Skip to content

Funkcijos

Tiesinis reiškinys (tiesinė funkcija)

f(x)=kx

f(x)=3x4

f(3)=334=5
f(4)=3(4)4=16

Grafikas

Tiesinio reiškinio grafikas yra tiesė. Nubrėžti tiesei pakanka 2 taškų (galimi ir 3)

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1dbVNcIjvT/r6/Ymvvr4c5SSedTk7VU0/5iugqivj61F1cdTAwMTZcdTAwMDJcIsqbgFxunjr//emwu8wwgKDry3Bcbk6dVSdhJpPkuro76e78/eXr12/dfqv87a+v38q9YqFWLbVcdTAwMGKP3/7w11x1MDAxZsrtTrXZ4FwiXHUwMDE4/N1p3reLg5rX3W6r89eff9ZcdTAwMGLt23K3VStcdTAwMTTLwUO1c1+odbr3pWozKDbrf1a75Xrnf/2/e4V6+X9azXqp21x1MDAwZcKHpMqlarfZ/vGscq1cXC83ulx1MDAxZL77//HfX7/+Pfg30rpCu9380bDB5bBxXHUwMDA08Yt7zcagnZKsIYtOi2GNamedXHUwMDFm1S2XuPiKm1tcdTAwMGVL/KVvpc4m2MzuxuO+abrdmzNxVqlcXIRPvarWaofdfm3Qok6TXyQs63TbzdvySbXUvf7VZZHr077Vbt5Xrlx1MDAxYuWOf3M5vNpsXHUwMDE1itVu319cdTAwMTNh41x1MDAwYo3K4Fx1MDAxZeGVnq9hMNDaSKPIXHUwMDEwkXbho/1ccpRcdTAwMTaBtFx1MDAwNq1cdTAwMTDOWYEu1rC1Zo1cdTAwMDeBXHUwMDFi9lx1MDAxZln2/4VNuyxcdTAwMTRvK9y+RmlYp9suNDqtQpuHKqz3+POVtaHhtetytXLdXHUwMDFkaWunPOh1aTVcdG1BmWGJf0grU1x1MDAxYVxm/n/Dvm7ztMn4rzTua7VohzVKPzvs1yRcdKdcdPy88k/4XHUwMDE2vv5GZHqFT7hvlVxuP6aCJHBKXHUwMDAxknRcdTAwMTB2UK3auI0/vtYs3k6YPZ1uod1drTZK1UYl/pVyo1x1MDAxNJZEmvxzzlx1MDAwZl7xW/H+qLhX37vZhmzvdrV4ncuV+vvDPvbd0Sze+/ZDXHUwMDAwWlx1MDAwYmWMdEJcdTAwMWEtMVKnUmj5l8FcdTAwMDBRaCRSRFx1MDAwMqWlsU6pXHUwMDE1Ot21Zr1e7fL77zerjW680YNcdTAwMTda8Zi7Llx1MDAxN8ZcdTAwMDaBXylaXHUwMDE2XHUwMDA3Z8vfMcSy/4S/fVxy58Tgj+Hv//1jYu3ItIrV/1x1MDAxMv358+Xm51xyqVxc/OqQOLiHXHUwMDA1gIjM0VnEkT1Nt8++l1ZVoZc7a4mrYvtR9ZNNXHUwMDFjyslR4lx1MDAxOOFccuRpXHUwMDE04VxyXHUwMDEza9bb0YZcZqQy1lierCC5NUKVU1KNM4lyXHUwMDE4KFx1MDAxMqCUdlJcdTAwMDNIXHUwMDFkp1x1MDAxNkSrXHUwMDEwpUwos6iw+9+DWUZvtkBcdTAwMDB/flx1MDAwMvhPanzsX8hcdTAwMDLc4eVJJKDldFx1MDAxMiCWUlx1MDAxYZWbn1x1MDAwNFx1MDAxZTuVLY07lVxufD/qU3n9bvshs5I0XHUwMDEykFx1MDAwMZIgZ1x1MDAxNFx1MDAxOHLaOlxmpfYvVlBcbo1cdTAwMDVhlZRcdTAwMTC+/UCbXHUwMDEwJlDSXHUwMDAw8TAoi1x1MDAxMG/o29GCXGKUUKBcdTAwMWM3VEinWaCFeFx1MDAxZnJcdTAwMDJAICWSXHUwMDExzkjtmMzGtFxyRHBWQkQpWnLC23DCSNmbXHUwMDEywjND7z9jg/5WXFygKX51yFx1MDAwNVY4XHUwMDAxqMT8llx1MDAwNJjVykMqf5mzl1x1MDAxYoel/M7a6sbx4Vx1MDAwMnKBROdcdTAwMWM5wWiXNlx1MDAxNMv+jmCBvy9ZdeDBXHUwMDAwIWNcck1cdTAwMWFcdTAwMTd4fU6wPSjsklx1MDAwYpZcXDCDXHUwMDBiSMavXHUwMDBluYCBYlxyyFx1MDAxN3CBPdxMibvy06PKPO6J4/rVUS7bWTQusC4wXHUwMDA2UWvW06zWo6tcZoCObVx0zeo38VTmbyecXHUwMDBilH9LNnuSaiqEg7akgmGFT6JcdTAwMDI31URwQvtnqVx1MDAxMFx1MDAwYrOY4KFUh3x67Wm1