35NcdTAwMTnuRT03899cdTAwMGb530/bS7fOivzsJblAjFx1MDAwMluNk3v4XHUwMDE3a5XaUv2SdvF40ayEXHUwMDA3qkyVbsHJd2xJXHUwMDAxslx1MDAwYk9cbv3ZJSPko6PAp0xop33OlM3xbVx1MDAxZUtcdTAwMThJXHJXXHUwMDA1XHUwMDBipzCeT1x1MDAxMCXsZif3vSzFZ5dcdTAwMDVRz+JEkzn5b0d+huR9Sct8VuTbZOVrwi6bXHUwMDFljlXd5Cp/26nzz83L2tnDXuX64OHgoLO8U/CEXX7MXHUwMDAxXHUwMDE4ckRcdTAwMWGUsol9XtGYgI1cdTAwMWVcdTAwMDTlt7lnseSYqY9+h1x1MDAxZjA891i/OHjcwrxcdTAwMWZyz0aJ9os759y/I+6zXHUwMDA070tu2MdcZvlkRN9vcYnTpO9sna9e7Ct5fHdsttpbd7erh5WbRsGx51x1MDAwN6vB8kM1gpSOLUp4WYrv52F/RoKwXHUwMDE28ovrgVx1MDAwYvhxK7/YmudcdTAwMWVLNEbdW7/1kmNlbo0zpOJ+x/NcdTAwMGVcdTAwMWNgtd9cdTAwMTVsTv07oj5T8L6kRD4r6jPX4ftdpiRfc/K4Xmu/flxmV9XTxz5uXFzcNZfO7kv7T0Wn3lx1MDAwNTzB+teV/OwpuVx1MDAxY1x1MDAxN/y20ujT9C24eGtcdTAwMGWnpGW9m4/8+8Bk7dHxjL1DIEkwi73e59i/XHUwMDE19pmSXHUwMDFmtqZkPiX3mccjfiewJ1x1MDAwMdFH9CdcdTAwMDa/YVx1MDAxZqByslxiXHUwMDFi64u2s1x1MDAxMzZle89cdTAwMWVcdTAwMTRcdTAwMWJ8v/DOXCJcdTAwMTl/gI5wToyqe37YXHUwMDAxP2wljfRcdTAwMWJcdTAwMWbI/NS90YH1J41KJKCRQ7O+dzqiRmmcZKj+POgjXHJTn45cdTAwMTjNiHmfjiit+M+/XHUwMDE3RqrzPiExcclZnJI4/WmlfotcdTAwMDW2XHUwMDBidPSBXHUwMDFm0ahcdTAwMGU3js7Ci7JiaOz63nF4VTs6LTaNXHUwMDAwJmDa2NtcdTAwMTbKsnWjR3FcdTAwMDTtXHUwMDAyx1x1MDAwZbd/3elcdTAwMDPYOcbZ2fWS2lx1MDAxZotk2MVcdTAwMDc5brXcXHUwMDE4XHUwMDFl/WlQSqlZrIf/UzxaXHUwMDExXHUwMDFmrbnyuPS2LC69XHUwMDExh5nJLcR2N7IujvTmXHUwMDBmt6nQj821xlb9RrurxYvufVx1MDAwM1x1MDAwN4dFN4fJn+Sg/dHkXHUwMDAwrFx1MDAxZKPR/4Ih+txiRKFkfkvV/ZHBxp9NhsBKjie/yG78XHUwMDFlhFYqNET/R1xmLr8tg8tvw2D2/lCEfvGKmEJcdTAwMTdubbnDjbuLzZvTw8XDR+1uYVx1MDAwNU6KzSBcbvK7PrLnbVx1MDAxNSshgMRcdTAwMTGD0lx1MDAwNppcZlmwXHUwMDAwXHUwMDA0NkfblJWhtEpcYtaFhonXkylD74NcdTAwMWHFqvqv5lDGR2uuXHUwMDFjrrwthys/yeGHZyd0odTpXHUwMDFj9vmJLbz4+SyisPJ829GlXHUwMDE37sLq/XJ60PztelhcdTAwMTY+PLPtMVx1MDAxYZ7x8vtcdTAwMWZcdTAwMWb++C9tjojDIn0= O180°ABC

Jeigu įbrėžtinis kampas remiasi į apskrtimo skersmenį, jis yra status.

ACB=90° ir 180°

Apskritimo liestinė ir jos savybės

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1Y227bRlx1MDAxMH3XV1xiymtM7/1ioCgsW06MVoFcdTAwMWG5dpJcIigocSVtRJEsufQlhv+9Q1rW6mK1rlPHRlFcdTAwMWGQxZnhzuzMOZxcdTAwMWRdN5rNlrvKTGuv2TKXwzC2UVx1MDAxZV60Xlfyc5NcdTAwMTc2TUBF6vtcIi3zYW05cS4r9nZ3Z2E+NS6Lw6FcdM5tUYZx4crIpsEwne1aZ2bFj9Xnu3BmfsjSWeTywDvZMZF1aX7ry8RmZlx1MDAxMlfA6r/BfbN5XX8uR1x1MDAxN8c2K0xtXit8eFiwdem7NKlDlUpyxKnkXHUwMDBiXHUwMDAzW1x1MDAxY4IzZ1wi0I4gYOM1lajF9klHkVNn5Unn9Oyo2+7gyVx1MDAxN+91ZOO4767iOqZcIoWteF3h8nRqzmzkJqBla/JtT+VpOZ4kpqj2jlx1MDAxN9I0XHUwMDBih9ZdVTKEXHUwMDE20jBcdTAwMTnXa3jJZWXBccBcYmJYaC5cdTAwMDXRS+m4mquJlpRrpThcdTAwMTWKkLXIXHUwMDBl0lx1MDAxOOpcdTAwMDCRvcKm+vOxXHLC4XRcZlx1MDAwMSbRwsblYVJkYVx1MDAwZdXydlx1MDAxN/M9g49AMcxcdTAwMTVnXHUwMDE0XHUwMDFjMuIjmVx1MDAxODueuNqGXHUwMDA0XHUwMDEycY2FQIxi7fdcXJi6KphSXHUwMDEwI0q8poohO45qeHz2tchcdTAwMDFYx9UjSVx1MDAxOcfLXHRNonlC72DkgUTmklx1MDAxYr/Jyr6zXHUwMDA0QO+hzKLwXHUwMDE2KlhcdTAwMTJNJNKUUeGzXHUwMDFm22S67j5Oh1OPrsaSr1xyTMPj91x1MDAwMlpuxzPnmlx1MDAxM6VcdTAwMWaO5zfv+4O4+/Xnn8pcdTAwMDHrjT9cZnr5L3pcdTAwMWKeJ+FwUubm+Vx1MDAxMU0kXHUwMDBlXHUwMDEwY1xiK0xcdTAwMTBCTK5cdTAwMDBakYAxLKlcdTAwMDbwKM1cdTAwMDT+XHUwMDE2PL+CioZcZm1imWhcbm5cdTAwMDSlhDAkJFx1MDAxNeJcdTAwMWUsa1x1MDAxY2iKJeNcdTAwMThzLZTYwDJcdTAwMTJcdTAwMTSgTKX8XHUwMDBmYHkpzWHu2jaJbDJef8Qk0Vx1MDAxNk1cdTAwMWNcdTAwMTbuIJ3NrIMweqlN3LpFve5+nqdcdTAwMTdcdTAwMTNcdTAwMTNu5Fx1MDAwMlbeqsuq5Xz3qC7/renRVd8svn9+fa/19spX10bN/XKN5f/bSD/KXHUwMDAxXHUwMDFhd0221ix1Mr2N+JhTLVx1MDAwNef04cxcdTAwMGYvT09M59PvJ9nOzljys+6ByrovnfmU0IBcIuggXGZD/1x1MDAxMIKutTJcdTAwMWFIwC3ohVCcXGL1JNRHXHUwMDAxvHR8/Fx1MDAwYrqvyedcdTAwMWPnonpDXHUwMDAxp76d4iuK78Plf5U5q1x08pJNivyTt4KdlTFst5dDkiqQ7jVdXi7tYC6/zdFTcE9wilx1MDAxOVVcdTAwMTI/mHt9+uVYXHUwMDFkyo9/iF9156JvT8rJJ/TSucdcdTAwMTFcdTAwMGWwVERrQuBVo9Uq+aCRXHUwMDA1Wlx1MDAxMCo0XHUwMDFjzVx1MDAwNFuP6zmoh1x1MDAwNaZIXHUwMDAx/vn/3Hvp3HPm0t3HO4q28U5cdTAwMTNcdTAwMDRoVJQ8mHa97pveh6Py/H0y0Gftw+xwWnTevnTaXHUwMDAxm2A+w0JKmFVcdFx1MDAxN3qFdVpcdTAwMDeccM0oNEMs9dM0PGi6XHUwMDAyXHUwMDBihFx0l5QwgpXaZCDj6+zjMGtcdTAwMTLY3zM2PoVcdTAwMTCcXHUwMDE21GPIN0pcdTAwMTPXt1+relCxXCI9XG5nNr5aqWdccl7I4H5rRbRcdTAwMWbbcVJPcma0XG5uZ4dhvFC7NPPaIbhcYmHyyzdTkuZ2bJMwPtl0V82Kb+9qXHUwMDAxgOFLhS5MPUlWUHpcdTAwMTRcdTAwMDXJ1nmzml5cYlLYJ+jvKHhOu5Px8ZhcdTAwMTDiLo/z4SBcdTAwMWKgj/svnYJwkoRTJ8FEV7+iqLVcdTAwMWZQYHxcdTAwMGKE1lxu+iNcdTAwMWNK4aT3NFx1MDAxY1x1MDAxNNB8XHRwkMLLXHUwMDAwTsDCu/lcdTAwMGJcdTAwMGVW0WImkXpuXHUwMDEykkd1wEeRsP19Sdh+JFx0XHUwMDFi81bbXG6zrO8gY627XHUwMDE5XHUwMDFlSmSj+ba969a5NVx1MDAxN+17XHUwMDEwM6qvVmNO7IpDdcO9vmnc/Fx0XHUwMDAwkVbXIn0= AB eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nNVXbW/bNlx1MDAxMP7uX2G4X1x1MDAxYoWvXCJcdTAwMTmgXHUwMDE4knZt0m5Jhlx1MDAwNC26oShcdTAwMTiLtlnrLVx1MDAxNO3EXHTy30cqtijL9rZmxdrJgC3dXHUwMDFkece759Gd73v9/sAuSjU46Fx1MDAwZtTtUKY6MfJm8NzL58pUusidXG7Vz1UxM8PacmJtWVx1MDAxZOzvZ9JMlS1TOVTRXFxXM5lWdpboXCJcdTAwMWFcdTAwMTbZvrYqq37y36cyUy/KXCJLrImCkz2VaFuYR18qVZnKbeV2/8M99/v39Xc7ujTVZaVq81rRXG5cdTAwMGairvS0yOtQocCYQSg4bSx09cp5sypx6pGLWFx1MDAwNY1cdTAwMTdccpDA4uPV9NqcXZFcZn9+dXl8ddtyO9JpemFcdTAwMTdpXHUwMDFkVFW4s1x1MDAwNF1lTTFVXHUwMDFmdGInTks68l2rTDFcdTAwMWJPclX5w8NGWpRyqO3Cy1x1MDAwMGikMlx1MDAxZtd7XHUwMDA0ya1PXHUwMDAwhVx1MDAxMecgZiyGlKE4pGO5PlwigFx1MDAxMlxiXHUwMDE5Rlx1MDAwMFx1MDAxM8Q7gb0sUldcdTAwMDdcdTAwMTfYM6j8J4R2JYfTsYsvT1x1MDAxYVx1MDAxYmtkXpXSuGpcdTAwMDW7m+WRMVx1MDAxNVx1MDAxMSeQckoww5SgkIOJ0uOJrW1QxFx1MDAwMFx1MDAxNTCOXHUwMDAxwVCEI1eqLlxu4lx1MDAxMFFGXHUwMDAwa1x1MDAxND6E8iSp0fEpVMI4XFyd+Fx1MDAxNfksTdvpzJNlOlcoXG44QkvJQzijt/+5hb/gYVYm8lx1MDAxMSiQIYFcdTAwMThcdTAwMTBcZlx1MDAwM1x1MDAxMTf6VOfTrvu0XHUwMDE4Tlx1MDAwM7Z6LV9cdTAwMWKQdsu34lx1MDAxOaJ4XHUwMDE3nlx1MDAwNVx1MDAwN5Djr0Dz6+xu8vtbXHUwMDEyL77kn08/iuzL2WL+Zlx1MDAwN5oncjiZXHUwMDE59f3xTDiMXHUwMDAwIZA5RCNAXHUwMDAxWcMzRSxcdTAwMTJcIo5jXHUwMDBlXHUwMDFkzmhcdTAwMGLtT4DzM0ywJGBcdTAwMTPKXGLyXGIwwlx0YoJcIkH5XHUwMDE2JLtAYkg8VLlAJMZdJGPI3dWS/3+B3MqxNPZI54nOx90lKk92aFJZ2ZdFlmnrwjgvdG67XHUwMDE29b6Hxlx1MDAxNDdcdTAwMTMlN3Lhdt6pK/12oXP4K9z1XHUwMDAztOqH5v7T863WO8vur72Niofteu3fXYxcdTAwMWZcdTAwMTlcdTAwMDeMVYOtNYH1XHUwMDE4d4Ur0seQM1x1MDAxN1x1MDAxN1x0ZPo71u+90ePrObr79bI8fov4L1x1MDAxN+nZu+JHZz3lIKKYuK7BsVx1MDAxMFx1MDAxNISXnF/v+kmEMOYspshcdTAwMTXnX/WwnaRcdTAwMDdcdTAwMTFcdTAwMDAgRN8wvSNfNSpEOVx1MDAwM1x1MDAxOIdAn8zvNcV/Q+RvSpv1XHUwMDA0XHUwMDA1ySY/vuaVoLNZ6o57blxckjxEXHUwMDBm+tbMWidYylx1MDAxZnP0l8Sz6tZuI12LU93JkVBcdTAwMDdG14nYP2ZcdTAwMWQ6+e39h4W6vpqX10fns+Hl4ejQ/Oisc1NYJDBggiPC/ci2xjqHsIghXHUwMDFlU8BcdTAwMTmnMW5NJt+02ZJcYkBcdTAwMDRcdTAwMDB3XV1cYveu29JtXHTt8lx1MDAwZlx1MDAxMlx1MDAxOHOOXHUwMDE4XHUwMDE034+ATLixW4inXHUwMDEwcFTk9kLf+ZLgeE36WmY6XayVtFx1MDAwNrBLoVx1MDAxY6yJXHUwMDBlUz3O61lSjdZcdTAwMDFutfuj1ahtUVx1MDAwNu3QuZBu9jSbKSmMXHUwMDFl61xcppeb7vy0erwqXHUwMDA2jFx1MDAxMG1VulL1LOtHokdcdTAwMWH2lkxcdTAwMWbIsrywLmPNXGbjSqST5bGD68FcXKuboy2IXHUwMDE51degt6S2J1HN9/uH3sOfUb+lXHQifQ== a