ci9WXHUwMDFi4thlt/ZgXHUwMDAxmYCvWsOjYNnkXHUwMDBl8TdgXHUwMDAyhYFxXFwgXHUwMDE1sbVGkUXBZFKBRUVas42wpIIlXHUwMDE1PE9cdTAwMDVcYtMtXHUwMDA0ZKRcdTAwMTjNavDcXFyg1kmXsyc7Yuuo2Fx1MDAxNlsnO7msay1cdTAwMWFcdTAwMTc4XHUwMDExMMytXHUwMDA1rdEoXHUwMDFkM1x1MDAxMCRcdTAwMGaE4H4h1rxcdTAwMWRoo2ItTVx1MDAxYVx1MDAxN0jrNyZYv0mqibAkg1x0tT+JXGZcdTAwMTDjV8PlXHUwMDAytNayVFx05+AsMlg7o7Xc0d7xwW76XHUwMDE0XHUwMDBitn53XiqUXHUwMDE2kFxmXHUwMDEwXHUwMDFka1x1MDAwNWBcZkv/sH/6P7BcdTAwMTUwXHIoXHUwMDAzjlxiSClcdTAwMWJradLIXHUwMDAwlV85XHUwMDA0s+SCJVx1MDAxN8zgXHUwMDAyXHUwMDAzU51cdTAwMTBcdTAwMDCsXHUwMDAw9Vx1MDAxMir43s71elx1MDAwZlelk1x1MDAxM7e+RSvHR7f7zcT5IMyxcqiF5OvI6lx1MDAwMbCOPcpcdTAwMDXGXHUwMDA0IDVcdTAwMThNXHUwMDEynCZMupFcdTAwMDBs6aHWUVeSJVx1MDAxOSzJYDJcdTAwMTmgiF9cdTAwMWQqXHUwMDA2xlx1MDAxMTeJYH422DhJV+1Kau3EXHUwMDFjbmTXi92WqlxcmFx1MDAwNWRcdTAwMDNcdTAwMTakIKVyWvqFt1E20Fx1MDAxMGjuXHUwMDE5Vlx1MDAwZcCBv0vC2UBcboPOOFx1MDAxNVx1MDAxOcYlXHUwMDFiLNlgsplcdTAwMTBxnYmrXHUwMDA2XHUwMDAyhFx1MDAwMVxyNL+HwfVOL0N7j4fNtdqtvNrP9Vx1MDAwZlZcdTAwMGVcdTAwMTfPTIBcdTAwMDCEXHUwMDEypC1X0Vx1MDAxOFs00L5YI0q0iCq65JJQMiBcdTAwMDHWMKUnlVxmwqFeksGwwieRgZqqXHUwMDFhXHUwMDAw44FcdTAwMTBeQlx1MDAwNpc5snv2nHq1h4vV61Rhp3mzX1xcODJcdTAwMTBcdTAwMDFcdL+fqlx1MDAxNIGi0NhcdTAwMWVwgXE8XHUwMDEwlofBXCIowWI34WTgnDbSgl1ywZJcdTAwMGJmrlx1MDAxZtr41V9cXECapSObXHUwMDEx8+8lVDtPu2f5bP861UjvrVx1MDAxZN1Ub8pcdTAwMGb1XHUwMDA1pFx1MDAwMmRcdTAwMGJAXHUwMDExd7ejsHDAXHUwMDA02nuAKvS7XGLW8DgknFxilGRLz5jELlx1MDAxZS6JYELtT1wiXHUwMDAyO9VCMNayhmwgnEWziOC4sps66ZFduS40ro1p7FVvKztcdTAwMGJHXHUwMDA0MiBcIucjt1BcdTAwMDCNXHUwMDA2JmjwpdZcYqvRME2q5Fx1MDAxYlxipKxcdTAwMDYjlkrBklx1MDAwYmatXHUwMDFkRqJa4muHoCxcdTAwMWJcYsbMr1x1MDAxNVx1MDAxY1x1MDAxY2fXumffu/JCNrfOdzeq7X52e1x1MDAwMcnAXGK2i9g24lx1MDAwZSc5ulqgnFxyhNJSaMEmOGDinZBRSmmUSqq30ZJcdTAwMGIm1P4kLrBTfZBBSFx1MDAxMKCQ5vc8PKyu7Ne2n3JcdTAwMDct2sth+a5RxJvFU1xmwHtcdTAwMTk7XHUwMDAytlx1MDAxMyxAnFx1MDAwYlxiXHUwMDAza61cdTAwMTBohVx1MDAxNc4l3ttcYpx26Fx1MDAxZMeWZLAkg+fJgFwiO+hxL2RjXHUwMDE0q8nz21xi9dtcIq2enaydbayYjVWVdo/VyuJtKYqA+0RYi6xcXFx1MDAxYlx1MDAxZN52wFx1MDAwNIiBJHRCXG7kQtBJXzdkJlBs8Jikmlxi4eRbMsGwwmetXHUwMDFiTlx1MDAwZlmWXHUwMDE2vGf+/Fx1MDAxNkL7aeukdXO5k87cPaSv8jpb74rERSmqQGqJXHUwMDBlXGYqtI5cXETseyrQ0lx1MDAwNFx1MDAwMI64il8hNDEqXHUwMDAwXHUwMDFiSFx1MDAwMaRcdTAwMDWXXG5NSV8t8CHuqGRiXHKEJVx1MDAxM0yo/VlcdTAwMGKHU3VcdTAwMDKfTUFI+YLMR2xcdTAwMTHs5c9cdTAwMWY2XHUwMDFms1x1MDAxYpVt8fT98H5cdTAwMWJcdTAwMTNcdTAwMTeZNItcdJRcdTAwMGLIMVx1MDAxNSiep6RhdDNRXHUwMDAxXHUwMDA1XHUwMDAyULPpJEBaer+UJm+kXHUwMDEzSL/2K2xiXHUwMDFkXHUwMDBillQwofZnrVx1MDAxYk6PV0ZQrEXb+V1cdTAwMGUpVXuomfZm/iB3lNm6Wn8yu0/dRaNcdTAwMDKjXHUwMDAyw1x1MDAxZmf1wI6IJUVcdTAwMDNcdTAwMTP4uE3QXHUwMDBl5KhxkUwu0D7/hNGJjVdeUsGE2p9EXHUwMDA10/OagfGSz4n5l1xucv3TVL680mlcdTAwMTTsydnBwcN2v79RXTQqsCZwZHxuKe29i2NcdTAwMTmNWCuwbFMhgrGadaakL1x1MDAxNUjSWpCExFx1MDAwNiwvuWBC7U/iXHUwMDAyMz1gmfVcdTAwMDJcdTAwMGJcdTAwMTDNjDWLXGZu3fX3Tndvv3x5ky7ePKUza0f9xK1cdTAwMWLOIFx1MDAwM5Q8XHUwMDE0fs2QS1x0rFx1MDAxY/Ut8GRAaLXfZ1x1MDAxY6SATLqNIFxyKGFB4lIxWJLBrC1cdTAwMDQ11beAWDaSz+gxN1x1MDAxN5R211XvIXf8sL9iV9O3jyetizItXHUwMDFhXHUwMDE3KFx1MDAxNVxiqYy0ftcwXHUwMDFlleRcdTAwMTdcdTAwMGVcdTAwMDFZJ2CaUNxBkHSXQ35XYU1y05stqWBC7U+iXHUwMDAyMzVeWfmURqBfslxcXHUwMDAwXHUwMDA3Z82VXHUwMDAzvLrbz13os3Stvnp6tmhUgGwjWG1cdI2U/GOMXHRcdTAwMTDIZzp0mk2opCtcdTAwMDVsyTBxYWJ1gvCdlkQwrPBJXHUwMDA2gphcdTAwMWGEXHUwMDAwkjVLyVx1MDAxYfL8XHUwMDAxSWt320932q7v7TVTq3v17Z48wsTlP57BXHUwMDA0XHUwMDAwXHUwMDE4WFx1MDAxZpSphd9NtFx1MDAxMbH/g1x1MDAwYlxcgNZcdTAwMTgnSWhMflx1MDAxY4JcdTAwMDSQwihKbKjyklxmJtT+rJXDZ45SUYZN5qhcdTAwMGb7zGTomfZ31JnWhmy29jPr7dT9RTe3aGSgXeC9rlx1MDAxNVxiv6Go3WhKo4FiIJwyQMZcdTAwMTmbeIdDVnCU0sm1XHUwMDEwllxcMKH2Z61cdTAwMWNOjVQ2oKRP8jv/YkE697hhXHTyJ3Uskt5sycq5TFxc/uNZVEAqXHUwMDAwI1x1MDAwN4o1sWJcdTAwMTRXXHUwMDBiKHDeQkBjrYt+N5lMIFx1MDAwNTjrg82XasGSXG5mxiFMtVx1MDAxMaQgXHUwMDE0TFx1MDAwNy/IZ5TDY1GC/XzuhDBztLZxdZru3ixcdTAwMWFcdTAwMTc4M/BOJlxyfkdcdTAwMTFtXFwtYK2Bh0lcdTAwMTih0Hnfw4SzXHUwMDAxX7aaXHKeJVx1MDAxOSzJYNbKoZxcdTAwMWGsLH36XHUwMDBlx1x1MDAxNvP87lx1MDAwNSe3irL3d+ned/twK6/T/V5K7C5cdTAwMThcdTAwMTko6Vj0O5/YzO8oajFOXHUwMDA2oFx1MDAwN1x1MDAwYlxuVqJQLumuRkZcdTAwMWLl7YSkulx1MDAxNyzJYELtT1wig+lcdTAwMGXIfktcciS9IFx1MDAxNMHu6NWMOl9/OKucVUyqtZvuXFyuLlx1MDAxYVx1MDAxN2hcYlxmXHUwMDFiXHUwMDA3ZJy1XCLufuxcdTAwMDKWseRcdTAwMGZhlb5rkq5cdTAwMTWQXCIhXHUwMDEynFx1MDAwYn1JXHUwMDA0XHUwMDEzan9cdTAwMGVcdTAwMTHY6e7HxFDRL7JcdTAwMTB21vq3zevbrVwimf7arTVHuHt/vmhEYLyF4LRS5PdcdTAwMTPj7sdKXHUwMDA0QkpjLPqDpJJ/iqK1ZFx1MDAwMUxSz2yOZJpfUsGwQuLcj6Xl54hcdTAwMTfFJ95d9Tt1e2Bqd4/1yulVc7e9XtpcXDAukFZcdTAwMDY8XGLIRoAyXHUwMDBlYMKOolx1MDAxM9wz4JwkVEnPYMJcdTAwMTYgaVx1MDAxMJH14SVcdTAwMTcsuWDKJsL0XHUwMDAwRZYm0uFcdTAwMGJCXHUwMDExYDOdvunVoHidU+nyXHQ1d59cdTAwMWVPXHUwMDE2jFxuQGDg41xmhGDNQDFcdTAwMTWO7ydaXHUwMDA1Pm5cdTAwMTNcdTAwMTdhO9GQXHUwMDBmRkhsfOKSXHQm1P6slYKpXHUwMDA2gtVcdTAwMTaVi3qwz2JcdTAwMDKx5nJcdTAwMWRbvkhflqixLts5OLxetKRcdTAwMDVIXHUwMDE0WHBokYeCdYJ4fFwiXHUwMDA1aNCH+WiEKE0kk1x02NJhJpCJdTJaMsGE2p+0VCCm2lx1MDAwN6xcdTAwMDGTMPJcdTAwMDXHqUIvf715dJfGbnb3UFx1MDAxZZ1d5kV+0Vxcj42QXHUwMDAxK1x1MDAwNFZcdTAwMDPPVFaKJoQnKvT4QiNJJf1gZUt+gdNRUndcdTAwMGaWTDCh9vsyQbfc6060XHUwMDBlnolN5MY4KWl+68Bsp06qOdFPlfO3pZyrbl+mTlx1MDAxZZLGXHUwMDA04ZVcdTAwMWZ5iyBcdTAwMTDgI4usVsDdXHUwMDFiOy+RjVx1MDAwMeZcbvRextZcdTAwMTl6x4NQXFygyPmHgPZn1UVOZlxmgVx1MDAxZlFBfi5cbjpNXHUwMDA2UL3F/sBIwVx1MDAwYjCNXn+KaI4vwPRVs9E9rD79yKY5cnWzUK/W+iPDOpjCf/lxXHUwMDE5ubRSq1ZcdTAwMWFcdTAwMDNhV75cdTAwMWGd4t1qsVBcdTAwMWJcdTAwMTZ3m5FzfYv8iFx1MDAwMlx1MDAwYsf2eJc029VKtVGo5cdcdTAwMWbnxenWr8GQQWQ4Llx1MDAwYp3yQNj6labXXHUwMDAxcXrOYeWU9C5t8yvnxfuj4l5972ZcdTAwMWKyvdtVNtZzpf5+soFoQFx1MDAwNf5cdTAwMWSRXHUwMDA02+RcbmJGOWLgt8JcdTAwMTRZRT5777vBUPK4euJcdTAwMWJgkMJWPFx1MDAwN0LfaO3MW9jgz4NwSPqhWFx1MDAxZY55qbNcdDazu/G4b5pu9+ZMnFUq4YmVI3Ow4CXat2HJP78kyFxmiFNcdTAwMTRcYu9cbvHex0K89zFcdTAwMTCXYqqw9bFiwrhcdTAwMTdA/Oz7rqDMZrbSq9V2xFP+4t7mXHUwMDEy59k/XG5x5XRApFx1MDAxOemoXHJcdTAwMWJcdTAwMTlcIrZcdTAwMDavfFRcdTAwMGZcdTAwMWGDqIWkdzynXFzqXHUwMDAwpZe1PvCYpJ1cdTAwMTPmyOOjuf2fLms/XHUwMDBliNmPXHUwMDA1YvZtgXjV5pFrXHUwMDE3XHUwMDFlJ4FcdTAwMTGmXHUwMDFlXHUwMDFjXHUwMDBlXHUwMDEytGZcdTAwMTHwgsWwbbuZza/pi9N6Zidz+3hcdTAwMDb3J7nE5e2Lg1FcdTAwMDTakVx1MDAwNMaij7zHOFx1MDAxOC1bzKz+M0xAWfWefjJCiPBcdTAwMWSGXHUwMDAwjF1cdTAwMWaCUEmGLb3FXHUwMDE5wK9cdTAwMDXhXHUwMDBmI/ZVXG7vXHUwMDFim4zRXHUwMDFlXG6vhN9cdTAwMWJcdTAwMTPsc5jD1fp9jV93v82ddN/2XHUwMDEzp9u+j7zBz+s/+uhVclBN3ZBcInTM+0LNvzf9uL99JvLH+7mLbidXue6lz1Z0JdnI0yx+XHUwMDA0XG5cdMZcdTAwMGIgNixji01IXHUwMDAxTzDlXHUwMDA2XHT0tX0/MYiBZng7K7khmnFcdTAwMDVziUHUmt4mNe6iXGJB+bFCUH6MNvpMXHUwMDA2a+dcdTAwMDMqNKj53cUyuL19dXJWOHe7myXaymTKzULiXHUwMDBluYnBUFx1MDAwMVx1MDAxYpw+hk7x/zAmXHUwMDAw0Seq1Vx1MDAwZTRYbY20sYa9qTb6YovTn86nnHGfjkJcdTAwMWKdq++KQvhYXHUwMDE0wsegkKZHclx1MDAxMNOsXHUwMDE1Sr4gfXQ/b2+3b1x1MDAwZe+zrVRGNcxqSnb3XHUwMDEyjkJ0gUFFSqDzR0h9XHUwMDFhXGJVYFhcdTAwMTiSs2iVs3Muv1wiS2jJXG7LJyqjXHUwMDFmXHJD9bEwVFx1MDAxZlx1MDAwM0M9dWXGKcFzwtD8svDadlx1MDAwZc9vcpU1Olx1MDAxNZ1Ubyt7/7CVuFx1MDAxM6FjxiDqgIRjiVx1MDAwMopNq5gjhDZcdTAwMTSwiDRcdTAwMDDaXHUwMDEy4DvGTIBcZoRHIYtBbS3YSHrVZ1DoXHUwMDBm4tLk3iRI4vdg6KKT9V1hmDJcdTAwMWaLw+jz3lUrnZrxQCpjXGZKI16wXHJie0fu+vpqt7Gye9jprdRcdTAwMGZTXHUwMDA3XHTfXHUwMDA2UcQ2PFmQzDlsZ6lY+JJQgWOYkkJg21C/o3fi64xDtlxyXHUwMDFkM1xifrpe+nFI/Hdah8/opYInXHUwMDA062pyfom46zZ7LrNXK+xcdTAwMWasWlPGXHL32M8mXHUwMDFjh0ZcdTAwMDUsVFi3s0ZcdTAwMTlHNKqYgkK/WylcdTAwMWMzXHUwMDEyXHUwMDE5XHUwMDBi4lx1MDAxZDcrICBcdTAwMGZE8oeqmDn3Klx1MDAxOLaEIN/CXHUwMDAzaFFwqD9cdTAwMTaH+oPk4dRtXG7JXHUwMDE2k3Uy6rU6XHUwMDBih65U7dbPj/s3md3bzlVuXHUwMDE3Slx1MDAxYunEeerFcahcdTAwMDPlN1wiWC+U/lx1MDAxY5FcdTAwMTFcdTAwMTjyNZaWyPjjqVx1MDAwNta+n3fOq1DI+jL6mL3PNlx1MDAwZiNhQu+Nwlx1MDAwZlZL31grneYvK/XULVx1MDAwYlx0ypBcdTAwMTDRUyNnwjC70f5eLm9VLs7XmsXmUyGbz14nXHUwMDFjhlJcdTAwMDVcZj7jjHQweuCvNjZwVmk2XGaNQFxyz6XodiSL8Fx1MDAxYiA0JrAsjVlBllx1MDAwNlx1MDAxOPCTUOhUYFx1MDAxNDgkQsNccoo4XHUwMDE5XGa3XHUwMDEw0ShcdTAwMTbbiY2pf5XM/Je7x05cdTAwMWZ6/0mNj3p4wy/Rny9Gvpqad0tcdTAwMGLWXHUwMDBlXHUwMDExX+AmoE9cdTAwMGImk6ne1s+ztezexlXNbN9dJFx1MDAxY/ja+Uy8WvmEXHUwMDE5fjtyVFxyZlpwWiBcdGApw8rwdM94V1TmXHUwMDEyf8M9Vlx1MDAwN5acXHUwMDA27f3atYoo3CH0/Vx1MDAxOUP+JG/p/TdcdTAwMTCjzrrDjHus1NObeFx1MDAwZrxcdTAwMDf09atcdTAwMDT1v1x1MDAxY/pTR95/xsf8jYBvpyrexvlMbVx1MDAxNubfl6luba63m4Wr66t2Zb+p8/XLw34t6bi3gbBcbpX0h3QqjFx1MDAwYn2rXHUwMDAzNn3Rl1kxolx1MDAwZseBb0jLkns98C1cdTAwMDRagFx1MDAwM+2E9mn8QoqJXHUwMDAwn9hY98eUc4OcT687XHUwMDA2fId+xORcdTAwMTL4XHUwMDBiXHUwMDA0/Kkj7z+p8UF/IfKf81x1MDAwZXRTl6GdNqh87Pjc6D/duqzm77aOW/aolC7k6fTp8KGVbPT707wtaWOsMf60vli2XGaWoYEwWpBcdTAwMTKCf5fwfvuyXCJcdTAwMDDvJCWZ3lx1MDAwNVgt1Vx1MDAwNPiP1mFcdTAwMTExXHUwMDA2f54jrKWotziM47ecXHUwMDA2X1x1MDAwN/M3XHUwMDA1VWp6j1x1MDAwZb4/1pezbjjt8V9i33qd72GsJ6LOh8NHRVogeF6yWu7UYKPI21x1MDAwYlx1MDAxMCn8bVrAqctcdTAwMDB+L8b6g2nmplx1MDAwNXG/uZ5dqbT2ssc3XHUwMDFiXHUwMDA3XHUwMDE3mdZp/nvClVx1MDAwMqa+wFp/VK8xrFx1MDAxOEg1ekRcdTAwMGbL14D8XG6AP+7Cp+R/v41iXHUwMDE5aFx1MDAxNIRIXqazjUaTwmRcdTAwMDPvPIM+rFc6sjriJPFrt4qUj7d7i4xa/zJa8MT+x2gxd6Ri88m7invNXHUwMDBmfv+O1p/eorRcdTAwMDJhNVmadcORXHUwMDE3SsnAI5xvQIYnXCI3bSZRxb5habQ949NlwZiPXHIkw3quXHUwMDE02p83Y2CkXGatNY57WqKWLnJ61qDQKOGDblxmoTeQlZ638Lf5dLqRpXxcYjujY/7NjYPHXtpeYddcdTAwMWN0Nnv5+9N9OK4l3O1GK1xufDyUQceCOLa3wZDwnnFcdTAwMTKEP13UvespqDEkTuJSXHUwMDA13Fx1MDAxMse4XHUwMDA38ChcdTAwMWFbWvHv4fBNXHUwMDBlRP5cdTAwMTdwaZQsTcRYeIvvx4hVWoMzuW+cbX+Pi2fcT/oku06w+cCWhEP63fbFuHmu+z3bha+54XNqc2pcdTAwMWMgiyY9/Fx0SqyyWSDLXHUwMDAzYTBaqFx1MDAwNGlWsoxwXHUwMDBleUyjo8OFbIVrYY1Po8AjaEdkXHUwMDBiK1iCe0xcdTAwMWGfYlx0UY7cVlx1MDAwM/mcK1x1MDAwM+udv+5GyqQkpX2yXHUwMDEw40/DVCNt1Vx1MDAwM1d5/lx1MDAxNvFjI2G1YzLpy8+O/FZotVx1MDAwZbvcRcP1XHUwMDFipqdq6ef2ZtiZ31x1MDAxZarlx9Vx/vzP1eDjY6ZcdTAwMDdyzouTQW/+/c+Xf/5cdTAwMWa0XHUwMDE3KTIifQ== yxO123-6146