Tiesė AB - apskritimo kirstinė

Tiesė a - apskritimo liestinė

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2abU/bOlx1MDAxNMff8ylQ93Zkfn6YdHVcdTAwMDWFXHJcdTAwMThcdTAwMWIwXHUwMDFlt6tcdIXGbU3zROJS2LTvPie0TZrSUlx1MDAxOJROd0GqmmMnPj7+/3xsl1x1MDAxZkvLyzVzXHUwMDEzq9rb5Zq6bri+9lx1MDAxMrdXe53Zr1SS6ii0RSi/T6Nu0shrto2J07dv3lx1MDAwNG7SUSb23YZyrnTadf3UdD1cdTAwMWQ5jSh4o41cbtJ/s89PbqD+iaPAM4lTNLKiPG2i5LYt5atAhSa1b//P3i8v/8g/y975vo5TlVfPXHUwMDBiXG73MEZV66cozF2FlFx1MDAwMUkhl3xYQ6frtjWjPFvctFx1MDAxZauiJDPVej3gXftcdTAwMWa/nrTSi+2d9kGdv1x1MDAwYnTRbFP7/oG58XOn0sj2pShLTVx1MDAxMnXUifZM25aSin3SU0nUbbVDlWadh0NrXHUwMDE0u1xybW4yXHUwMDFiXHUwMDAwQ6tcdTAwMWK28ndcdTAwMTSW62x8XHUwMDAwcjiGVHJMXHTAotTb7Fx1MDAwNVx1MDAwNDtcZlx1MDAxMyaIRFxmQyBhxbF65NtxsI69gir7K1xcO3dcdTAwMWKdlvUv9IZ1TOKGaewmdrSKer1+lzGVjiCQXG5KcOZcdTAwMGIqYtBWutU2eVx1MDAxZOssoFx1MDAxMjJcdTAwMDZcYoZlb1Q+KJBcdTAwMTNJMLNcdTAwMWRcdTAwMWGWZD7EW14uj2/FUCRWWFvZI2HX98vxXGa9fjxcdTAwMDcyKoSE+pafRSez+lx1MDAxYiVcdTAwMDFcdTAwMTYtdGPPNX2nkERcdTAwMWNcdTAwMDKKXHUwMDEwKKLr67BTbd6PXHUwMDFhnUJcXEultsY03Uxsj1x1MDAwN7xVRI3gRE1cdTAwMDNBXHUwMDA0JIzPrunWbmdcdTAwMGLb8J/6aPdr82h3/1wiODqfoOm222h3XHUwMDEz9fKqZlx1MDAwMDiQXCIsXHUwMDAx4Db0QoyKmlx1MDAxMUdcbs5cYkZIXHUwMDEwXHUwMDBl5LOJXHUwMDFhjGtcdTAwMTg6iFZli4BEXHUwMDEySkTl78t2pODB+lx1MDAxNFx1MDAwZtDn0Fx1MDAxY0e6PP9mV/FtuVxiQn4z/P7t9f21V7JoPeiJ0vuXKk/VfDc19ShcYrSxXHUwMDFk38ucrnYw1UHXt2HZS2wwMyW/XTZJt9TTvv02llNcdTAwMDG18bsz41x1MDAxMFE1XHUwMDBl4GRcdTAwMTRcdMwpnZ3NY9f9cH5B17daZlx1MDAxM7/faadbZidYfDbpVDa5Q+bCJlx1MDAwNlx1MDAwNYdDOilgd/BpJ01cdTAwMDBcdTAwMDDDRcFiZZVHUZtcdTAwMWE3MWs69HTYqj6iQm9CyVxmXGZl711NkqjXVu5YLOybJ5Y96TyyUlx1MDAxYd/8/nZox6eHR1HMeNU4oJhcdTAwMTO7jlx1MDAwMlx1MDAxNM9cZnGU1E9cdTAwMGb1tdds9y4+xOik7Vx1MDAxZK2Ei1x1MDAwZTGVzCFgMsTYLirnXHUwMDAxMVx1MDAxYkmnQ4yJsFx1MDAwZYxhLFx0Y3ZcdTAwMTUr/2L8XHUwMDA3YTwywrnldnBcdTAwMWZcYvK09TKUVeNcdTAwMDBmYvVtXHUwMDA1XFyS2H00f8Bn5uvJmW5E9Vx1MDAxZN5IWXJ6ZbZcdTAwMTeeZlx1MDAxYuTJNENZScmo4thcdTAwMTOul1x1MDAxZJtniz5cZnmu2Fx1MDAwN7s9IDhcdTAwMTdcXLJisv3/LptHXCJUWFx1MDAxNmU5/Ej+7Fx1MDAwNVx1MDAwNMWzZ9O9zeuLJrtpxo19cLPXODs/XHUwMDA1l3Th+UPT+MPYToFzyaZcdTAwMGbET0ohXHQsnWn8pa9i+bPpg1xmUYBBWXH34belaVx1MDAxYl1frX7+0jr8vN3dXHUwMDBlNpRYW3T8MK3gR0b4I2g0/UG6IFx1MDAwMFxuXGYgZpQ/wWHnX1x1MDAwMJ9cdTAwMTdAo67NXfChiftImJ3IM8o4mFx1MDAxOT5cdTAwMTF8dvc77+X34+bq9uX+cVx1MDAxZG3s40WHj0HusMnHQVx1MDAwMM3pOFxiYYdBXHUwMDA2IKJcdTAwMWMjgsqOXHUwMDE028qxLSVHXGJcdTAwMTJs3Xs5XHUwMDA0XHUwMDA1IFBcdTAwMTL5XHUwMDE4XHUwMDA0m1FoXHUwMDBl9PdsUDBcdTAwMWKxvnNcdTAwMDPt34xcZmouYVx1MDAxYsXV2ohp1detTMk1XzVHJW50w/WHxSaKi9KGbcLVoUrGQ1x1MDAxMiW6pUPXP1x1MDAxY28uO4zZvPNcdTAwMWP93E1VflRjO4JcdTAwMWVcdTAwMDViXHSzKoiEMUysXHUwMDA0i23PfSBienHhib3muVrduPz45YpcdTAwMWT20Nmig0hBXHUwMDA1xNEsiNncSFx1MDAxNFx1MDAwZVx1MDAxMHbu5kBIQTC/63xnXGZEXCLtatQ6/dIgUlCW67OCuD5fXHUwMDEw1+dcdTAwMDPilIxcYlx1MDAwMJVCSDA7iNu7ncuI1Vx1MDAwZsRcdTAwMTebZvTm9+5Z11tfeFx1MDAxMPm0s1WrtXmdxtiUXGJFdpjNMceAsNlSXCK09ey2/Ul+Lfk9XHUwMDE0YVmwz4pifb4o1ueDXCKZ/H9cdTAwMDTQilx1MDAxM0vBilxi3YfiaVo/O2pcdTAwMWZ35Um6Q/dZXCJOXHUwMDBlXFy46CjeszNcXIF2l1x1MDAwMZFdp3NcdTAwMGUpkkA839ZcdTAwMTAxx2o7a1xySVxiIGVcdTAwMDX302CkXHUwMDEwQUhcdTAwMDF7wUOaW1x1MDAxOFFZss9cbuPafGFcXHskjEv9zWjNjeNcdTAwMDNjI1ZcdTAwMWL8rGSHSHv9blx1MDAxN03XrrTqrY2r5lUzv2pLfcAzlPIt6Y+fSz9/XHUwMDAxXHUwMDBmK8MhIn0= ADCB Liestinė su apskritimu turi vieną brendrą tašką

Liestinė yra statmena apskritimo spinduliui, nubrėžtam į lietimosi tašką


eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2c6VPbyFx1MDAxMsC/56+gsl/X2pnunmurXr1cdTAwMDJcdTAwMDfCXHUwMDE17iPwaitlbIGFjWVkXHUwMDExjq3931+PQyzZRoud2GBSdqogzMjSaKZ/fU1Lf79bWHif3rfD938uvFx1MDAwZu+qlWZUSyq373/37V/DpFx1MDAxM8Ut7oLu3534Jql2j6ynabvz51x1MDAxZn9cXFWSRpi2m5VqXHUwMDE4fI06N5VmJ72pRXFQja/+iNLwqvNf/3Orclx1MDAxNf6nXHUwMDFkX9XSJMguUlxua1FcdTAwMWEn365cdTAwMTU2w6uwlXb47P/jv1x1MDAxN1x1MDAxNv7u/syPrtmM2p2we3i3I1x1MDAxYlx1MDAxZVxuXHUwMDFjbN2KW92hkpCClFx1MDAxM9Q7IOp84IulYY17z3nAYdbjm95vQnP7Q+38861aLi+Wl28v96P1z9lVz6Nmcz+9b3bH1In5VrK+TprEjfA4qqV1f+mB9qJvJfHNRb1cdTAwMTV2/L3LXmvcrlSj9N63XHTRa620LrrnyFru/P1cdTAwMWJcYpxcdTAwMDUyXHUwMDBl/f2CVL3u7lx0pFxitHJOgnBSWGntwMjKcZPXgUf2m1xm/b9sbGeVauOCXHUwMDA32Kr1jkmTSqvTriS8Wtlxt4/3jMpcdTAwMDWWpLKK0KBcIsgmoVx1MDAxZUZcdTAwMTf1tHtcZlx1MDAwNEYoJ7VcdTAwMTaE0mX33Fx0u6tcIqWzaJRx0OvxY2iv1bri8Ve2XHUwMDE2XHRcdTAwMGLWmv9K66bZzE9oq/Y4od/FKFx1MDAxMyR4bPknu0l//HJOXHUwMDAwsyvctGuVb6JcIlxyODA8uWB1NvvNqNVcdTAwMTi8fDOuNjLpepe71pBM89efXHUwMDE0aImmSKCVkMizrGBkgV7ulJYu6bT+4ETVtfYqa3v0cadAoOuVav0mXHRfX6SBRGCdY7K1ZXlQ2CfRiihcdTAwMTBCaVx0Rlx1MDAxYpJC/4xA/4aEXHUwMDE1XHUwMDEyw8JcZtJcdTAwMDYkwFx1MDAxOGM1XHUwMDBiqsAnhJmsXGac5qPI8qpcYrCDwlxmUjhntcxcdM1sXHSzXHUwMDFjQ5hz01xcSdKlqFWLWlx1MDAxN4NfXHRbtYKeZqWTluOrqyjlYezEUStcdTAwMWQ8onvexSSJb+thZWgu+MyFfW1/usx8+E/2v4VMurp/9P7/1+9PXHUwMDFlXbzy/lNcdTAwMWFa9Ox87/K/x8ZeXHUwMDE22jFcdJpYoWpcdTAwMWOd++qHoyNcdTAwMTV+QFhcdTAwMGWPazdbq42LjXb01rmXgTcqwKZcdTAwMDXRXHUwMDE4NTCuyXCvXHUwMDAwXHUwMDAzi2xPpSZcIkZlXHUwMDE4e1Y8gV9cdTAwMTGjlVFC25xcdTAwMDPy3YhpzVaMtMg0wpz7Wee+cOX9pzS86GNyf56wbHx3r7s9OVx1MDAxZlx1MDAxNlx1MDAwNlx1MDAxYnvoXHUwMDEzalxyaHJcdTAwMTbkOfRcdTAwMGaj6Lx6u6VOKlx1MDAxYTtrl43k4HaFZlx1MDAxZH10OnBCgmWl602mXHUwMDFk8GKdXG6EQiu0XHUwMDAwhyDlwMAmw75gv0Jkp+5cdTAwMDE/0N7zVJUx7FFTNks/XGZ5X8fL0DxRdvpnKGtcdTAwMTlmZFx1MDAxY71cdTAwMTBd3TT5dndcdTAwMTKeJC+lfy6kyU3uXHUwMDBlXHUwMDFl27/N0TTg43BJODWGu721V422P5zc3O3fSX29u3eRXiyVZp09NlNcdTAwMDG7XHUwMDE37FFLNrym3+pcdTAwMTJcdTAwMDdsVlx1MDAxYu4jY6X+ufBxQuRplnllxCSs61x1MDAxY7xZXHUwMDA0z1x1MDAxMmhw+Vx1MDAwNX5cdTAwMGW8Osbw+VM5WSWS93R9315cdTAwMGbrzVlcdTAwMDdcdTAwMGbQXHUwMDA1oIxkX1x1MDAxNqVFXHUwMDA3ulx1MDAwZj3F3cI4QJ8o4Vx1MDAxZm5cdTAwMDbQk8pcdTAwMTkkXHUwMDFl01x1MDAwNNIzc/amy15hpJlcdTAwMGJqhi1cdTAwMWVIdDRcdTAwMDZ5tHuys3m62Fxmt1x1MDAxMlP60j6Ly7ed45knrz/SlNpcZpBnXHUwMDAyQuPzpd5cdTAwMWK1OFx1MDAxNfJQilx1MDAwMLVkZcfyzESpYVxiga2v0Fx1MDAxYbVXXHUwMDBlLPc5X7PnhVwikFx1MDAxM/NQ8y2FmoUr7z+l4UVcdTAwMWbWKFMwurxkIJV2mVx1MDAxMXpcdTAwMGX9ZHepWt49KLfPwnjv5IK+3n1Mt2dcdTAwMWR9pShQxLbVXHUwMDAy4405ovz3eTk4XHUwMDBlNUopIZ1VXHUwMDAwXHUwMDAz43pccpvrLItcdTAwMDJcdTAwMGZnbnJn3uSm4V36JHVURJ1hd1xulc1lNJ6jrrOjTjA9b6ytxUtn15ulpaP4XHUwMDE0Z546I1x1MDAwMqe1ZvdRsE2V0E9cdTAwMWRQoCVcYqO9M1xmg8Oa0I6OXHUwMDBlOL7lq1vi0aB8yt6SXHUwMDFhhI9dXHUwMDAzpaxcdTAwMDDzivRcdTAwMTlnnLL0I/Sdx610P3rwXHUwMDBigrqvdaVyXHUwMDE1Ne/7XHUwMDE2tCu9PIU5XHUwMDFk7ptcdTAwMTab0UWr61CG5/3SnUbVSrPXncbtrLfKl6iwXHUwMDAzmlxmT0mcRFx1MDAxN1Gr0jxcdTAwMTi+nHdZV3t59iC3RGeVTth1aL1cdPsht1dcdTAwMTXneTRobVx1MDAxMezoSdbzo4fq4pK+b31KW1x1MDAxYodmpbV/rVx1MDAxYTNcdTAwMGah8sZcclmWhbLG2EHTx1x1MDAxM65cdTAwMTWBtUaQ09MxfVJJXHUwMDBlapVcdTAwMTbKkDCQt7A9XG6tXHUwMDBlQPKigCUpjVx1MDAxMrnA91x1MDAxYpTWXHUwMDE5y677JILQuc/7Qj5vqXjlu91Diz6m01uEfW7nZFx1MDAwMHtnpTOa9OjlQctcdTAwMWJ7XHUwMDA32rWP4WD5xGzuXV1uLq5/nH3qPddS+koox1x1MDAxMUd/fpeVXkBEqJW3MdJOp5qCfW7p2PQyXCLWoFVZuJ3tqmpiXHUwMDAx4IGSQ+WTYrmRfKOebLesaFx1MDAxZem+IepcdTAwMGJcdTAwMTfef4aXfEzmXHUwMDBi3e3CXHUwMDA0l2L3T1x1MDAwMorR3e3mUnntSsV7eunw65ev2DptP6Rm1plnVFx1MDAwMofoXGZcdTAwMWGrLOZLIL9tp4pAgiEwjDwotGZgZJOy9Vx1MDAwMVmOzoSzbKvtiFx1MDAxZbdcdTAwMTJcblx1MDAwNFxulfH/Slx1MDAwZXc2smk73MnLOtzJZFx1MDAxZO5cIlxubXFBkzVagaZcXOXMc1x1MDAxOF7icW09LVx1MDAxZFx1MDAxY35cXFmv1zuXrZPDRjrrXHUwMDE4KqdcdTAwMDPB0a4x0ilfVdJHIVx1MDAxMlx1MDAwNEqi1UA8XHUwMDFmyFMyQ1x1MDAxNPpcdTAwMDGzk52P1OdcdTAwMTh+l+U3hSFcdTAwMTVi6EhcdTAwMTmO+MzoXHUwMDE0XtD6QXi1ebavTj98WD+7wMu7djzrXHUwMDE0XCK7XHUwMDE51jhcdTAwMGIsTUaRXHUwMDFioFBjgOx78G+0YGFa9cRcdTAwMTRcYlx0QlittXOQr8P/XHUwMDE3XG6tXHUwMDEyIMVE6od/XHUwMDBlQp1cdTAwMTfVqUJYeVlcYisvXHUwMDAzoVKDjb1tXHUwMDE3KVxmOWco88Geo/B6pXOarFxc1sqnpydLi+3t6836p71Zp1A6XHUwMDE3XGJQXGaAZaVcdTAwMDOyv9aBLFx1MDAwNFx1MDAwNMpa7tA+XHUwMDE0mFx1MDAwZYRcdTAwMTj4Ynw2gVx1MDAwNoFGhVBq1NLIiaSbfo5Ck5fVqVK4+LJcdTAwMTQuvrYpVEBOXHUwMDEy2tHjwmTvdu/2cPOifnZfWt5vip2l26PKrEOIWlx1MDAwN1xu2Lfzz804oai/7kFcIseFli0lSnDGiOk4pH4jxlx1MDAwMFOI4Ni4Kf1EXG74ibBQ++pgha9cdTAwMWVcdTAwMTbavKhOXHUwMDE1wqWXhXDphSD8XHUwMDE3U4hCXGItxzCFW3c75drOsbXbUXy41/5gVr5szzyFLMmBJeGDYClAy4GKW1xyXHUwMDAx44HaoiFcdTAwMTQ4NVMoeVxmgi2hQUF6RFNcYnw0cyBeseb9pSksvyyF5ZehXHUwMDEwip8y9eJcdTAwMDBg3ehhYbL/ef0uOVtLrlpcdTAwMTKqjavFzydkZ49CtjvK+SelXHJIXHT5gppuzlT6QFBrlm8v4XqgXHUwMDE4V1LAMFwiOcvxXHUwMDE4+69TodKJXHUwMDAwrFx1MDAxNb6iz5f9mtFSNaQ4knf66X2RxzZuhUZn5SxcXE3W1ElsLsO7L6vhqnr/2P+C6Lq8gE83llxcKC28cFJn4JLTLGhgN65cYmFi6SFpxyjjPY63zpO77Yardmi9JJPmnXVcdTAwMGYziTCzx7fm7ZY12I8wWlx1MDAxN1x1MDAxONKGLHuxkoO2/lSPXCJcdTAwMWRYx1x1MDAxNtXnvVxiaUpcdTAwMTVcdTAwMGVcdTAwMTCwduE4XHUwMDE3kf1Vq81cdTAwMTPubf8xTkLOyD+6u84p4VxuXHUwMDEyP9Nger4l+kJbosXyMdzrJSM737v87/G1RXHVv3ba248x6p/qjZ1Eq+VwfSNcdTAwMTSEu8dcdTAwMWKhgZW3pi5IQEDoNM8zKlLaXGaYfEWsLpQ1wlx1MDAxN1x1MDAwMnPIPFx1MDAxNXWhXHUwMDAzkoxcbo+ew1tw9onSXGKOyjVq4tjXXG5WcdZcZmlcdTAwMGJeXFxhfFx1MDAxOcfTKaq5vnjD+qJQQPynNCxcdTAwMWJcdTAwMTPSXHUwMDE3XHUwMDAwxfWSoNiG2jFcbqdatcuV68aia5/YMJbm/vJ4XHUwMDFmtt6eulCBXHUwMDA1i441XHUwMDA28lxm9Ncw+1x1MDAwMEFrXHUwMDBl5jlwskK4KZVUXHUwMDAwR1xiXHUwMDFjpFxiwVGCclwiVzeelU9cdTAwMDakybI+sEDk6z2HXHUwMDAzXHUwMDA2cM6wfZlri19OW1x1MDAxNFx1MDAwYoj/lIZkY0xtUZxOKNRcdTAwMTZcdTAwMWGlRDFOUq+1vf3xqFx1MDAxNa2uxNtcdTAwMDdcdTAwMTfh4Vx1MDAxOemH/dlMJ7BaJmU51lx1MDAxMjyh2Vxydms/XHUwMDA0XHUwMDA1joMwUKBBqVx1MDAxY6hdbSEwXHUwMDEwvDhg2e9iXHUwMDE3cEqhiFx1MDAwZbTwyTJcct1cdTAwMWPfU/lcdTAwMDRwrPSMr/om41814obqLn35XG76J6KeTvpNQ138VILB/ZBeyCVcdTAwMThcdTAwMDBcdTAwMDNEdITCWMmqUo6ccICXTTbAmIlcdTAwMDZcdTAwMTA/XGJ3YVxytfRqxinM1eg/R3d5+851Tiq1k4eHxnGVjj/el1x1MDAxYuFbo5uQY1x1MDAwM6nJ+ac0tabBR/elZbyN9fl77Vx1MDAxMKZTUzIhvJ1cdTAwMDZNiFx1MDAwNZVes4a3XHUwMDE2kFx1MDAxN/o53j+NN1Ix3obFXHUwMDE3hFx1MDAxOKNQc1/UtkCVXHUwMDFhn5rVk2bndlM3Pl/O4EPBKlx1MDAwMJTCsFviI2czsFx1MDAxN1x1MDAwMGRcdTAwMDLltGRkWORcXC510i1cdTAwMTlcdTAwMDNcdTAwMTNIJVx1MDAxNfmnxvxrXHUwMDAwp0L3j+1cdTAwMDUg+lx1MDAwNCjQc5tcdTAwMDFcdTAwMWJHO3cnXHUwMDFi6qGyvahP71umfXJztv5cbjBjXsTnm1x1MDAwMT+8XHUwMDE5XHUwMDAwzlx1MDAwZbb2yjxcdTAwMTU6sGKM7N7taVxcX1xc311Kj5LN663mlv26vVmbTYbZoClk80Us+f1cYmtfXc337ffGpNT9W1x1MDAwMcT+N4Izyr/IU03NQE9kK0AqXHUwMDAwQUXvmZtcdTAwMDbS82j9195cdTAwMGJAUZzbY1vPlpEvO7K2XHUwMDEw21vVaPc2PmqVnaqnl1x1MDAxMO4uXHUwMDFmvjVt4d9dLskqX1x1MDAxN4pyoC6OhFxyWIeQ8Fx1MDAxOFx1MDAxYWLDP1x1MDAxNXUxma1cdTAwMDD/XHUwMDA0rX+mZK4tfjVt8Uo7XHUwMDAx+TdTXHK9nlZbaZxVo7806GZLXHUwMDFkbdTWS7S7Wlx1MDAxM1G6tvPxy9b1W9NcdTAwMTbSP9eluFx1MDAxZDh2gMFnqlx1MDAxMcFXXHUwMDFhye6zXHUwMDFiqMx03pk5ka1cdTAwMDD/NIpks/NcXJ3BXFxbvDlt8Uo7XHUwMDAxiIXagmNcdTAwMTDr87Oj71x1MDAwNHx92I8+n8nG6p6SXHUwMDBm+61cdTAwMTRlVc1gVZJcbqRzTjuvKXyyLdOG3aokIVx1MDAwMzbJPt4lMEL0J1x1MDAxM8C4wO/FsVehjC+Gn+lcXKGyxrJcdTAwMTf0bJ3BrKRcdTAwMTd+9qVJ81xc4cJcdTAwMDDdhY/QgFx1MDAwMG1cdTAwMDHIjb5cdTAwMTVwfXWZYvlOrVx1MDAxZd0tXHUwMDFlrFx1MDAxZNZ0tP4wk3mGf8ObbVBgkZyxyH5cdTAwMTdcZmz0IfmHT9lcdTAwMGIgJ5lwOZ1XiU6IbrZcYjxIV/Cmwdmj+2dcdTAwMWZccv/l6X73uFx1MDAxY+8r7fZ+yjPYc8B4ZaPa4zRkl37/NVxub5eeXHUwMDEwvPPuxy9xV2N4NLvvQ/z7n3f//Fx1MDAxZnarvl4ifQ== OrraABCa - r22a - r22