f(x)=kx
k - skaičius

f(x)=2x

x03
f(x)06

g(x)=4x

x01
4x04

h(x)=3x

x02
y06
  • Funkcijos f(x)=kx grafikas yr atiesė, einanti per koordinačių sistemos pradžią O(0;0)
  • Jei k>0
    • Tiesė kyla į viršų (funkcija yra didėjančioji)
    • Kuo k didesnis, tuo tiesė kyla staigiau
  • Jei k<0
    • Tiesė leidžiasi į apačią (funkcija yra mažėjančioji)
    • Kuo k mažesnis, tuo tiesė statesnė

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daXPiSLb93r+io+bLTMygye3mMlx1MDAxMVx1MDAxMy+MV2xcZsa7/WLCwW7MXHUwMDBlwlx1MDAwNk/0f383cdlcdTAwMTIyMktcdTAwMDFcdTAwMTb9REd0VUlcdTAwMDKllHnOXfPe//72++8/3FGn/ONfv/8oXHUwMDBmi/lGrdTLv/z4hz3+XFzu9WvtXHUwMDE2nmLjf/fbg15xfOWj63b6//rnP5v5Xr3sdlx1MDAxYfli2Xmu9Vx1MDAwN/lG31x1MDAxZJRqbafYbv6z5pab/f+x/8/km+V/d9rNkttzvJskyqWa2+693avcKDfLLbePv/6/+O/ff//v+P++0eV7vfbbwMaHvcFcdTAwMTlcdTAwMTI8mGm3xuOkTGumKJHeXHUwMDE1tf5cdTAwMWXeyi2X8HRcdTAwMDWHW/bO2EM/slx1MDAwZsVi7qJ4IF7TvYxo7mnZOz3z7lqpNVx1MDAxYVx1MDAxN+6oMVx1MDAxZVG/jVx1MDAwZuKd67u9dr18Uyu5j++vzHc87Fu99qD62Cr37ZPTj6PtTr5Yc0f2XHUwMDE48Vx1MDAwNp9vVce/4Vx1MDAxZFx1MDAxOdo7cXCMkFRyJZVSwni3tj/AXHUwMDA1caiWoFx0MUZcdTAwMTMwgYHttlx1MDAxYjhcdDiwv9Cy/c9cdTAwMWJaIV+sV3F8rdLHNW4v3+p38j2cKu+6l5+PLKT6OPZYrlVcdTAwMWbdibH2y+O3bphgSkvqjdLeo5Mqjef+P96r7uGqSdlvtFx1MDAwNo2G/321Sj/f1/tcdTAwMWHxVlx0+3nkXHUwMDBm7yHs9fu+1eXdYdAp5d9WXHUwMDAyVcxwzuz7XHUwMDEz3vtp1Fr14O1cdTAwMWLtYn3K4um7+Z6brLVKtVY1+JVyq+Sd8Vxy+eeSXHUwMDFmP+KPkapW3eu2XHUwMDFj5Y+Se/y5JO/6x6OPV2xfR7s4sONnXHUwMDBlXHUwMDEzgnApqSFUXG5cbr5rqvmOfVx1MDAxOHBcdTAwMDCIXHUwMDAwpbhSXHUwMDA0qFafXkoj33d3281mzcXnP2vXWm5w0ONcdTAwMDfasZB7LOc/TVx1MDAwMj6S/1xcXHUwMDEwm1x1MDAxZPuLXHUwMDFllO3H+9vv3pJcdTAwMTj/4+Pv//nH1Kt9qypw/W/+P38+3Py0QYVcdTAwMGXlXHIhNFx1MDAxN4wyMTdvnOfOr66k26T95P4wvycr8lbXo81cdTAwMWJIXHUwMDE5k7wxQVx1MDAxYoDLyEdcdTAwMWJybaxBXHUwMDFkyqWWXHUwMDFhXHUwMDE3K6M4XHUwMDFhwstcdMo/XHUwMDEzXHQ34HBFXHUwMDE458JQwVx1MDAxOPUm5yezUFx1MDAwNDFig0WVWsB7/+uglslcdTAwMWbbXCKEf71cdTAwMDLsJ/F58lx1MDAxN6RcdTAwMDF84eVpLCBYOFx1MDAwYoBhQKSR87PAfU3ustf0lcvy4rpwz7smK1x1MDAxZqPGXHUwMDAy1Fx1MDAwMUWUkZxJZYQ24Entd1rQXHUwMDFjpGZEc0qZh/yxNkGkw6lkXG6ngWtgwYGujlx1MDAxN4jDXHRn3OBAXHQ1XHUwMDAyJZo3XHUwMDBmXHUwMDFmpMCYQykoSYykwlxi4aOpN07Q+EWJk1x1MDAxOFPCqilh4txK+eCLmbefT3O+KipcdTAwMDBcdTAwMTk8+k5cdTAwMDWgtDEguHfBLCZgu91it36+d5au8oNW4bF/b0aR01x1MDAwN+ZgXHUwMDAyXHTGXHUwMDE4ZVxiYp1qTyrbX2Sa4fcpalx1MDAwZThcdTAwMTeM0MBAo8ZcdTAwMDSoL2vBXGL46DymgphcbqZTgVx1MDAwZfcpcC6FkbiW5uaCTvVC6/tGKVN+yHZ2e2K/cpLNblx1MDAxZFx1MDAxN1x1MDAxMIdKXHUwMDAwIVBL00JM+lx1MDAxOFx1MDAxOFx1MDAxOEfgKVx1MDAwMIWMgN+OOlx1MDAxNzA0erj0m4AxXHUwMDE3xFxcMJVcdTAwMGKAfOUnkCj4qJlfLzipvrT393d6ctCvnL6okuq28nLbuFx1MDAwMNFutNFcdTAwMTKnQYPmXHUwMDFlXHUwMDAyx1xcwMGRXHUwMDA2T1CEmDDK51x1MDAxNIwmXHUwMDE5oJ2Dz4joi7kg5oJcdTAwMTlcXMBDTVx1MDAwNIpgMWN/2dxcXHCYduG29lrvXGbquf307jBfOkzcb1x1MDAxYlx1MDAxN6CNwLjQmlx0tJ+4XGKYXGJcdTAwMTQnglxiLVHYXHUwMDEyw4TkgZFGjVx1MDAwYqjiWqOSo2MjISaDWWTgsySDZGBcdTAwMTRqw4ItYCR0iXvYc3lcdTAwMGX2Rbo8kKf1q9zuw1x1MDAxNpJcdTAwMDFcdTAwMDGDWlx1MDAwMZNWwf6ITY3JgGrtIFxycMmMUkxxrlx1MDAwMyONXHUwMDFjXHUwMDE5MI3MZVx1MDAxZKExXHUwMDE5xGTwNVx1MDAxOUhOg0ffyVx1MDAwMFx1MDAwNSNcYkrUXHUwMDAyzsN6uuzuXHUwMDFlVpvZ84YpN9Wpez7MbyFcdTAwMTdcdTAwMThC8Tgoy4QwqVx1MDAxOVApXHUwMDFkRlx1MDAwNZNCUWaEgqhbXHSUXHUwMDE4YkFHokpcdTAwMDbevMVk8HHBN5GBL8kmqFx1MDAxOWjKXGKiYYHUgtPBvnvfvD4onZU6hYeLfKnzeHy4hWygmGSUciMoLtfJqFwiXHUwMDEygSOkwZngzDD7K1x1MDAxMWdcdTAwMDNDXHUwMDAxTVx1MDAxZb/jJyaDmFxmpptcdF6K1mf/IbV+tEUyXGaqppbcreZ77cuj5qXS9L54L5+3jlxmmKNcYidKaLxEQMBpIIzNcVx1MDAwM3xvXHUwMDFhgFx1MDAwM4u8mSBcclx1MDAxMr5CQojJICaDWVx1MDAwZcRQzUCDQDzLXHUwMDA1zITG63mK7VZue5189uqQPFx1MDAwZp/VaFx1MDAxYlx1MDAxNVx1MDAwM0Y0alx1MDAwNpwrxpWHoTFcdTAwMTVIg/OgcVx1MDAxNlBj4oRIXGKMNGpcXFx1MDAwMJIyUP6ksphcbmIqXGJxXHUwMDFmquBRL/NQMlx1MDAwM9xcdTAwMWaSmsVcdTAwMDX5xNnBwfnV0+PJU/KIq0pP12vuXHUwMDE2coE1XHUwMDAwuML3bZR3ckxcdTAwMDXCZoBysFFcdTAwMDQtcVwiXCLOXHUwMDA0hqCGQ6mI3Vx1MDAwNTFcdTAwMTPMYlx1MDAwMlx1MDAxM2ohMFwiXHUwMDA1MKVcdTAwMTZwXHUwMDE3XGZcdTAwMWJnd5XXh1xcXo32qqVO97BF77YvqogmgFJcdTAwMDaMIECYmtyaIFx1MDAxOHWU0jZcdTAwMDdcdTAwMGIkUZJH3XeIjzfOi4q5IOaCWa5DxoNH37lAXHUwMDFhXG54N7qAgdBLmZ16966a2Ds6Oui4+d3zveZcdTAwMTZSXHUwMDAxJYwpYKhZS0UnnVx1MDAwNdxo1Fx1MDAxOVx1MDAwNCWCIEkyiHxcdTAwMTayXHUwMDAyQrRWsbMg5oKZXFzwxc5mQZjGXHUwMDE1v4C34OkocXZ7+VrJJmW3SSvkun5+WtlCMsBcdTAwMTdsXHUwMDE0XHUwMDAzzjRjQTJQ4GitXHRcdTAwMDFNNDEm6tlGXGZfXHUwMDAx5ajFRDX10Fx1MDAxYldMXHUwMDA2XHUwMDFmXHUwMDE3fFx1MDAwZlx1MDAxOSjJgkc/XHUwMDEyXGZcdTAwMDAkX6jKQeEps5Ns7uyI/XrK7SeyxZveLds6LqBcdTAwMGXSXHUwMDAwXG5TQFxiSeH97Jhcblx1MDAwMFx1MDAxY5