ABO - statusis
AB2=AB2BO2=a2r2
AB=a2r2
AOB=AOC
AB=AC

Jeigu iš vieno taško nubrėžtos dvi apskritimo liestinės, tai atstumai nuo to taško iki lietimosi taškų yra lygūs.


eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2baU/bSFx1MDAxOMff8ylQ9u3izn1UWq1IQlx0XHUwMDE0Uq52KatcdTAwMTUy9iRx41x1MDAwYlx1MDAxZkCo+t13bCB2XHUwMDEykk1QcdxcdTAwMTUpXHLkmbHn+v/8zDMz+b6xudlIRqFqvN9sqDvLdFx1MDAxZDsyb1x1MDAxYr9n9lx1MDAxYlx1MDAxNcVO4OsklH+OgzSy8pyDJFx04/fv3nlmNFRJ6JqWMm6cODXdOEltJzCswHvnJMqL/8zeu6an/lxiXHUwMDAzz05cIqMoZEvZTlx1MDAxMkRcdTAwMGZlKVd5yk9iffe/9efNze/5e7l2ruuEscqz51x0RfUwXHUwMDE309Zu4OdVRVhKSoEk41xmTtzWhSXK1qk9XWFVpGSmxtWRPJQnlvs1uFx1MDAxY1x1MDAxY3Uuz1x1MDAwZj9fXFyjotSe47qnycjN61x1MDAxNFx1MDAwN7opRVqcRMFQ/eXYyUCnkin7vKuiIO1cdTAwMGZ8XHUwMDE1Z22HY2tcdTAwMTCalpOMMlx1MDAxYlx1MDAwMGOr6ffze1x1MDAxNJa7rP1QXHUwMDE4UmJcdTAwMDQghIxz/TZOzm9AhEF1LzBEXHTjXGZcdTAwMTA6VbNW4Opx0DX7XHKq7F9RtyvTXHUwMDFh9nVcdTAwMDV9e5wniUw/XHUwMDBlzUiPVpHv9rHNmEpDXHUwMDEwSFx1MDAwNSWYY0pQ0Vx0XHUwMDAz5fRcdTAwMDdJnlx1MDAwN1x1MDAxOVx1MDAxY1BcdJmuXG6GsmhzrPJRgbrFXHUwMDEy6JqicUpWh3DPzuXxTzFcdTAwMTaRXHUwMDE21l52iZ+6brlDffuxQ59kVFxiXHQ9Wn5cdTAwMTSNzPLvlFx1MDAwNFiUkIa2+SBcdTAwMTXIkURcdTAwMWNcdTAwMDKOXHUwMDAwxeN01/GH08W7gTUs1LVRKmtG0/ryZ1x1MDAwNY3m6pnoLmWAYbC0nknLdW3fXHUwMDA37Oiwy4JrXHUwMDE0hFx1MDAwMIs5elx1MDAxZZjWII1UXHJcdTAwMTRNsSGhZlx1MDAxN1x1MDAwYq1cIlwi0YSgXHUwMDEx5Fx1MDAwNiGCXCIgiJDoVVx1MDAwNVxywayCXHSYkSyRXHUwMDE4ICFKuX9dyZY604ySpuPbjt+fvkT59pxcdTAwMTTXjJNW4HlOoqtxXHUwMDE0OH4ynSO/73ZcdTAwMTRcdTAwMDW3XHUwMDAzZc70hb7z3LQwu13hJLJX8ddmIaL8w/jvf35/NndpbLNcdTAwMTcpXbBR/r0qvZTPo1x1MDAxN3LAXHUwMDAxo1x1MDAxMC6P78VwZ2Ttf7GguzVq8ZOz5uXt9WXd8dUtNMhcXHwzf8RkJfhCXGZcclTcfkwwXHUwMDEyXHUwMDEz9ieKNS/aXHUwMDFmYV5XiotcdTAwMTF8o/jpNTnE2ethcFeEuVx1MDAxN2lccjxNffOUXHUwMDAyaDjXXHUwMDFkMyiEnu+IQuD/xXNX3sWo2+9cdTAwMGasgX025Fudk1x1MDAxM+XWnWdMucHYfHdMXGZZjTtcdTAwMDZcdTAwMDZcdTAwMDCgaMOY5yn7I89MT1x1MDAxMlx1MDAxOCfgJ8wjJ1x1MDAxMqrh9qdSMtlBhWWWklWeXHUwMDAwjpe6urlHke6kTKjvN5MoLbXg0f7QR6+An5CSXHUwMDExyOny7vTgKEq3/IPR9m3UPv1cdTAwMDC77UEzSeuOn1x1MDAwZWBccjhcdTAwMWY/wlxmWI07XVxyP1xuMdb+tFx1MDAxNHu/4Tdl+bXxg9mag1x1MDAwZfJXiEZvXHUwMDA03lx0zM+Ds4NOx1x1MDAwN+32MblvOXXnjzGxKFx1MDAxYaU1dX9QXCIqXGJ+4+9/y1x1MDAxZpNcdTAwMTAytsLiptxcdTAwMTVwv985XGZ2fDj0OrZ1b+3y2uNHXHUwMDE2LVx1MDAwNlx1MDAxMVRZNLlcIn5IV4tcdTAwMDMp2Fx1MDAxYn//U/6QXHUwMDAwQvcwXVx1MDAxZcBtr3Vun8Y6LDk4OU9O965bXHUwMDE3sParsVx1MDAxNKJcdTAwMDXhXHUwMDFmrOv8U1x1MDAxMEYlXHUwMDAw6I2/2vOXqLvkOfYwnMtcdTAwMWVFXHUwMDEwXHUwMDEy3b9Lo7fv7lx1MDAwZW/v6YftgX+Fv1jxWftg+6bu6GG4yPdBVtnUXHUwMDEzYYNBXHUwMDA2IKJcdTAwMWMjgqBcdTAwMTCzXHUwMDE4ktlcdTAwMTVVSVx1MDAwMILZ1uP6XHUwMDE45JJcdTAwMTFSejqswGAv8JNT5z5cdTAwMWJcdTAwMTbMJqxcdTAwMWZMz3FHXHUwMDEzw5prOHvENyZM267Tz6TccFVvUuOJY5nuODlcdMJcItXSRZiOr6LZLlx0XCKn7/imezZbXFy2IdF5XHUwMDFhjIlcdTAwMDXuKzNW+XaFblxielx1MDAxMYmlndzpLUmKXHRjWoVLk7h3fbz/Obzsd67PVOcjj2KYfNqvO4lcdTAwMTTQXHUwMDA1izCiskmoXHUwMDA2XHUwMDExXG5cdTAwMDKA5pBjQNhyIFwihlx1MDAwNYFonb7wgUNUVuurctiqlsPWujlEXHUwMDEwcUw5gHJpXHUwMDEw0XB030rTrjc8uohY++MuO/lcdTAwMTjXXHUwMDFkRCZcdTAwMTeeXHJA1blEPe/V0zuIMJJcdTAwMTDAspNb5Fx1MDAxMlx1MDAwMVx1MDAwN/pZouPCdaP4ojNcdTAwMDEvQrFZLYrNilCk08ZcIjDknOqH9FxuPlx1MDAxMYbAvON+y01OZTtVJFxie2an9ijyhSsz1Vx1MDAxZNNBwtCROIBcdTAwMWNcYilcYubPbPk/Q1wiw5xzhta5P/hA4otcdTAwMDLEXHUwMDE3kdiulsR2NSSWNiCmSJRcdTAwMWNcdTAwMTPCyVxuPvF0t7lcdTAwMTcqlYqLnePut+Bwr3ODr+tcdTAwMGVcIiFs0YFcdTAwMWKBKlx1MDAwM5FcdTAwMTjaIVx1MDAwMiBcdTAwMThjUi5cdTAwMWQm6sxcZlx0sv7pKS3r9VVJNKsl0azIJ7JpY7FZXGJcdTAwMTjTP0VP/Fx1MDAxN4mh61x1MDAxYzjDND24j3p+85t1lH7+Uv+jb4tnp1x1MDAwMFa1VoqQwYX2iVrWmNJl40RcdTAwMDGxXHUwMDBlXHUwMDEzKV3jnuFcdTAwMDOIrCzXV1x1MDAwNdGrXHUwMDE2RK9cIlx1MDAxMOfGiVA7XG6stUmXJ3HfdDE821x1MDAwMley+1Xun1x1MDAwNJ79191W7UmkXHUwMDBiXHUwMDBmobLqXHUwMDBloXKDZl/OQFx1MDAxMktCMXzuQOosiYRDLild5+79XHUwMDAzibys11clcVgticOKSMTTxjGJglKgXHUwMDFmtnT5TYyvn3pfOldcdTAwMWbVQTtRt2mEm81ReF53XHUwMDEy2cL9Q1xmZFUrNlCHiVxcz05cdTAwMTnSvS60q15udoqhXHUwMDBlI9BP+XLHr4KiVS2KVkUozo1cdTAwMTP1U1lK/X95n9jajZ3j9F543866J6QryPn28bDuJFK4aFx1MDAxM1x1MDAwM9HqdjGIgVx1MDAxOFx1MDAwMYBTpmtcIpdcXLFcdTAwMTFcYlx1MDAxMiz5+menoizXV1x1MDAwNXGnWlx1MDAxMHdeXGLixuPRgYZcdTAwMTmGp4nuscbTV2D0XHUwMDEwOfZjs4uiXHUwMDFiN466bc6K5rde/mpsPMKdcZRcdTAwMWYg+P5j48e/89lcdTAwMDRTIn0= ACBDamkcE eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2abU/bOlx1MDAxNMff8ylQ93Zkfn6YdHVcdTAwMDWFXHJcdTAwMThcdTAwMWIwXHUwMDFlt6tcdIXGbU3zROJS2LTvPie0TZrSUlx1MDAxOJROd0GqmmMnPj7+/3xsl1x1MDAxZkvLyzVzXHUwMDEzq9rb5Zq6bri+9lx1MDAxMrdXe53Zr1SS6ii0RSi/T6Nu0shrto2J07dv3lx1MDAwNG7SUSb23YZyrnTadf3UdD1cdTAwMWQ5jSh4o41cbtJ/s89PbqD+iaPAM4lTNLKiPG2i5LYt5atAhSa1b//P3i8v/8g/y975vo5TlVfPXHUwMDBiXG73MEZV66cozF2FlFx1MDAwMUkhl3xYQ6frtjWjPFvctFx1MDAxZauiJDPVej3gXftcdTAwMWa/nrTSi+2d9kGdv1x1MDAwYnTRbFP7/oG58XOn0sj2pShLTVx1MDAxMnXUifZM25aSin3SU0nUbbVDlWadh0NrXHUwMDE0u1xybW4yXHUwMDFiXHUwMDAwQ6tcdTAwMWK28ndcdTAwMTSW62x8XHUwMDAwcjiGVHJMXHTAotTb7Fx1MDAwNVx1MDAwNDtcZlx1MDAxMyaIRFxmQyBhxbF65NtxsI69gir7K1xcO3dcdTAwMWKdlvUv9IZ1TOKGaewmdrSKer1+lzGVjiCQXG5KcOZcdTAwMGIqYtBWutU2eVx1MDAxZOssoFx1MDAxMjJcdTAwMDZcYoZlb1Q+KJBcdTAwMTNJMLNcdTAwMWRcdTAwMWGWZD7EW14uj2/FUCRWWFvZI2HX98vxXGa9fjxcdTAwMDcyKoSE+pafRSez+lx1MDAxYiVcdTAwMDFcdTAwMTYtdGPPNX2nkERcdTAwMWNcdTAwMDKKXHUwMDEwKKLr67BTbd6PXHUwMDFhnUJcXEultsY03Uxsj1x1MDAwN7xVRI3gRE1cdTAwMDNBXHUwMDA0JIzPrunWbmdcdTAwMGLb8J/6aPdr82h3/1wiODqfoOm222h3XHUwMDEz9fKqZlx1MDAwMDiQXCIsXHUwMDAx4Db0QoyKmlx1MDAxMUdcbs5cYkZIXHUwMDEwXHUwMDBl5LOJXHUwMDFhjGtcdTAwMTg6iFZli4BEXHUwMDEySkTl78t2pODB+lx1MDAxNFx1MDAwZtDn0Fx1MDAxY0e6PP9mV/FtuVxiQn4z/P7t9f21V7JoPeiJ0vuXKk/VfDc19ShcYrSxXHUwMDFk38ucrnYw1UHXt2HZS2wwMyW/XTZJt9TTvv02llNcdTAwMDG18bsz41x1MDAxMFE1XHUwMDBl4GRcdTAwMTRcdMwpnZ3NY9f9cH5B17daZlx1MDAxM7/faadbZidYfDbpVDa5Q+bCJlx1MDAwNlx1MDAwNYdDOilgd/BpJ01cdTAwMDBcdTAwMDDDRcFiZZVHUZtcdTAwMWE3MWs69HTYqj6iQm9CyVxmXGZl711NkqjXVu5YLOybJ5Y96TyyUlx1MDAxYd/8/nZox6eHR1HMeNU4oJhcdTAwMTO7jlx1MDAwMlx1MDAxNM9cZnGU1E9cdTAwMGb1tdds9y4+xOik7Vx1MDAxZK2Ei1x1MDAwZTGVzCFgMsTYLirnXHUwMDAxMVx1MDAxYkmnQ4yJsFx1MDAwZYxhLFx0Y3ZcdTAwMTUr/2L8XHUwMDA3YTwywrnldnBcdTAwMWZcYvK09TKUVeNcdTAwMDBmYvVtXHUwMDA1XFyS2H00f8Bn5uvJmW5E9Vx1MDAxZN5IWXJ6ZbZcdTAwMTeeZlx1MDAxYuTJNENZScmo4thcdTAwMTOul1x1MDAxZJtniz5cZnmu2Fx1MDAwN7s9IDhcdTAwMTdcXLJisv3/LptHXCJUWFx1MDAxNmU5/Ej+7Fx1MDAwNVx1MDAwNMWzZ9O9zeuLJrtpxo19cLPXODs/XHUwMDA1l3Th+UPT+MPYToFzyaZcdTAwMGbET0ohXHQsnWn8pa9i+bPpg1xmUYBBWXH34belaVx1MDAxYl1frX7+0jr8vN3dXHUwMDBlNpRYW3T8MK3gR0b4I2g0/UG6IFx1MDAwMFxuXGYgZpQ/wWHnX1x1MDAwMJ9cdTAwMTdAo67NXfChiftImJ3IM8o4mFx1MDAxOT5cdTAwMTF8dvc77+X34+bq9uX+cVx1MDAxZG3s40WHj0HusMnHQVx1MDAwMM3pOFxiYYdBXHUwMDA2IKJcdTAwMWMjgsqOXHUwMDE028qxLSVHXGJcdTAwMTJs3Xs5XHUwMDA0XHUwMDA1IFBcdTAwMTL5XHUwMDE4XHUwMDA0m1FoXHUwMDBl9PdsUDBcdTAwMWKxvnNcdTAwMDPt34xcZmouYVx1MDAxYsXV2ohp1detTMk1XzVHJW50w/WHxSaKi9KGbcLVoUrGQ1x1MDAxMiW6pUPXP1x1MDAxY28uO4zZvPNcdTAwMWP93E1VflRjO4JcdTAwMWVcdTAwMDViXHSzKoiEMUysXHUwMDA0i23PfSBienHhib3muVrduPz45YpcdTAwMWT20Nmig0hBXHUwMDA1xNEsiNncSFx1MDAxNFx1MDAwZVx1MDAxMHbu5kBIQTC/63xnXGZEXCLtatQ6/dIgUlCW67OCuD5fXHUwMDEw1+dcdTAwMDPilIxcYlx1MDAwMJVCSDA7iNu7ncuI1Vx1MDAwZsRcdTAwMTebZvTm9+5Z11tfeFx1MDAxMPm0s1WrtXmdxtiUXGJFdpjNMceAsNlSXCK09ey2/Ul+Lfk9XHUwMDE0YVmwz4pifb4o1ueDXCKZ/H9cdTAwMDTQilx1MDAxM0vBilxi3YfiaVo/O2pcdTAwMWZ35Um6Q/dZXCJOXHUwMDBlXFy46CjeszNcXIF2l1x1MDAwMZFdp3NcdTAwMGUpkkA839ZcdTAwMTAxx2o7a1xySVxiIGVcdTAwMDX302CkXHUwMDEwQUhcdTAwMDF7wUOaW1x1MDAxOFFZss9cbuPafGFcXHskjEv9zWjNjeNcdTAwMDNjI1ZcdTAwMWL8rGSHSHv9blx1MDAxN03XrrTqrY2r5lUzv2pLfcAzlPIt6Y+fSz9/XHUwMDAxXHUwMDBmK8MhIn0= ADCB

AEED=CEED

am=ck



AC2=ADAB

Išpjovos lanko ilgis ir plotas

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1d645cdTAwMWJFXHUwMDE2/p+niIa/pKjbqVx1MDAwYtJqRVx1MDAwMiFcdTAwMDFcdTAwMTJcdTAwMDJBgWSFkJlxZpx47MH25Fx1MDAwMuKh9kX2mfY7zmTaVT2u6rJcdTAwMTOIVjugUdJtf11V5/adU6crf1xcu379YPX6bHzw6fWD8avD0XRytFx1MDAxOL08+Jivv1x1MDAxOC+Wk/lcZrf0+u/L+fnicP3Jk9XqbPnpJ5+cjlx1MDAxNs/Hq7Pp6HAsXkyW56PpcnV+NJmLw/npJ5PV+HT5T/59f3Q6/sfZ/PRotVx1MDAxMN1DboyPJqv54s2zxtPx6Xi2Wlx1MDAwMv1f+Pv163+sf2+ObjqdnC3H64+vb3TDU0blV+/PZ+uhKlxuMUTrgr78xGT5OZ62XHUwMDFhXHUwMDFm4fZTjHjc3eFLXHUwMDA3396Ym/tfylfT6fHhXHUwMDE3X91cdTAwMWb99OT2/aPusU8n0+nD1evpelDLOebS3VuuXHUwMDE28+fjXHUwMDFmJ0erXHUwMDEz3LXZ9W3fWszPj09m4yVPvpvI/Gx0OFm95mtSXl5cdTAwMWTNjtdcdTAwMTjdlVcsXHUwMDFmaYWRZIyU2oegqZvt6zfrI5T10ipcdTAwMTd9sNJSNrJb8ylcdTAwMDSBkX2kxvxfN7ZfR4fPjzHA2dHlZ1aL0Wx5NlpAXFzd515ezNlQXHUwMDE0wWLVyVx1MDAxYW/I6m5cdTAwMTFOxpPjk9X6M1p4SVE5J61RsZvzcryWijLRYtJOdV/mMZzdPVrrx8+dLFx1MDAxNtCsu/yV2fl0urmgs6OLXHUwMDA1fatHnSbpiyt/dpPkz3+xoYHdXHUwMDEzzs+ORm9URXlcdTAwMWS1V0p6rczl/elk9jx//HR++LzTrmtcdTAwMWLP6in101x1MDAwNWb81uAyrbbblTpKolxigcvBSn344M53v/6m7k6//urew3tcdTAwMGbu3ZIvz+982EptfFx1MDAxMCo6K6FTMupIlCg1pi9slDJcdTAwMWHoiVx1MDAwZtG596bUUkgpVV+Rs+tvtTdcdTAwMTgoSsD/+2tvcuO9qunl5bP5ZNNcdTAwMGbzT/en652M1n+5/PPPXHUwMDFmX/3pZIW6K933rmXfP5iOlqtb89PTyVxuXHUwMDEzesCDyVx1MDAwN76cnJ5PMd1cdTAwMDdcdTAwMGIs0vmCNWe1ON+YwcX1N2tUtD+sy5VcdTAwMTHF+W22Z7SS0LjgXHUwMDA2m5668dnv9OTJ6ln86vXX3/z6++r++Hf60E2PhFxuiqyViFx1MDAxZFxuJpiZnlx1MDAxMlxiJzrIYK1xMVx1MDAxZti7szxlvHA+UPAmuFx1MDAxMPVcdTAwMTVGqJRcdTAwMTfkI2lDxnp4XG7qXHUwMDE5JClcdTAwMWJNMP5/IZxsLPVosbo5mVx1MDAxZE1mx/lXxrOjLXdcdTAwMDZYXHUwMDE34362WMxfnoxHvbVcdTAwMDDy1nvv1HNslTz/3OhcdTAwMGK971F2Mnyy+cW3hq+VVWAsLUzy/vz254eL2zefvVx1MDAxON+bPzl65eSL6exDt3xcdTAwMDfLdzZ6LcmrmFx1MDAxMkkjjbBBquA14rGPJlx1MDAxYtc7NHxlXHUwMDA0OI6HfTgwSVjJXHUwMDE1lm+lcNFY68BcdTAwMTK83PDZb1xyX2qLuUjfzfH/hv/BXHUwMDFi/lbJr+/mMm+0+9X41eoqu/cuv9iRbTA5p8DqhpPt48dnk6++//bx8vmth+PPRs+OXHUwMDFmhYdcdTAwMWa43TukiEqrXHUwMDE4XHKcnDU2JdvaRKGcUUFHhH1y9P4sX8NcdTAwMDFcdTAwMTknlVx1MDAwYpa8NEp3I7m0fNuL8SBcIlFp7To38Zdzblx1MDAxZqO0oXNCXHIm/XQ+Wz2c/L7mly65ent0Opm+TsS6VmGuU1x1MDAxYySXPptOjmfr0DZ+mqr4anI4ml7eXs3PuruHeMRcYqFw0V+S+WJyPJmNpj/0XHUwMDFmx8HzzqVcdTAwMTdcdTAwMTZcdTAwMWJcdTAwMTL6dbRcdTAwMWOvQytcdTAwMTPlnVxm0YX84ltD9Fx1MDAwNlx1MDAxZUEr161EzVx1MDAwZf3jb79/cvfmjTs/ffPs+EX4jm6o7+RcdTAwMDduhzFcbiOl1dJcdTAwMTlyPTNcZlogQiuPXHUwMDEwXGZVg1x1MDAxYnx/ZohcZlx1MDAwMKFTOa+NMzqoK1x1MDAwMnDfXGbZhbjgYvjb7TBsaut7tcP//PuvNcTN571PS7RbLZFM8IpcdTAwMWFcdTAwMDLi9z/+8Nviyzsn3z34hZ5cdTAwMWQ9emQm92n6YVx1MDAxYlwiXHUwMDEyXHUwMDBmgXjinHdcdTAwMDRcdTAwMDKgckM0wlx1MDAwNGi7Md5b3N6r+PTR06eH8TD2jTBcbuuClNqoaFxmIYdcdTAwMWRkg9bDXG6RnHdj+ptsMP5lNjj9a01w+m4tsFRcdTAwMDWG6LcyUy2tiVx1MDAxNNzwWtQvXHUwMDBmXHUwMDFlq8Pl2aN7o8Xnj8JcdTAwMGb3br36YXG2xVx1MDAxME9GhydcXF3bYooquz7EXHUwMDE0u6iwe066UVx1MDAwM7qqXHUwMDE2tc1cdTAwMGWvXGZ2V9misWZkZd9cdTAwMTZVIFx1MDAxMcGBLVwiM5tj7Fb90lx1MDAxOOEvXHUwMDA0M9bopJVcdTAwMDZcdTAwMGVcIrdN772T4W+lqVx1MDAxZkpp2FxiqWygSFx1MDAxZe7TYsHc5tdvJLdJwvnVXHUwMDAwnZBcdTAwMWFpY1RcdTAwMDTiJFVnN2u83t1cdTAwMWFcXFx1MDAxMFx1MDAxMjLWRFbylplLXHUwMDBiUFFIi/xcdTAwMDRcdTAwMWNcZiRcZojV0SVfsCBVXHSckrhcdTAwMWRcdIqlnSRpqFx1MDAwNpd8wcbQVT3f4CkhyWL9kLc6XCLSVbz0XHUwMDBi0rk98TS+XHUwMDEwrVx0XHUwMDA2QdIhgvk98UhIbyHBXHUwMDEwovTkKatcdTAwMDdCXZC1QrrSXHUwMDAw0MqqeJVcdTAwMTeQKzyoXHUwMDA2bHCyK2K/XHUwMDAx7D2vXG5cYoVcdFx1MDAxOIC3zuE7YO8pIFx1MDAxNNBHTUqCLFx1MDAwNFx1MDAxOXVVY1x1MDAxNFQmWpirw0JGrFG2hMlcdTAwMDTI2Vx1MDAxYZ6GyiAsO1x1MDAxM0jD6WZo6ehDdbpaXHRcdTAwMDUnh1RcdTAwMDTaLCnsXHUwMDBip1x1MDAwMVx1MDAxN6JnTYHKyExcdTAwMWHpUiC9qOJcdTAwMTmhlMEqQ4bw2lx1MDAxYlx1MDAwZW9ccpiuhVJUlYa2XHUwMDAwXGbBO6c1YdV9OsLeclTxkF9pXHUwMDEzdIR3Q8RwmfvrrUdcdTAwMTVcdTAwMGYxUlx1MDAwN1x1MDAxZpA8emTKQaVcdTAwMDJJXHUwMDFm5+ry8EKB21x1MDAxYaelZOpcdTAwMTn3Q1x1MDAwYkDjMj4kwnLM5ppcZl1pX5Uu9zOQIctcdTAwMGLkXHRcdTAwMWM9XHUwMDEzRv64Klx1MDAxZVabXHUwMDAySSSvhjf3bOpNdVx1MDAxNFxu3MJqfIbsXHUwMDAwZ2+gLFx1MDAwZVEjYIhcdTAwMDQ2XHUwMDFlXHUwMDEyuP7oq3hYb88j85iNd9nwdsDDimO9eVvMcPKi98WDtlx1MDAwNKNdgDJg4X2qLdnqmqpvtuDRXHUwMDEyOlxmXHUwMDAzgKt0lKqyMVxcirSEIYJoOapK11qhlY+WjVx1MDAxNtYrM2nka1GFc0hcZn1AZlx1MDAwNkdktNWZNPK1qOJcdTAwMDVcdTAwMDEj91x1MDAwNCiSdmNn+VxyXHUwMDFjdC9cdTAwMWFcYlx1MDAxZaGSq+J1akBSaIusNYLnwFWlsrVcdTAwMTJwXHUwMDE4mvdcXGNcdTAwMDKnraJxTlx1MDAwM1x1MDAxM9dBI8r4LI63w1x1MDAxOVx1MDAwMfZLoC1cdTAwMTCv816li2e14Fx1MDAxYiDZXHUwMDAxhqtVrFx1MDAwM0K40FCvrVx1MDAwNFx1MDAxZVx1MDAwNpPi4XFcbm7KY/hSuVj1VFx1MDAwNOHCXHSBp1x1MDAwNVxuQZts9XJNqsJBtvxwUl4h5mesylx1MDAxMjRJw03BxqBSmqqG5iDbjsXCYWbL11PNKqBcdTAwMTZGelx1MDAxOTEpduU2daTWQzWRWuE52lx1MDAxYa/q47PIf7xEXqrXU0qlkWtmXHUwMDE1jYRhXHUwMDFkXHUwMDAw+4pG+4zj9jSzXG7nhTGwL1x1MDAxM6UlXHUwMDEzUkZA0DxibydcdTAwMTVcXDxEUZ9rXHUwMDE0xirPuWeEXHUwMDAy+n3xvFx1MDAwNFx1MDAxZZdbLfSOdOpD+3ZThVPCkHKe/XekkPG9XHUwMDFk8CBaeFswXHUwMDAyYlx1MDAwYqFsfKndwJ1V8Vx1MDAxY5eyrYWX9FDWmC1cdTAwMWY0XHUwMDBmy4D8xnOlO9qql/dBwN1cdTAwMWFcdTAwMWIvymWpqVGE4WhwXHUwMDE241xmN0GaqjiCXHUwMDE2SPVcdTAwMTVi7rrDLLO0zG5CPZ00XHUwMDAysVshzFx1MDAwNLDRmLnldjhcdTAwMGI4J1x1MDAxMWW439PY1NCc4TKERMiAhipcdTAwMGWhVTwvrJFcXLmDyposdYakNHyn9IpcdTAwMTdWVe02XHUwMDA0gEFccsDZI1xcSkZFczOsoUUlXHUwMDEwXHUwMDE4PSSguWvUZVNNrDDU06BIXFwvXHUwMDAye9BstTHj3Vx1MDAxZYLAXG4gZDisRN2nxMhNiDBcZlx1MDAxOFGIMUvrPVx1MDAxY1x1MDAxOLwmYlx1MDAxOWZcbtuoKrGSWlx1MDAxMCbKXHRcdTAwMDGIo/Wp1mU6Xk+DkDhcYoJGXHUwMDE55lPIPmUqWY/Fi1xuzlgjVYtcdTAwMTh/XHUwMDFkz1x00pxkQ/vARWw631x1MDAwMFx1MDAxN9bVTOqrh5goyODBPoKrk8zSvp7NVPGUXHUwMDE0SVkhhUttpl5RwqNcdTAwMDFcdTAwMTdcdTAwMDPCmUdcdTAwMTIpTap6XHUwMDAxmoTsXHUwMDExuSUkpevcXCLtbHAxpDWMzFx1MDAwNG29XHUwMDA2pCBcXCSO+DDBp9mM+/SssI5cdTAwMDfh+vWuO+ZcdTAwMTUoIz9Rio2Sl1x1MDAxZFBcdTAwMTHJmrRSXe6ZdVx1MDAxNVx1MDAwZUn7RknJyaxcIlx1MDAwN+lcIlx1MDAxOZBS8S68rSctXG45tlx1MDAwM22FdUa/bnZM8Vx1MDAxY/xcdTAwMDRXwrjJXHUwMDE4lKquLdpcdTAwMDBcdTAwMGZLXHJfud7AzcbnuXXK8kyRXHUwMDFjxFx1MDAwMdMtw0G6SC85cVx1MDAwNlfAXGbqeFYgjoFOhcD0K0vSMkfm6q5AXHUwMDEz8FwijJOTRChuVu+SUJeuolx0z7w3IIyR329AmsRcdTAwMTVcdTAwMTE5QCBOOG1hoVhwzZlnXHUwMDA2mPjaITXNILj+L+Fb2Fx1MDAwNPJcbl/P11ZcdTAwMDGNXHUwMDE0XHUwMDFiVcuMUvV9bVx1MDAxZFx1MDAwZlx1MDAxYY2QquGOXHUwMDAw6LLMVMlcdTAwMDBva1x1MDAxMYyCXHUwMDA0MSBTnzFybUfBI9tRzrKXy1x1MDAwMFP3bVx1MDAwN8xcdTAwMThKiLCKzEBCzL0qc+a+63CQsFx1MDAwN6WDWnNcdTAwMTU3I5HwXHUwMDEzcLiWy7deeUasXHUwMDAzQsRcdTAwMDFrLWFcdTAwMWZcdTAwMTZ5Sl62TjzuXHUwMDAwUq+Qv7tcdTAwMTBsRIbPlUbKXG6bilx1MDAwMFx1MDAxOEEy1Zqk10tpW5tcdTAwMWUv8FJcdTAwMTfu625cdTAwMDYpspfwXGKOkC7mddJcdTAwMWQmjFx1MDAxY9lDXHUwMDExXHUwMDEx51xm11x1MDAwNjNmuoPK2CBcdTAwMTByJNJjycLM2GS7XHUwMDE1I1x1MDAwYk0q+/u6LX6biXRcYohjXFyPyrLUdj+NVFxuuuKYdjhcdTAwMDPOmEqkPcxcdTAwMTHWL/AukTVcXEGSqc1FpDnwZNBPhcFcdTAwMGaQr8PydftcdTAwMThZ5bWdIzhcdTAwMDU4+Fx1MDAxN7hVrvhQxmFcdTAwMTCVwCVh31axXHUwMDExXHJcdTAwMTieXHUwMDE2QcLpey21RF6QSiMgqLNqWuL3iuAy9sVrpYDIzLBoXHUwMDA29lx1MDAxObmCXHUwMDE0M4aa55z74rXycWdFXHUwMDAw8Vx1MDAwMGPjXHUwMDE274ygtmdcdTAwMGKOXHUwMDAwXHUwMDA3Z+88p/hIXCJTvLxcdTAwMDKwL15ztlXBa8xcdTAwMDVcdTAwMTVcdTAwMTLloPFcdTAwMTMjSFxuwnZqXHUwMDFizZlqXHKvNS1XyLyD9lxuXHUwMDA02lx1MDAxMe9cdTAwMWKmcHmxbU+45lx1MDAxMlx1MDAwNNyJXGJcdTAwMThcdTAwMDLCOUEtfLal2F7BUV6KjVx1MDAxZNKQ2kZ7xVxuQVx1MDAxYXguRopmvVxylFU3k0r0gFx1MDAxYVx1MDAwZTRPgOtE7lxcxlx1MDAwMlx1MDAwNdqzvqk8nFx1MDAwMVxcuYRcdTAwMDGvR5BNuLH6WoFLty20qfs+XHUwMDBm5+JASog5clZcdTAwMWFur1xcl+FaXHUwMDBi9Vxuzlx1MDAwM4w5yMC7t6zSKV7rPkdcdTAwMDWveZNcYn5DwKOB4EhYPPQvhUv3XHUwMDA344DAUcZr3bHDWovAXHUwMDE5h4KGXHUwMDE5TllSPCxf18zD6c6egM07sjW81lx1MDAxZONcdTAwMWFe41x1MDAwNnlccq61XHUwMDFioILX3k9RXHUwMDAzbG1GqeHt0H5cdTAwMDNn33WcwGulgO1cckJcdTAwMTXA5o6tMl5zQ1lcdTAwMDWvud+tglx1MDAwN4F00cNGW49GlfVcdTAwMTNyY/3UgL3FMuAueFxi53Hd3e34XHUwMDE14Vx1MDAwNK69/bBcYmdcdTAwMDHXxY8hwbKElshcdTAwMDK6XFy33lx1MDAxMtpcdTAwMGWaV0Br7+wromHhNqpcdTAwMWRUj+NFtF7PX1x1MDAxZE6LyJqgMCmVN1x1MDAwNu3gRot47W6+NNv2tqqyhb3rIJ41Sfl94Vr7ePBpwCl+ozvwbkxaSmvvuylSquZGXHUwMDE00Dig4bdcbjFYMMikXGaUNWZcZqArJTra3qtQXCLfO+RBXHUwMDA1MFx1MDAxMlxc8dd83lxyvOeAiZaSln77TFx1MDAxZK+Uo+2Q5Fx1MDAxNnPI9pS+XGKXdpSYXHUwMDAxKuxgYcbDXHUwMDA3XHUwMDExyD+ZdD92h/pKKaOHuZig+Fx1MDAwNVx1MDAxNlx1MDAwM51cdTAwMWNSOyuiNW+Nl8pcdTAwMTfthbNSqWaHsl5cdTAwMTEu2ce2XHUwMDAzsrNinetcdTAwMWTXRNv3dctwrfVpilx1MDAwMqpBUFx1MDAxMc1USydL176pW6ye71DcL8HtsvngXHUwMDA1v1NEnG3GmDZcdTAwMWHvsGNa3HtQ0lxiXHUwMDAyKLSON+HxuDqeXHUwMDE1kFx1MDAwMzdPOKWyXHUwMDE2OVAgQVx1MDAxYWIgzd5J6lx1MDAwMbM1XHUwMDAyySCeznVcIq9Vyu6kXHUwMDA3XuR2f4Q5K+stbeWtm1x1MDAxZLaqSltL/WaSKpyFKlx1MDAxYphcdTAwMDZxr1xiwY2neM2bm8WdtF22XCJLW339do06XHUwMDFln1x1MDAwYmg4UllI0adcciN5u8aAjcPCTmnWXHJcdTAwMDFfUYVLXHUwMDBmJMp0T+Om5mP5LJTPqlx1MDAwMVv1hY3wrC/AmbplXHUwMDE4hW+AXHUwMDFjI9BzvSntcc/7XHUwMDAyXHUwMDA29IqUOlx1MDAxZPpdXHUwMDAxdbxSJ1x1MDAwNrg11lx1MDAwMmOHi1JcdTAwMWPV9mxcdTAwMTXpd1x1MDAwNdTxSr0xeVPAXHUwMDAwbqFh65GbUEFtNCw/XHUwMDE1R0/P63il1qdsXHUwMDBiX1x1MDAwZumTg2uDIcFbwlx1MDAwMXMkTPFcdTAwMTBUdGBcboqUZYB0VVx1MDAwMJpFUlx1MDAwNnXmRoHU0npep45X6Fx1MDAxYus7xT3h2kdX6pJTluBcdTAwMTNcdTAwMDPnery7pFx1MDAwNzTJpW5X0Z6qUmxcbixcdTAwMWOftFxyrtSzmPvEXHUwMDAx+U8vau1pucVcdTAwMTbNnpetw1x1MDAxNVx1MDAxYUjb3WixvVx1MDAxNSpcdTAwMDInXHUwMDFiXCK/b8Yly1x1MDAwMUXztIHLpq9cbmVO21xyKNFmjCmDa1xyacXe4H5cYqjj5fwwxctDQFx1MDAxZK/UXHUwMDBivVx1MDAwMyHo0eH96Eqx9btcdTAwMWZR9sTr+ew6XpqcZGS0te+s2DjfzkV7mVhcbpd2sdVLUlmXVZZXNTPvaFx1MDAwMIek063PKIsqdaLNeUvxjYj2NtRe09Z+SV+vZyuFa2zXK75L0p7hpsVcdTAwMGWTllx1MDAwNzd1MkL29XeEkvYv+N1cdTAwMDStseG7+EpP762VKlrpfaPWokqAwkmQ0Fx1MDAwMOZcdIdcdTAwMWOSoTX36OXFtY+3rmi9KJj1pFHiRppcdTAwMGJlaUkypEeI9Fx1MDAxNqGKltdLN9Ga65VZN1pa12pupSu+XHUwMDFk2Fxc6C2+XG7pjUC45yV9c6pjVaal9zSzcdfPbSi+kdpcXG8vvi6bPsrUXHUwMDE5RPltXoepwlx1MDAxMFx1MDAxMKPt+lxijf1eNu7drKKVXqxu3ZYpvZPevvuU7n45l5hp9qgh51x1MDAwM/Rew97Ea+5z6231JWjNfW5Z61k6tuZcdTAwMTfIiyc1NHe5XHUwMDE1z7lo7nErn+rRvL/b61x1MDAxMUvQmjvmimeYNO9ll49/6Z9HUsUrXHUwMDFkx7PDzn3xMKP2brm8jSNBa+9TKFx1MDAxZS7V3HtXPEorPfdcdTAwMDfTrtOb0sFh/XOJqpFcdTAwMWFw245cdTAwMDVoblx1MDAxOCmekdZ8hlGvJyxBaz5iabNJSkWf8qX2XpsyXFxzK1BcdTAwMTmu+XSv8vF3zX1PXHUwMDE1uNamLFx1MDAxONiG8Ey2O97c+5icXGbY3Jl4ozya9la97HBBSoNqeyfhtoNcdTAwMGavZd96T/+2zbWLR1x1MDAxY4zOzlx1MDAxZa7w5YO3/1xcwcHxYnJ0cZhq95iDXHUwMDE3k/HLm1dcdTAwMWVDyz9cdTAwMDfXLk4q5eNA11x1MDAwZvrjz2t//lx1MDAxN8VQXVx1MDAxZiJ9 Oαl

C=2πr

l=Cišpj.=2πr360°α

S=πr2

Sišpj.=πr2360°α

Nuopjova

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1cXOtv2zhcdTAwMTL/3r+iyH5tVFx1MDAwZd9cXOBwaPpAu90+0Gxfd1hcdTAwMTRqrCTaKJZrK69cdTAwMTb932+ouJZIxaSZV31751x1MDAwMm6skUbDmfnNg1x1MDAxMvntzt27XHUwMDFizdmk2Pj17kZxupNX5Wian2zcs8ePi+msrMdIou3vWX003WnP3G+ayezX+/dcdTAwMGbz6UHRTKp8p8iOy9lRXs2ao1FZZzv14f2yKVx1MDAwZWf/tN8v88PiXHUwMDFmk/pw1Eyz7iabxahs6un5vYqqOCzGzVxmuf9cdTAwMWJ/3737rf3uS1dV5WRWtKe3hE48Lrh/9GU9bkWlRCvOiVx1MDAxMGZxRjl7hHdrilx1MDAxMZJ3UeKio9hDXHUwMDFi0ydcdTAwMGZcdTAwMWVswatZXVx1MDAxZn39+NeHz+xNVYrutrtlVW03Z1Ur1KzGsXS0WTOtXHUwMDBmivflqNm3YnnHl101rY/29sfFzFx1MDAwZVx1MDAxZVx1MDAxNkfrSb5TNmf2XHUwMDE4IYuj+Xiv5dFcdTAwMWQ5xV9cZmjGNFx1MDAxOKk1SEWU6m7dMlx1MDAxMJBcdTAwMTlQhlx1MDAxMSOVXHUwMDA2anzJXHUwMDFl1lx1MDAxNVx1MDAxYVx1MDAwMiX7XHUwMDA1XG77r5Ptc75zsIdcdTAwMDKOR4tzmmk+nk3yKZqrO+9kPmYmTKY5XGItOFNMcNrdar8o9/ab9lx1MDAxY5opXCJcZkhJOFx1MDAwM9ONeVa0Vlx1MDAwMYJXg1a0o1hcdTAwMTkmz0atf/zZ2WKKnvXMXjI+qqq+QsejuUJ/+FHnSXR+5Hs3SHv+455cdTAwMDd2dziajPJzV1x1MDAwMUVcclVcdTAwMDDMfi3oVTk+8G9f1TtcdTAwMDedd93p3Wvg1Hj5hVx1MDAxZa1hqUNcdTAwMGIuXHUwMDE4Z1x1MDAwMlb2Z1ntP9pcIo9cdTAwMWKuJ1xcsunDfPTu7fs192fGMnRlRbQh6NdcdTAwMDDS8WdOaMY1oJuhnylJXHUwMDA1uzF/Ru/MiKCSgVDacCmH7ky5zlxmV0xqTtFzqbjAndHR8Vv9XHLcuafpfNpsleNROd7zLynGoyWUKp81XHUwMDBm68PDskExXtfluPHPaPk+mE7rk/1cIlx1MDAxZuhcdTAwMDI5L6VNLLsug9hP99fdzsXaXHUwMDFmi7//vHfh2Utccm8/m1x1MDAwM5t37O70/1+G+90pusaPRNtSOuwz5lx1MDAxZlxcYF9cdJKG/erp82flx7fw8tXe3qw+26KjZ6/frjf2XHUwMDA1mFxmONdSKoNZRGkvlYlcZjCDXHUwMDE5jIJcZlx1MDAxONHSXHUwMDEz7PqgTzJCSDeGXHUwMDA13r3jc5BTXHUwMDAy0nCDMl1cdTAwMWTkXHUwMDBl4XbQfK3YcTXUXHUwMDFkXHUwMDE5giQlLpSHR1x1MDAxNVx1MDAwZff1XHUwMDE0lXQ0tY7TTI96I5hcdTAwMWY/19FccqBPXHUwMDFhTVx1MDAxMe9sdfRtnj3+fbxdfT01+mT74OnH5m31KF9v9CGoMiqIRZiQnINcdTAwMDM+Tlx1MDAxONpRKXRyJSiTN5d207BcdTAwMDfaXHUwMDE2RVpp8X/srTv2muK0ubCHo8twXHUwMDA3XHUwMDE0W1x1MDAxYYnRdWXcfXl6UFx1MDAxZj99/ztcdTAwMTNcdTAwMDV9/74o9p+Vj/bWXHUwMDFid1T3K16ihFx1MDAwN7xby3qUZahrXGZcdTAwMDBCMYrFjdZDXHUwMDE08kGJS7FGp4z2sXnrXGJUhnPE4GVcdTAwMTC4W4+b7fKrNVx1MDAwYpPO0Sf5YVmdOWZtPVx1MDAxONX4YMM59KAq98ZtzVXsulx1MDAxZd6UO3m1IDf1pKPu4C1y7Fx1MDAwMadDldTTcq9cdTAwMWPn1Vx1MDAxZsPb2a7x6Vx1MDAwZmPYeN2z9qxoe0pcdTAwMWNcYr1cdTAwMWNcdTAwMGWVf7CbSiHYl1PT3S2GQyycX3x6N/n8UW/NXHUwMDBlPj8+/rJ3OP5tvXEoKM00NTbJYY0vSVx1MDAxN3Tm12dMSVx1MDAxMIhcZqWxQL1BXHUwMDFjylxm3ZpYVFx1MDAxOSAgZFx1MDAxN1x1MDAxZlx1MDAwMzhcdTAwMDSsl5lijP/ETHjbONy6XVx1MDAxY25dL1x1MDAwZUO1KOVLp4EwRlx1MDAwMyVSd2qOgbE+mW2XT96Z7a3f3myW+embN1KWS8C4n+/s2zS/XHUwMDA0juBcdTAwMWS/wXKUhppBZnSmXGaiRFx1MDAxMIFOp0B4goWhdlx1MDAwMSR/wfY65+RcdTAwMDI4gsjsPMB5y09ML1xudlx1MDAxM0FcdTAwMTIy0TupXHUwMDEz9lx1MDAwNzpcdTAwMDGTN+LzZ6JzXerUTawz5pMnkoFUXd6xXHUwMDFmnnVzK5JqI6LsnCswXHUwMDAwmj47mXW3XHUwMDEyyoCJsutbXHUwMDFiQCmnolZZRyPcKFx1MDAxOWXnXGJgI3Sfnc56wmnF6NXYXUa6+SyXvUpcdTAwMTBFXd31iFx1MDAxYyS7mnQ8643VXGJcdTAwMTNnN1x1MDAxOE+an5msN08npXFcdTAwMWNcdTAwMDPtvJjiU0zhKVF+4IBcdTAwMWNB5VxmzydTqeNcdTAwMWP7OjGEcO1ydEdAOY9zXGZadJOqjDngW2HUfSfVhFx1MDAxOHc+lPlmjTKkTrjY5OmG8DiIS5gyPCjlhCihr6x37Ym4imc4UU047IxPjfOjWd9KpHs6d04mLFx1MDAwMyeDRTmGNVxig1x1MDAxYsZF9NBFPTBcZnw3xtHxTE2pi3/Mx/3oa6JcdTAwMDKC63XAU6/361xi10WQR+L4KMlEz6u8aCRcdTAwMTNdjjrnS+l6XHUwMDFjKC+6RaVjjkeB9MTTqf7BnGDItVx1MDAxZiqj+YAvq+PmXGZcdTAwMTLNKWjWU5dm1OWHJbqXPqNcZj1/ZVx1MDAxZb9U+YLZc5P66SpqUKfGXHUwMDA1Y1xi91x1MDAxOLqZIDpe6ShooD9IhYNcbj62o1x1MDAwZTWe91QwXHUwMDAwU5pcdTAwMWEvlVvrecGN0kS0qiBcdTAwMWEsu55tiY5cdTAwMWFjXHUwMDAwR4+fV0dHvU+HjUtcdTAwMTOdWYeHy6LgN+HxsUTvMGGsslRsmbC6WGqwXHUwMDA04oHV45dcYlUgXHUwMDEx+dxYJ+PyQSh3UebELsGjrVx1MDAwMoTrJcrch/YmWtBh5+eGT9/jklx1MDAxOdJgeLpcdTAwMDS/iIB+71x1MDAxMGXIvITm2YTHX5xgTpSQwjNcdTAwMDJPXHUwMDA0XHUwMDE5cDJgkFx1MDAwNivgYbfg7pBVNIpcdTAwMDNcdTAwMGZrnac2XHUwMDBl9lx1MDAwNb3QyyaphT5EqlxinoxUv47wR5yaplErfVfHn1dlKIOx5Fx1MDAxMvzCueJcdTAwMTJcZsPRM7mRUMFcdTAwMDGLOFBV2ElEMs5U2ElEcv7SQVikXHUwMDBiXHUwMDE4qW8uwTCqwrRYp32vurJcdTAwMDbDJZNILWCxw7o6h6DfJlx1MDAwN+Pwi3rpNjXhXGa4XHUwMDAysFwidSFPTsom2JWnh1x1MDAwZVx1MDAxM2yCbXpIq/NhMFx1MDAxNXXVXHUwMDA0XHUwMDE2U2G614Wtml4omXBtna5CXHUwMDBmWMnVuY6UgsmxKDh1k9yrQqxZdcNC/LFcdTAwMDWosFx1MDAxN0Nq91x1MDAwYiqcXHUwMDFlkudKQIbbfZLsJDKMM5KcXHUwMDFmglVcdTAwMTOY1NkrW3hcdTAwMDZcdTAwMDRcdTAwMDSdPFtcdTAwMWFcbu7WRVx1MDAxM1x1MDAwYu3I9J9K9lx1MDAxOVx1MDAxZVxmVJD8XGZcdTAwMDHbneB8bqpcdTAwMDLD3Vx1MDAxOKI6NZAyb1x1MDAwMtx/7lx1MDAxMmVAwyZcdTAwMTDJcYBcdTAwMDZh65p8JZtCeFx1MDAxMpwll/6DxyBcdTAwMWXD5ImY8Kx68rSkXHSWnZBcdTAwMWNJw/Ns4E1ix1x1MDAxZse7OOfGXHUwMDFkr0llp4K9p0mtQFWoXHUwMDEy0Nc6XHUwMDFmrlKHKoPhSSVid/BwypVOplx1MDAwMkNcdTAwMDTtKlPzrVxihc6h7DF23Fx1MDAwZp3uo47kzodcdTAwMDdRy1Pn/lx1MDAwNpHdXHUwMDE1j1x1MDAwZp71Rlx1MDAxOVx1MDAwNq2RXFzRspA1WCrIqFdKKa819rVcdTAwMTedLKaRliX1PVx1MDAxNVx1MDAxYXkwXHUwMDE2b1x1MDAxYsP2XHUwMDA0r5JgK8x7XHUwMDA2a7G4QOFnm8l4grCGvDlJiD8uXHT2XHUwMDEzqUE8XHUwMDE02aKq8oO24+xcdTAwMGVcdTAwMTC5kHFfXG6+IzCwSpRd8N24ZEdcdTAwMGa+UJHMzYs5bouU/Fx1MDAxYaBcdTAwMTdhqdswuGVcZidRXHUwMDBmW/ZK41x1MDAxZO+qyy2h8d6u7K+hWdyqJ1x1MDAwMcFcdTAwMDAoXHTDXHUwMDFlSlx0XHUwMDA2VFx1MDAxM+HQmGrXQisttVx1MDAxNJTx1YmcXHUwMDEwLfBbK47O1n9dL0ZcdTAwMTTEMESqVlx1MDAwMPbtW+lcdTAwMTJcdTAwMTkqW1x1MDAwYiawTFx1MDAwMW1cXGnRSogybbcqkForhyZcdTAwMTn6gsb4oJUhwjg0jPyGXHUwMDEzbvNcdOHK4SnQS1xmSqk0KM2JI4zAc6VBlvYtJVxyXHUwMDBlSVx1MDAwMV5EpZGSXHUwMDE4blx1MDAxY1GEVlQxI1x1MDAwNONYJjLdp0lChH0pXHUwMDE5JZL2JX2XhqNcdTAwMDdMQnhcdTAwMDKRffjGaFx1MDAxNMdg0MpIMMIxk8B4iUqT9lx1MDAxYUOZOzzEoUBxXHUwMDE0x1x1MDAwMVx1MDAxOP2/RTNcXGKcoZgyXGKGVk9n1rlA2dcw0a1cXLtcdTAwMWK0OVqcS4WlXHUwMDE4MavTQve7bZqUnFx1MDAxMUbwezg+LVx1MDAxMZZgXHUwMDE3Y1xi6mIz7LvrRMNcdTAwMDNoXGZKlWF4lkuTOCrQXGJcXNtcdTAwMWKo1a/DSGhcdTAwMDNcdTAwMGJ6xVx1MDAwNddhP4hcdTAwMDFEXG4+vO4maFiXXHUwMDEzir7Nh7FcdTAwMDDQooxpYFIqajw5bfDgXHUwMDFh4zHRTKxMMlx1MDAxOJC1Ylx1MDAwMlxm0q+HXHUwMDA2dsGRslx1MDAwYjRcdTAwMTCbxqdhrSHsorFcdTAwMGJoXHUwMDEylWGTNLM7xaxM0nZnXHUwMDE5idFf91ZE3VxmibaaXHUwMDE0KIXCaMBcXFx1MDAxYSZRXHUwMDE0UNtcdTAwMWWcgFxcnWYsUDGZKIS0l0+YYMxcdTAwMTisX7CYXHUwMDA1N+ZIhulLSdS+XHUwMDEwNqG6NCNcdTAwMTg6XHUwMDBiZnVDXHUwMDEx6yvTOKDbYV1ll6T09iaJ01x1MDAxOLdlXHUwMDFmVp5AlJujwjSBta9E0KFWmIdcdTAwMDOuuFxy8EJcdTAwMTBUnYeDS9NcZsNwyVxmZku7ns+hoSEwt3PAYopwz7ZoXHUwMDAwjvbByIK2oFx1MDAxZY1cdI0xXHUwMDE385FR/MpcdTAwMTSJRkXgXHUwMDBiVDfWIP6dNDpcYlx1MDAwNlx1MDAwNaysPH7SroZGqW3cMPonyVx1MDAxZVx1MDAxOFx1MDAxNbOYl5QrLFx1MDAwYuGG5Vx1MDAwYuhcdTAwMDJcdTAwMDGDLs9ccrE+6eEwRFuueYQhZlqK0KbDkd2Sdn8+JaiFNfC//1Jcbn40hn2Mnba7WZ1cdTAwMTbUOPYtWPtR6Xry/K/wRlxyud1m6aJVqf2dXHUwMDE4/K1cdTAwMWFcdTAwMTBQXGZ7l94mOLFlqZ+2P0jyYPvtye6HXFzyXHUwMDE31fOnZTm73LLUW9wlhZtcZltcdTAwMDPArlx1MDAwNFx1MDAxM1xi61x1MDAxMsh8j1wikzHKXHUwMDA0JVx1MDAxYesw2ltDfolF4stXpLpvLHRcdTAwMGKBXHUwMDE361GHXHUwMDBmqjpBzlx1MDAxN6Ryu77czkktXGJrtTFZ1+xcXGFjsp5g800m24FsnNaf/vXhlD18xF6UY/N8/+tX8vbTRoeSjd1658hKuYlIMmCMXCJYkGP33luVbVx1MDAxNZZPWlUvWcPZXHL+1vZE85F7vct2IfTsLP09XHUwMDFm51x1MDAxOYFcdTAwMDBnojP0oHWlXHUwMDEwtmyPXHUwMDBiSfyDi1x1MDAwMKbailGw1dfVh/1oTVx1MDAwM5h9XHUwMDFiSGFccsSF4tiJYIvgRjBCMkMol5pajVDQnmTXXHUwMDEzwlx1MDAwMMOonVtk81lJtuJeM1x1MDAwNFt+XHUwMDBlvah7Q6voXHUwMDE37vat55Ur5S3HXHLP8bigfL9cdTAwMTfie/bk1YtpXHUwMDAxenLw5ux1w8svXHUwMDFm/3hzsFx1MDAxYd9cdTAwMWaYWFx1MDAxYVTPd+bo0tFN78wxPqonf9XH+e1u0DG863Xs07G0XHUwMDFjosujiSRKXHUwMDAy+unqwSRs/TVccibYettcdHaOIOb2SbO7d1VbXHJcdTAwMTFcboJcdTAwMTAgXHUwMDFj640r7Vx1MDAxYbc8lkinXHUwMDFl0uKC/XKoWPZiz2KHXHUwMDBlZZTBSrpX4q5XRST6Tv1cdTAwMTMrXCK0JsWsITTTdp+kXlx1MDAwN91VRMxcdTAwMTip222nlX3u8jetiOxcdTAwMGJ7pPtgT+DUMNJ/7zjKb6kj28/QhZfVRHfmd9jIJ5PtXHUwMDA2XWlheXTpcjRcdTAwMGbmndo2jsviZOtcdTAwMDLE7bZcdTAwMWabZ1rT2SDUPqT89v3O9/9cdTAwMDCWnpdlIn0= ABnuopjova eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daU9cdTAwMWLJ1v6eX1x1MDAxMXG/XnpqObVd6dVcdTAwMTXZIVx0XHUwMDAzgYEkV6PIgIFcdTAwMDZvY5t1NP/9fY4hdFc37Vx1MDAwNdvBSPREXGZ0uatrOc85z1Ob/37x8uVS/6pTX/rPy6X65X6tkVx1MDAxZXRrXHUwMDE3S//m++f1bi9tt5CkXHUwMDA2f/faZ939wSeP+/1O7z+//dasdU/r/U6jtl9PztPeWa3R659cdTAwMWSk7WS/3fwt7debvf/yz/Vas/5/nXbzoN9Nspcs11x1MDAwZtJ+u3vzrnqj3qy3+j3k/j/8/fLl34Of+dI1XHUwMDFhaadXXHUwMDFmfHyQkFx1MDAxNY+sLN5db7dcdTAwMDZFldZa4SxJdfeJtPdcdTAwMDZv69dcdTAwMGaQfIhcdTAwMTLXs1x1MDAxNL61tHW6uvbxpP6WLt/s766vna6F7pez7LWHaaOx1b9qXGZcbtVroy5ZWq/fbZ/Wd9OD/jFcdTAwMTercL/qqW777Oi4Ve9x5bOKtDu1/bR/xfeEuLtba1x1MDAxZFxy8sjuXFziL618QqSCXHUwMDE0ylgyTpm75EFcdTAwMDZGJ15cdTAwMGJplVx0JlxiaXyhZK/bXHJ0XHUwMDA0SvYvWef/srLt1fZPj1DA1sHdZ/rdWqvXqXXRXdnnLm7rrE1IPOFccoa004ZU1lxix/X06Lg/+IxKnDBcdTAwMDF9I0jLkNW5V1x1MDAxZvSK9IKMNJKyWnJcdTAwMTk6q1x1MDAwN1x1MDAwM/v4M+uLLixrlVx1MDAxZmmdNVx1MDAxYflcdTAwMDZtXHUwMDFk3DboTzvKLEnd3vknqyR//m3OXHUwMDAyszecdVx1MDAwZWo3plwinVxuyklpYE9Z+zXS1mnx9Y32/mlmXS9y7ypcdTAwMTn1YVx1MDAxNzX+XHS4glVLX2nUIXjnLSk/tlGvXHUwMDFjvT981z9zK1x1MDAxZjthk+pH12n9YqPCqI9r+8dn3frjm7WRKlx1MDAxMeSC1EZIMkJFVq21gFx1MDAxOVx1MDAwNdLWemc0kZ7Gqv+lSddIlC1aJEJcYlm24sL9W9NVsGtNwYlcdTAwMTmYbpQwV1x1MDAxYr273WmneSfMV/bby6x7XHUwMDA2f9z9/ue/7/901ELZney5XHUwMDE3heeXXHUwMDFhtV7/dbvZTPuo0Fx1MDAwNlx1MDAxN6ZY8F7aPGugulx1MDAxYl00XHUwMDEyW2mpXG63XHRxLXIl/1nuP4dcIlx1MDAxM412b6yRVFx0S1x1MDAxM6y2Uk1cdTAwMTBqTtrXV7WLL1x1MDAxZlx1MDAwZn+s0eXK6fu9te9i5ymg0jhSMLUggtJxrNHKJVx1MDAwNs6bZDDCRsmzRKUklVgtjfOBnLZeZ+C/Q2jwyU1cIikpjFxuuSa6jTPKXHUwMDExQqelLGWx4kx4XGKGe/1at/8qbVx1MDAxZKSto+Ij9dZBRcpcdTAwMTjI43xXut32xXG9VmpcdTAwMGLkXFyZNlOvUt3zfJX6vOxsXHUwMDFlXHUwMDA2e2urYK+cM1x1MDAwMlx1MDAwNDMzolGwX+18aX/947xz+OHq65vuqdyon4gqhrk4sLfDYI/2SSh4MFDtpFx1MDAwM1x1MDAwNZ1cdTAwMGbsKSQhu3yOXCLdoV5anWTWQcqUYK+ER2+xMHiG/ZOB/XJl1/NV7vRZ4d5XSkttnbBcdTAwMWG9Njbue8339e2NXHUwMDFme/Rt9+322sa7Kzo82V583FNiXaCgiLxXXCJ789Ut2rx1WsMtQ/FZo1xuXHUwMDA1m1xy7lx1MDAwMyVcdTAwMDN/fuP4vbon2ivjXHUwMDEyn/P9eTlwXHUwMDFi7lxyWWGcyMmmZ9wvOu4re56vcp/PXG72Ulx1MDAxNO/eiW+pjEK401x1MDAxOSFcdTAwMTiF+9O9rVx1MDAwZttfalvpTv+Pi9X259323qfVhcf9cPGtQmKN9cJI4Y13xXLNXGL2NskxPSNcXFx1MDAxOfZaJnfWgY9cdTAwMDHfJdg7p4RTUmc1eIb9wsO+quf5Wi53+oxw703x5lx1MDAxZOydJlx1MDAxZdyh8cfcTt9/+VxcO363s/zu9V+vSJ2tnciwvvCw91xi90aIXHUwMDAwKlx1MDAxZoLLMlx1MDAxOaBehsRcdTAwMDWNZnDOm6BkoVizQb1LIDN4XHUwMDE02zsrpZV0z1x1MDAxOLKSPOBtXHUwMDAz/nmSVtgy7KUzXsrFXHUwMDFkRH6GffnT1V3PV7nTZ1x1MDAwNHulKtU9aWXAXHUwMDFiVWZFo2Cvwtdms/W9/W3j8zqt6cPmq68qLDzsg06cXHUwMDE2pFx1MDAwMlwipVxmoTCoRzLxwlx1MDAxOWlcdMC3YU7hXqnEXHUwMDA2XHUwMDEwdCEsSJZcdTAwMTSU9Uo2qJc4r01cYlBcdTAwMWNWeSFLI/AuXHUwMDE4pbVSz7B/OrCv7ni+lkt9PiPYa1e8eVx1MDAxN+1FQMBcdTAwMDfBXHUwMDE4n+Sv/XhXP9zeae9cXF6v7vr0497Rdlj8XHUwMDE5Nlx1MDAwYmBcdTAwMWLQK41oqXKD6Py4XCKXSOOhmSFcdTAwMDG8U3aqaeNK1Fx1MDAxYplAuFx1MDAxOY1IbW0gMvegXHUwMDFlWkRcdTAwMGJcdTAwMDGXXHUwMDFmhGb/c8+8m/BCWzioZ9g/XHUwMDE52Ff3PF/LpU6fXHUwMDEx7G2ltidrKPDo8PhcdTAwMWP/h2x8/979ff3Lpr+2Yf/INPfeLDrqXHUwMDAxk0QrXHUwMDA0epBcdTAwMWJcdTAwMTF0yNzgINhbkzhcdTAwMGLTXHLOsyv2tlCw2cBeu4Q8eFx1MDAxNdo8kNSUXHUwMDAxJEM9+J6CxnPBK6ZcdTAwMWW2NKSnpICXknpRYe+zhn+G/c+rsuf5Wi53+oxgT9XaXlx0z+tIJsD918tL8eZ9f89sNNbq73e+XjbNO7vouDfS8ZCeJognr1xcXGZ7pX1irbHaSeFcdTAwMWNQNVx1MDAxZtSbhFx1MDAxYlx1MDAxYSqCXHUwMDA3bME77kF9SCx63lx1MDAxYjBBklLlXHUwMDA2Wm9Rb0BZ3OKO4z+D/p5PV3Y8X+Uun1x1MDAxNeZV8WaGeWeIZ1xmxmf4m63zv3p7wlx1MDAxY5jTzbW19KS+ff7mYPExr1x1MDAxM6+MXHUwMDA36o3RVsRcdTAwMDN6yih0i0BcdTAwMTT1Xso8omZcbnqdgL1BQVx1MDAwNKdM0PeM4oOQkFx1MDAxMCAkRntcbrq8UkdcdTAwMDZLcFuzWFb3XGb5X1x1MDAwNfmKbuer2OGzwjtcdTAwMTVv3lH7oFx1MDAwNSHMj1x1MDAxZuI3enoz3a/1vvjfRWM5NdvfXHUwMDBm9+TCw937xMCtKenRvJ5cbrN2XHUwMDA2jlx1MDAxNmYrg1ZBSjlcdTAwMWa4XHUwMDE3vLm9h9lriY/44I30UrtcdTAwMDCBV0K8gMPyXCK/vOJcdTAwMTnxi4745cqu56vc6TNCva5cXKNj8ZaB1Fx1MDAxOFx1MDAxYvX960+v3vcvTHpwWDtKz77vLDdcdTAwMGVfLTzqg0GQt4GsJIdfXG6C3slEaO+C0+BWzpr5jN7DpaNvXHUwMDAztDhaPNjcVGo2a+fh9Vx1MDAxZEyDrEdZrSzDXlpcdTAwMTRSmJDRsmfYLz7sq7qer3KnT1xi+379sj9ZsFdcdTAwMDLFMFqPXHUwMDBm+8vVk8/H6+5o98LuuE/dj6fhcPfrosOeXHUwMDEw7Fx1MDAxMetZr1x1MDAxYiWkzsL5gNtD7YN8XHUwMDE54YJcdTAwMTVOWDNcdTAwMWZFLyHswDWkXGLeauWlulx1MDAwN/e5oZdbnGuIQJ9cdTAwMWZw+eW7ZDxcdTAwMWHO2lx1MDAwN1xyy1x1MDAxZrZb/a30+mZcdTAwMTFodPddrZk2rqJcdTAwMGVcdTAwMWRYL1x1MDAxYbC7XHUwMDE03VpppEetQVCrXHUwMDFmxtbdXHUwMDA36WzcJffbnSx1XHUwMDFmr6ghXGJ2y03S7qZHaavW2C6/jsPmhzulleQ6aK/Wq1x1MDAwZoIqd8iDMGgqXHUwMDA31ZRcdTAwMTCaJ9HGXy/z7iT9ttXqr6zrzidxsi77q239btExaFhBe21cdTAwMTRcdTAwMDAotHMxXHUwMDA2dXCJXHUwMDBlYD2EXHUwMDFmpOx8tqg9XGaCXHUwMDEwXHUwMDAxpKWmR1x1MDAwN2FuNu9cdTAwMTmEfGviQFhcdEJPWmlcIjH+IJfcOGl8qG/4jd5pOJbntfr6VrO16CAk41x1MDAxMlBGYy1Zq3TIvPogXHUwMDEwXHUwMDA2m1xia5lcdTAwMDFcdTAwMDdFUMdzXHUwMDAxobKJ5PE1kFx1MDAxY+OEXHUwMDFlXHUwMDE3hF5DLFmw8kdcdTAwMDahV3lTnStcYn//tSD8/deAsHoxiVx1MDAwNlx1MDAxOYUsm4CN7oJcdTAwMWW93d3ZWT/8KLqXp62z7T+WPyw6XGKNMYmUsCemo1x1MDAxNHJL6m6ed1x0WVx1MDAxZFx1MDAxNOhocC7o+WxcdTAwMTRROoHEXHUwMDEwQJ/TikfB7tkhVkah8o5cdTAwMTe0Puam7Vx1MDAxYlx1MDAxMOq8qc5cdTAwMTWEK79cdTAwMTaEK79cYoSVklx1MDAxMG1cdTAwMGJcdTAwMTRaPf46zk+vzo4ur1x1MDAxYXu1N/rgi/z+/XvfpFx1MDAwYj/dY1x1MDAxNbigMIFcdTAwMGbQkPnR7kEgtCaxwkOFQ1x1MDAwZVqXW5M0U1xiXCJcdTAwMTY7K1x1MDAwNFx0hTbnSDhWIJTSoXfELNZtTodBylvqXFwx+PnXYvDzL8Jg9bklks+EgUpcdTAwMTlcdTAwMWKD5ytcdTAwMWJHK9e1dHm9dt356/jic/r+euF3SkPQJJr3rDiShCuWhFx1MDAwNHx4oz1IXHUwMDFmeVx1MDAxOcJ8JCGzUVx1MDAwN0mqeKJHSGPHXHUwMDAyoVx1MDAwMXfV0Fx1MDAwYjNYTfVUMPjq12Lw1Wwx+NDzg0RcdTAwMDBcdTAwMTJp/FjYkFx1MDAxZtXmWef7Vrr65XrndVPq487mouNcdTAwMTByMPFaO8FcdTAwMTNcdTAwMWbGXHUwMDE0XHUwMDBmxeLzXGaUXHUwMDA0L/c8XHUwMDFiKvxcIlx1MDAxY1x1MDAxZiSlNdKrx1x1MDAxY5K5meZ40JDM8+lBY+Gy+rA6XHUwMDE5XGaBvYnxXHUwMDAz5Lfa2WV6cn16ULs8XFzd7J2/7n5ZTVx1MDAxN1x1MDAxZJjW2IQoSFBQ4j358XQlKUqsVlx1MDAxYXpSXHUwMDFi3u4xJ1xcesRcdTAwMWFcdTAwMGaLl05cdTAwMTCUwX1HiSCGXCKCw0FcdTAwMDBcdTAwMTLWXHUwMDA3nyPMP4dvPFx0YYx7XHUwMDA27MtlkaA43rK7XHJCXG5S8XL+ODnA906fo/GGV7OQ81x1MDAwMrQlf9pPlVPJP1x1MDAwMZWkolxmy1x1MDAxZD4yw4omelx1MDAxY9+UWDSSUSRcdTAwMDFcdTAwMWVcdTAwMWZslGKCM6S18V4oXHUwMDE3TD5NXHUwMDA13tPreJO8XHUwMDA1Lc2drDJcdTAwMDNvN2RcdTAwMDWml1x1MDAxMlx1MDAxY9iOT0NWf7yh9PWP5fTjxvXuq/a5+Wq2XHUwMDFii+/tQqJcdTAwMWRf5Fx0dlx1MDAxN1x1MDAxZqBCSidwgYFcdTAwMTc+XHUwMDA06+Y0LDaOt1x1MDAxYvKZn1srXHI8t5rFsUnT+bpcdTAwMDdcclXP2tdccnMksd9cIvzPTJ3jpK5uubo/55RhMfWJ+U5nvOVdkEKDfOR2XHUwMDE0XHK8J/kgjDSed0hcdTAwMGLnojSlnLWkjSSrdf5cXCpOI2dcdTAwMDRcdTAwMGZ7XGZkeN4jT+9Zq4+oXHUwMDAxKbFcdTAwMWFGNP60377u7rrVr1x1MDAxYu+P93o7XHUwMDFmOm/2Tzc7buE9q4VcdTAwMTVTUEpqL+BcdTAwMTbiXHUwMDE5XHUwMDA3sIVcdTAwMDQxTyHoKctrjOezj208XCLpjIO081x1MDAwNNFcclZR3tJcdTAwMTKkXHUwMDExcG2POPDyRFxca0zReE/AlH6r3DdPzG9cdTAwMTnrIZSC0sE4n9u3NUhTfDiT4+O4pVx1MDAxNC7XknP1P1pcdTAwMDQrwTLH9z/bzbPzXHUwMDBmy6K3u9m68m/fdu3h8caPhfc/xidcdTAwMTRcdTAwMDIsXHUwMDE1tMi5wpGYrGO1XHUwMDBlxKmIXHUwMDAwXs7L/+TgooQ394z0ZsW+O/lWeY+o9fhcdTAwMDNNj+9whovMMVx1MDAxZa9q//FcdTAwMWVfMGfCe8VcdTAwMDJkXG5cdTAwMDWvlTRxXHUwMDFhXHUwMDE5PnCLd9HwhrFZOlx1MDAxM1U9KOaI16iJXHR27uzub23v9d3V5tZK2HWvr/fNXHUwMDA1LT6Z4c25wVx1MDAwNlxyf21cdTAwMDH2WCaCPiZcdTAwMWWynvjIPcdnXczFmfjEOFx1MDAwNFx1MDAxM2lcdTAwMDIhWmi6Z1xyk00sn8XgguBjwrwt7dVDIJUqmFmcu/X0XVx1MDAwYjlLgre88iSDlPFwU5SsXHUwMDFjf3XHRO7iIVx1MDAxOSzLXHUwMDA0Slx1MDAwNkKFvzTBKZ+bnrwpcVx1MDAwMGfgXHUwMDE5OM0nvFk3klxyLWtEOVx1MDAwMs1cYkYrI3hPfz5DlWg+NFZJXHUwMDAx4kU2SDcyQ5MoXHUwMDEyvIBcYjVcdTAwMWJsJsrnp1x1MDAxM1x1MDAxZTWyTvOOXHUwMDAyOIbR5bOJXGZcdTAwMWGMhDzxOKmI6lx1MDAxYr1LydFcItglkHkogFZcdTAwMWWx3UTbmEtvmio3k4CWckRcdTAwMDK3kNCf49Q0XHUwMDA3TallmKqms223oblRkjNjeMAxhkuG1vVcdTAwMDH5OdbxRrNcXOfVYCSnqq1PWErAXHUwMDExglx1MDAxOPBcdTAwMTGq+jFyeyRcblx1MDAwMWu13novwYesomhcdTAwMWNcdTAwMDVxgc+OtNJb1EeYQqKClVx1MDAwZmqiXHUwMDA1SLNcdTAwMTn7SS14XHUwMDFijGX1pviIuvHT+LSxwYm+eKeKXHUwMDA2zGGsN1tlQT1yS9RcdTAwMDdJ+FtIY3jfvFx1MDAwMsWP0ox1JPhrXHSgU+Fdo0pokEuPZ1x1MDAwNa/NIOVnlXjjXGZZ4Vx1MDAxOT5cdTAwMDY5X8epmZmuXHUwMDFjwNeQNZqHxMYmZlx1MDAxN8c/WnJjXe40/rq8cOLs2+FcdTAwMWanl4tPzEJcImAoTvH6VWlcdTAwMGKHpFx1MDAwNZXAbGGdPFxmKPJfXHUwMDAzMdMtXHUwMDFlMiGtITBgq3xIY7jv4Fx1MDAxNMHbQIJcdTAwMWZcdTAwMDRwQtgtre+xPC1kcs73sajZg9a5zpaaVVx1MDAxM6lcdTAwMDFRXHUwMDFi6ZRHcruJiVT0iCWlaNpcdTAwMWP5KKWAsKYsvJLzkorzp1x1MDAxM+dcdTAwMTjTOVx1MDAxNVx1MDAxZuowemxvOFeMiuuBt5H5UcInxYLIXHUwMDA2J7TJ7a/iK35cdTAwMTmfNzVcdTAwMWT1LCVOm92k/G5odlx1MDAxMedh2jNddirxrPeF0VCdXHUwMDBlKmG67Fx1MDAxZaJUSlxyXHUwMDE0XHUwMDE57+TGMpQyLj9AqETsnV1boYA5oVx1MDAwNfJr9MhcZivl9yD1XHUwMDAxTkrymikyXHUwMDBlvVx1MDAxMXhcIsrGXVxcwPLo7CqjXHUwMDEwX/HIXHUwMDAwidFcdTAwMTYo2Vx1MDAwMzlcdTAwMWQ0o1db4yNcdTAwMWZaor0j81x1MDAwYknOn7FjyGdcdTAwMTcxfKvd6OqO0FOTwjeWrt5cdFx1MDAxYnurXFyqXG529LxGXHSi0+F3aHaxMYNmPLVZXHUwMDEymHeAdnA8XHUwMDFj77XUcVx1MDAxYWxcdTAwMTl2oZyHWVx1MDAxOF1I5C2UXHUwMDEyxDpwso9cdTAwMTMtVFx1MDAwMp9cdTAwMGaOTmMtXHUwMDEw61x1MDAxOchcXIhcdTAwMTbleH5YykK2nr2G401cdTAwMTJKwFZjXHUwMDA1paV1QpJUSohcdTAwMTA/x81vXHUwMDA08cFKXuRcdTAwMDebuTRcdTAwMTJcIoZcdTAwMTdcdTAwMWOAjqKmsUhcdTAwMTCOjc5cbiSCXcRvxPvQu1x1MDAxNlxitJbPZ4nVXHUwMDA1XHUwMDFl1cChR8tcdTAwMTTqXHUwMDBm+lx1MDAwZs+rjVx1MDAwMU6slj5WZZ5cdTAwMGIoXHUwMDExfvlAXHUwMDBmXHUwMDE167lcdTAwMTGJaFijYIaeiWysvWClvF2R+Dg5XHUwMDFmp/HJMmgxNFx1MDAwZpRdKNTCXHUwMDFhdC5azSnvfdRumuCduSBcblx1MDAxZZIo1nN8LjJZgfJKPoQ6rmFcdTAwMTBwXFywKoRcdTAwMGI4PFFIRFGIt2OjsCrOXHUwMDE1XHUwMDE1l6g/woZBszqa6cScqtyJSNKrwCfcjq3YfONy9TM13+w1j1V60lnvtvqdi4VXbFx1MDAwNqHDel5cdTAwMDNhXHUwMDAy73CPXHUwMDE0XHUwMDFiiDX3OPFSW9jQnFx1MDAwZbqsZKb5o+xz0Yr/XHUwMDE15Zp0nmAkszjn8qnLtdFya3J+XHUwMDE5yVx1MDAxZoZ4UW9NObjO38btJ6tlXrJcdTAwMTCvLZ5SXHUwMDFmXHLP71x1MDAwMVx1MDAwMmmo/pt8bH54XHUwMDE3TJzfcCOZvLrDXHUwMDE1+azzm5iyjcpuUkEzvPlcdTAwMWU0ojFz0Fx1MDAwZVx1MDAxZtJcdTAwMTjjqKqhz09Oc0dkOLkqXHUwMDFmXHUwMDBliUhyalx1MDAwYuo4ZYYlyTllp4ZEXHUwMDE4ydt/JVx1MDAxZsghxUhcdTAwMTkzPLuJRduDs3tRyPaXzZZAXHUwMDAxXHUwMDFi/n5NPkPIxtMlkNlcdTAwMTBcdTAwMWTkeTmGi6mn5DlcdTAwMTKSXHUwMDBl1oBcdTAwMTDt43lcdTAwMDYoXHUwMDExz43PXCLCXHUwMDFiXHUwMDExU0/Dp3w7XHUwMDFlvDfko8X+SNM2sNZVxoC1xGqGXGKQ4O845zDiycZcdTAwMGY6njSDXHUwMDFl5i9oiVVcdHi1907zl4GjySleWKtBL4RXmle/80GN8Vx1MDAxNFxmxFxuXG7E30VGYOaxYlx1MDAxOVx1MDAxY1x1MDAxM2jA8y1voo0zlSjjYFVcdTAwMWZ//VfcpJB6XHUwMDE21URz4mWiMI9cdTAwMDKFXHUwMDEwXHUwMDE4xVxibORcXFxcXHUwMDBikDnJX0aHtoUqi7WFV0BlMITmK8pcdTAwMTVcdTAwMTdYc4JHXHTIq4LsMCFcdTAwMDCOcvBVV4FcbuLRIaJcZuSqXHUwMDFlLO2rXHUwMDE0XGIvbm12qdbpbPVhjUs/Tz5cdTAwMDRbTFx1MDAwZm43xGZ2u3Se1i9e3cNkXHUwMDBmXHUwMDA319KLW9HB3H5guH//8+Kf/1x1MDAwN3ogXHUwMDA24SJ9 rrOAMB

OMAB, tada

AM=BM

  1. Brėžiame atkarpas OA ir OB
  2. OA=OB=r
  3. AOB - lygiašonis aukštinė OM ya bendra
  4. AM=BM

Uždaviniai su laikrodžio rodyklėmis

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2d6XLbOFx1MDAxMoD/5ylSnr8jXHUwMDBlXHUwMDFhaKCBqdra8pH4lu2xXHUwMDEz27O1lWIkSqJ1WpLPqXmnfYZ9sm3QXHUwMDA3qYOxbEuKvGVOJVx1MDAxM1x1MDAxM1x1MDAxNFxioftDd1x1MDAwM1xy+K9cdTAwMGZcdTAwMWY/LvVvOtHS71x1MDAxZpei61LYiMvd8GrpV3//Mur24naLi2Tyc6990S0lT9b6/U7v999+a4bdetTvNMJSXHUwMDE0XFzGvYuw0etflON2UGo3f4v7UbP3T/93MWxG/+i0m+V+N0hfUojKcb/dvXtX1IiaUavf49r/xT9//PhX8ne2dY1G3OlFyeNJQdo87XD4brHdSppcbtJcdTAwMDEoXHUwMDEyYFx1MDAxZp+Ie2v8tn5U5uJcbrc4Skv8raXt3e3r6jmVi1sna5E5XW9U168zr63EjcZh/6aRNKrX5u+SlvX63XY9Oo7L/Vx1MDAxYZfi0P28T3XbXHUwMDE31Vor6vkvXHUwMDBmj3fbnbBcdTAwMTT3b/w9IVx1MDAxZe+GrWpSR3rnmn9Sglx1MDAwMmOkc2hcdTAwMTU4RDCPxUlcdTAwMDVcYlx1MDAwMTmllLDoNFx0O9Sw1XaD5cBccvtcdTAwMDVcIv9f2rTvYale5fa1yo/P9Lthq9dcdLssrfS5q/uvrLRcdTAwMGIsgrZcdTAwMWFcdTAwMTUpjTLtg1pcdTAwMTRXa/3kXHUwMDE5XHUwMDE5kNBcdTAwMGWMXHUwMDExyM1Nv3IvSoRcdTAwMDIgJICzmH5cdTAwMGLfhs5mOVGPf6ei6LJibfqPtC5cdTAwMWGNbH+2yvf9+aBGqVwiyfs7f6df0j//KaOA6Vx1MDAxYi465fBOU4Ckk1x1MDAwNEBaoHssb8St+vDrXHUwMDFi7VI9Va5cdTAwMGaZd43oNH98rEJzXHUwMDA35Cm0MoIsXG49uT7fXHUwMDFjV/baW1J+O6ifXHUwMDFmX5xey8viYXmx9Vx1MDAxOS1cdTAwMDZSo0bUXHUwMDAwVlx1MDAwYjWozlxuXHUwMDAzbaRiNSOvJ3J2+lxmgVx1MDAwNeusQ8HKzFptdFRcdTAwMDA5Tqd1IInISetbjKCGlVx1MDAxYaXmTzv5/6DTme5cdTAwMGW7/ZW4VY5b1eGPRK1yTkkj7PVX281m3Odm7LfjVn/4iaTe5W63fVWLwpG+4Jpzyzq+utSK+Cv918dUzZJcdTAwMWZcdTAwMWX//e9fxz79Y+n7a1TuaZ1cdTAwMWay/3/uXGKgnFx1MDAxZL77aNIsXHUwMDBiXHK5RakqPTVcdTAwMDRsXZ9Fn6pX5/Wmqn82W7dyrVx1MDAxZKrFXHUwMDFlXHUwMDAylHBsJdhWWaGFlZRC5z+vwPpcdTAwMDGCbZq1zmRcbqdv0FxmN1x1MDAwM1xysCNhlLGORuFPXHUwMDFi/mDAtHPKocK0Xe+wLzrs+ZJcdTAwMWX6+Ku4zng7Q1iTZ1prSFx1MDAxMXuK6tNQqvrRV7F6vnlcXK9utOt1OFldcKpcdTAwMWRcdTAwMDVcdTAwMTKsXHUwMDAx57+roiFHXHUwMDE1jVxyXHUwMDFjm3dlwSXe7OxcZjvJXHUwMDAwjGOrTOBY6jptSGrUhVxm0LJIhGLvWVxukz5zXHUwMDBmOo/5XHUwMDBlwbn0S75zvuic50veX4VRoU+JfJtcdTAwMWajXG5WeUKRMVx1MDAxN0+hr5bDg1x1MDAxMuxcdTAwMTbLXHUwMDE3t7Vvf8SyeNna/r7g6EtcZtj9ZdeemGySpFx1MDAwN9FcdTAwMTeKPSlHPO5cdTAwMDKiUWqoYVM06VJcdTAwMDTaR6gowCplaFxm+kBcIpCGhGBrwI6WocxIdIe+XHUwMDE0llx1MDAwNzM28u/sv1x1MDAxZPbzRe+vwqjUp8Q+SDF891x1MDAwMX4nmHyrnmP2XHUwMDBit2FcdLvVncvtNTJ4ut6w+3uLzj5cdTAwMDVkXHUwMDA1SGC/yqJcdTAwMTGDZl8qxWMu84SkSDlAPdSyKcJcdTAwMGZcdTAwMThwqCZJSEXajTP7bFx1MDAxY1x1MDAwMmIvxKEjjkBYUUb8e1x1MDAwYopISftcdTAwMWXMvyH28yTvr1GZT418PXw3jeNcdTAwMTXyXHUwMDFmKyY3+/pyzdzKdmtvt3dV/769vtI8Pt9YbPQ1u1vEumktgFJaXGbG8Ugm0FKBYjeMXHUwMDE0ZEzx9Fx1MDAxZH7D7odGS1JwaEFcdTAwMTmqU4dcdTAwMWaAW8Pl7Fx1MDAxOVorXHUwMDFkjDj8PH6BtSQyw/U7+YtOfiFf9knxqNinXHUwMDA1P+X6/JJ9XGZcdTAwMDRcdTAwMWVyJrf7K3r7j6NOMdzdb5X010/nm99wo73Y8KOFwDg26SSY8WH4XHUwMDE1yMBcdTAwMWJ7Y42y7PPPLtpcdTAwMTdcdTAwMWPxsYBcdTAwMDVcIkrrnFx1MDAxZbcsdVx1MDAxZlx1MDAxNypcdTAwMWWqXHUwMDE0j1Wg05m+XHUwMDA3l99cdTAwMWEgXHUwMDBlUN7Zfzvs50veX4VRoU9cdH2TS77jIFx1MDAxOFx1MDAxNI8zXHUwMDEzg4/Lbv/M7quN6snxUVx1MDAxZM5P3ef65YKDTy5cdTAwMTBSWjKWXHUwMDFjq2Zay1x1MDAxZPg6YLU1POhyV2g3u1hf+zVcdTAwMDTJUYXlMEtm1lSGsX+YXHUwMDBlXCJcdTAwMWPBXHUwMDFltDHGz1x1MDAwNL1j/2awz5O7v1xuo1win1x1MDAxMvSYu2rP5l47Ym4mp76z8bVy3Lto1UvLKyttXHUwMDE3X3/WpYtcdTAwMDWn3srASlwiyVx1MDAwMT5fNLhsr4T2k1x1MDAwMJo11ynU2s7O2TdcdTAwMDFYXHUwMDFlfHio5ZiO2PVLg7BMmG9cdTAwMDNlUJPRin16M5KGwpGZXHUwMDEw7Ou/Y/9msM+Xu79cbiNcIp9cdTAwMTL3QLnTe8BurVd4O/li/eby5ult2VbUl+NiXHUwMDFjtfdqt9Hu4YKDz+ZcdTAwMWWdRas4iHJCpLp5Z+7ZXHUwMDE5cKyzgGg1uFn6+UiaXHUwMDA3XHUwMDFm4JY4XHUwMDBlL8yYVFx1MDAxZFx1MDAxZlxmXCI31oLQaIRcdTAwMWGZ2ed4hO1cdTAwMDK9e/lvh/t8ufurMFwi8mlxL/LX9NjaSzD4jDW9k739z8url1x1MDAxNX3U+NKHrdOe/GRcblx1MDAwYs49XHUwMDFifKV9sqbjgZdwKL6XKrBaacP2XlwiMzU7g8/xhFx1MDAwMvY42E9XaCSMm9a3rFx1MDAwNIpcZlxiXHUwMDFlrlx1MDAxZFx1MDAwNyfD3CNcdTAwMWFcdTAwMDdSZTIr38FfdPBz5e6vwojIp8R9/rRcdTAwMWVYn7HqpJzc3DtcdTAwMTlcdTAwMWVdNIs7m+bkaPPPW7oura/QomOvXHUwMDAyJZRSUoJcdTAwMTZGYPrqh/CeXHUwMDAzf6kterOPcobLeSbwUieF0vhcdJ4x2XnksziNltxcdTAwMTgyxolcdTAwMTE/n8NEXHUwMDFlp7NuyTv3i859rtz9VVx1MDAxOFx1MDAxMfmUuNdu+OYj96R9K1x1MDAxY02elr+3snO4haXa+lx1MDAwZfaLWyf7XHUwMDE1hN2bRedcdTAwMWVcdTAwMDNSwjNvhLfoQ9hTYEhcdTAwMThcdTAwMGVcdTAwMDL82IBuuGHTw1x1MDAxZSFQRCx959O0LI5x830moWGZgPYskVx1MDAxYnHz0W9RQfu+hv+GsM+Vu79cbiNcIp9cdTAwMTL2XHUwMDAwueE9x1x1MDAxY4r93mfsLou3Xe/oJNqNv51v7Vx1MDAxY1W+XHUwMDE42rSbXHUwMDBijr1cdTAwMTPejUKJyFx1MDAwNp3D+9TK3nHPbr7RVilcdTAwMWV0gZSenZuvtFx1MDAxZmFcdTAwMWVytDWOWcYz/IhSSZohx1x1MDAxZTKbSnQ/rcdccuRg0Lxz/3a4z5W7v1xuI1wifyb3lS5rxsOu16QkXHUwMDFi4ucm7Fx1MDAxYuk3OKrJXHUwMDE38PdcdTAwMGZO1qw+7Ej60vxycHpcdTAwMTPvtFbhJejD0P1Zoq9cdTAwMDLJg61cdTAwMDHlXHUwMDE38LOzYkniniRcdTAwMGVcdTAwMDT8plx1MDAwNSvY30ec3Uqe9K5cdTAwMDeP7I7Ys+PXmTHsu8BZXCK/49dI59Nzh9knUD5cdTAwMDFsXHUwMDFh2TtcdTAwMDNcdTAwMDXzgXy6U2ZcdTAwMDNPZ+fP2HHT8smPj3zitfU5XHJcdTAwMTIk801+y53A19XHXHUwMDAxKvc2cpRqyfDAYYbqXHUwMDFiftuTnkeQNsAnXHUwMDExQrY6XGI4XGaxXHUwMDFj+3Pwb7V0Qj1VnVx1MDAwYoQy2meTOS1IXHUwMDBmxi/Sz5olW5DYyVx1MDAxMdpcbnqqOsAg01x1MDAwMLbDXHUwMDAzXHROI21/sjpcdTAwMDaJ/I5HqaTmLnJcdTAwMDPVUVx1MDAwMIr9XHUwMDAwKbnMx85PVpeP7l1XXGZBO7PqPlxmVTuJ/YubXHUwMDE3XHLmd7/L1F90o1Em71x1MDAwYlx1MDAwNrHMwMWqK9BKllxy64W13GV68kIvLJFcYk+xXHUwMDBlq4EyZD9YSC+KgeNccpIyXHUwMDAzmnWfw2NvXHLtYJ2Ox3FNxIpvrMh60FwiYL+ZlDVcXKPweakwUMZdzp3NXHUwMDFhIVx1MDAxOSlcdTAwMWEq8pyxXHUwMDAxcHawaFwi89uPrvtjTS/+IHuO/XtcdTAwMGJSTG58P9mzYqWx31v/VFxy1z9HWFK75bzNcqVuu9cr1MJ+qTZNXHUwMDEznEapzzPBMlx1MDAwMCRcdTAwMGVXXHKPU9Lg0NlcdTAwMGWGXHUwMDAyXHUwMDE2ivFcbqRZXHUwMDE1Xlx1MDAxNXT/XHUwMDEyuahcdTAwMTRVxiyoY8BAXHSQmlilJKT269H4jnraPEhcYlx1MDAwZVx1MDAwN6axkvZSa8tcbiuyqVbPsLaVdqt/XHUwMDE4396duTBw93PYjFx1MDAxYjdcdTAwMDNKkOiw35cl/vufpYG7y4246rV5qZv0U1aj+3EpbDyW99udtLTEr1x0OVx1MDAxY+2OdkubK4pbYeNo7Ct9XGa78bjkXHUwMDExZKZev4e9KIlw/cLMi4DM59FIb6eknVx1MDAxY8dVXHUwMDFk3lx1MDAxZdqjo9XN/sXNmqvV42P5otmvOfrCxlx1MDAwNlo7jeBNKejB7Fx1MDAxNmtcdTAwMDJ/UoBi55JcdTAwMWNcdTAwMGZNs5v84mCIXHUwMDA3WyHYcnCXZzdcdTAwMTj8gEVA5YxzZlx1MDAxYdNdr4NRZXV1pjCCzEGxXHUwMDExVWZBYvZ9s+SQcreUSOG0dVLoyVeduzu719+KvWa01dnZ6q9FTXl9+3WxQfRbSoA9XfZBgZ1cdTAwMDQ5OFxyXHIgXHUwMDAyP0fAsapMLNbsYlLHjrVmqEggXGLQ47JNxpDIrovhXHUwMDA2TuMkmNeRiFltnS2Jc1x1MDAwNnE+XHUwMDFj/iD9w+93XHUwMDEwkIk6n+SwsHddPmlcdTAwMTeO9s7kXHUwMDE5XFyVTqrnbut0sTk0XHUwMDA22Pfn6EM4jitxMOlcdTAwMGJcdTAwMWNcdTAwMDTOIFtKXHUwMDBlJPyW29ktXHUwMDAySz//J0WyXCJcdTAwMDDENm5Mmvcoh9JcdTAwMTjH4a2dwlx1MDAxOS1vXHUwMDA1wznbwzmZQ1C5yzPaoD9N4Fx1MDAxOeawuIUr8EUu2/j24Ovht5KsXHUwMDFmbNRcdTAwMTdcdTAwMWNDK1x1MDAwMj+TxbpvOOyHwXNcdTAwMTWk01x1MDAwMWRWZcVMp2g1XHUwMDA3iYJDVEfSTGpcdTAwMGaRXGK0VFNIv3hcdTAwMWSHOquts41cdTAwMTLny6GaXHUwMDEzhyY/PUJJUMainHydtLTWK1x1MDAxN1x1MDAxYlx1MDAwNSzZqz++ULVUaVx1MDAxZFfcgoOobYCKXHUwMDAx5CGHrDODICpcdTAwMDZRcGxIXHUwMDFjP1x1MDAxYVx1MDAwNbNLgpaK3+O3LmhE9pAtTVx1MDAxNCBapZywlFnq/klcdTAwMTiarLLOXHUwMDE0Q5wvhjgnXGZdrjlkXHUwMDA2ldaWMH3iKVxmz0S7dF2prlx1MDAxZIRb0XlcdTAwMTO3vsta9OdiY6jJXHUwMDA25Njw+zXLXHUwMDExv9TnLnLoSJBMgVx1MDAwM82QQ1x1MDAxOUi0QnCcatk/tePOXHJcdTAwMWRjXHUwMDBlwVx1MDAxZj6Fkn66PZxcdTAwMWaIer4g6vmAKDNcdTAwMWQwPE9cdTAwMDPgs5KdndxcdTAwMWVcdTAwMWXFvZauXHUwMDFkfjuPLoqnq1ZtNq7PX3SE51x1MDAxYydMiXuU9Vx1MDAxZZxfy9RcdTAwMTmN9p/Xgu1cdTAwMTRcYm2c1VKwmZpd2tDLLKJcdTAwMTTo12FhXHUwMDFhmUKvI5Gy+jpTXHUwMDEyzXxJNHNcItHkkuhP+vLHabvJXHUwMDEz9qFaKnzaP4t7rrW8XFwsRTUsuqPFJlGRz3hAK5H/WFx1MDAwNYMzpskpXHUwMDFkwkqngFAqgtmFiOBcdTAwMDJcdTAwMWVcdTAwMGL82SeERjg1XHUwMDE5iVx1MDAxYzk41HZcdTAwMWFH7b1cdTAwMGXEXHUwMDE3pe28XGJEmi+INCdcdTAwMTAzRz2M/KKGJJtBPiNE3Nspl7Rcbk+PVVx1MDAwZpY7Z9WD+tHZi07Dmlx1MDAxZojcXHUwMDAxXHUwMDAxXHUwMDBmN1JIZVGNptJyjKj9XHUwMDE2NKGYXHUwMDEwUHaGk6ZcdTAwMTToXHUwMDE32ETFZpud5p89aZo5RnnWJNr5kmjnQ6KS+SbR5yQ55L6emMRtvIi+V7ql9e8nfVqPvn0+3j570UnUcyTRn/WpUWk/a8o67Vx1MDAwNkmUjlx1MDAwMkHKZ18540CbXHUwMDE5TptC4CT6M0eVQDMhiOBcdTAwMWNHXHUwMDBmPIz8bJvo5pdcXOPmS6KbXHUwMDEziTY3w5z9VulRnHy65msxtifX9cpcdTAwMDHWWpv2Kq5cdTAwMTRvb8JcdTAwMDVcdTAwMDfRykBcdTAwMTNcIvlcdEgwQ76pXHUwMDE0XHUwMDE0gPW/fkNrr+1ihptLkG0vm0R+pVx1MDAwNqdV2pBcdTAwMWZcdTAwMDaJYK1UPzWl/I7DOebViDkv54v5kIgqf1+39r+ris3B5N4p9+vGwdr+yeHJiSlv7H1cdTAwMDZ9W2stNorKmMAol+TLS0tDmz1cdTAwMDAoIONcdTAwMTOMXGbz4X8nzsxQ5DDRb6N3XG45LGXjPFmOm/aeKU3lRPbXoTi/lUSYd2bNS1NrPtzn3S+Fnc5hn/ts6WH7XHUwMDFjXHUwMDBiKS7ff/H03UuXcXS1MiZDuZJcXEtcdTAwMWbu8fZcdTAwMWMlyfd//f3h7/9cdTAwMDFcblx1MDAwZUrrIn0= 30°121234567891011

Minučių rodyklė:

Per 60min - 360°
Per 1min - 6°

vmin=6laispniaimin

Valandų rodyklė:

Per 60min - 360°
Per 1min - 12°

vval=0.5laipsniaimin

Per 80min minučių rodyklė nueina 6°80=480°

Trikampiai

Ploto formulės

Lygiakraščio trikampio ploto formulė:

S=a234

Lygiašonio trikampio ploto formulė:

S=ab2

Aukštinės ir kraštinės formulė:

S=ah2