S1hlBcdTAwMDJ4komoe1x1MDAwZSnlVsOhUY0oxlQw5erv8lx1MDAxY4bvSOBaapR+Zn7P4fFxhd1kWrq7U67tKa6vnt3b16hxXHUwMDAxd6iw+7ElcNBGXHUwMDE5n+BcdTAwMWZzgZZcdTAwMGWuVYWXWFx1MDAxZqFcZnBcdTAwMDHT1oRQguBZXCJU1N1cdTAwMDWUXHUwMDE4haPkPKpqgffyYy74uOC7fIehalx1MDAwMVx1MDAwNWqoMdpcdTAwMTeMmsVcdTAwMDX1c9Yt3tDzy+YzlblcXFLQYjZyNsJcZi5cdTAwMDBKXHUwMDFjm0SkOK7XiVDcXHUwMDFiXHUwMDE3KIcwXHUwMDEwlFx1MDAxMcKoVuura7JcIi7QgJw88eWYXHUwMDBiYi5cYvFcdTAwMWSG+1x1MDAwYlxiQylcYmKBXHJcdKbbOb4q7Lk3t5elzM6BOMkmK+1t41x1MDAwMi5cdTAwMWMqpTRoY1tbXCJQXHUwMDE5jUlHXHUwMDE4zpgwjE5cdTAwMWFcdTAwMTjRJFx1MDAwM2XNPE4j6zuMuWDK1d/EXHUwMDA14dXNlK2fRGCBOMLV2SFvnV7WzsXrhXswaOWGnVRi26hcdTAwMDCUI5S0XHUwMDA1poTNMFx1MDAwZZQ1QrVAXHUwMDAzXHUwMDE4XHUwMDAwJrUglEbeXcBcdTAwMTXTgvPIVjDwXHUwMDFlKuaCj1x1MDAwYr6JXHUwMDBiVOiuZaVcdTAwMDSlmsH87oJsoVJcdTAwMWRlVarUriafTuo33Z3+aLBtXFygiTN2XHUwMDFi4lmEXHUwMDExnUwvsFxcoEBcdTAwMGJcdTAwMWJsXHUwMDE0aCWwyNtcYoRcdCmFP1x1MDAxOFx1MDAxNHNBzFx1MDAwNdPDXGJcIjS/gNpVJNVcIr7DXFz6LCNcdTAwMTKF/Evi4SmXrlx1MDAwZkrpwWXkqiXPIFx1MDAwM0m4XHUwMDAzlEtUq7UmwZ1J1nfIXHUwMDAwdVx1MDAwMuRcdK6oZNHPO2SaUFx1MDAxMdmChzFcdTAwMTdMufqbuECF7lmmRFx1MDAxM4GgWCC/QOl789K6TGWTmcZBKv2aKF7qbfNcdTAwMTdIXHUwMDE0/UJcdTAwMGKtQFIqtFxmKlx1MDAwNtqxyZhUKSMkWWNN5FXpXHUwMDA1SFiUxjZCzFx1MDAwNbNtXHUwMDA0XHUwMDFhvlx1MDAxYoFcdTAwMTCNgm9cdTAwMTGHwWP2hlx1MDAxN0qXkCpcdTAwMTTbrVx1MDAwMS3tvsJL5HYjzOBcdTAwMDJmpMNtr1x1MDAwMkFsTFH7JP9cdTAwMWJcdTAwMTlcdTAwMThcdTAwMDe0lIYqXCIg+vtcdTAwMTGoXHUwMDAxaqQtv1x1MDAxMpNBTFx1MDAwNrOch6GKXHUwMDAxms1cdTAwMWG5gMxcdTAwMWZTvFx1MDAxYejnnc71Ve5epjuZPDnsXHUwMDE1d1x1MDAwYlvGXHUwMDA1nFx1MDAxYUejVsBcdTAwMTmxMUVhJitcdTAwMWKNXHUwMDE1XHUwMDAzYjiqXHUwMDBm0khcdTAwMWT5vENcboRJTXlka5nEXFww5epv4lx1MDAwMlx1MDAxObpj2Vb+ZkIu4C+4ujpcdTAwMWYlX1x1MDAwYjyjzpq5i+bLnaien29cdTAwMWJcdTAwMTdcYu4ou81XXHUwMDAyKNSMgmqBcow1XHUwMDExQGpt/N+NJlx1MDAxNeBcdTAwMTC10iqyW5NiJphy9XdtR1xiNVx1MDAxMVx1MDAwNFx1MDAwMEdILJCBfO4+9rO9Q1mAevbqJKW5Klx1MDAxZUSujsksJpDKIYogXHIyXHUwMDFiUlx1MDAwNFx1MDAxZNRcbozDcZZcYirdYGz+YcS5gFx1MDAxM8OMjmxcdTAwMTTBe7sxXHUwMDE1fFxc8E2eQ1x1MDAxNl7TiFx0W1x1MDAwYpguUFx1MDAwN/m4XUw/tHTtsir543lWnlx1MDAxZVx1MDAxZrYvto1cdTAwMGJcZnGEMra4mVxyKVxu8plcdTAwMGKYXHUwMDE4e1x1MDAxMzRq39xEPdWIXHUwMDFhbZNcdTAwMGJIVNNcdTAwMGVjMphy9TeRQXhcbjIjQlr3oW9cdM5cIoNM8qF9X6tcdTAwMTVqx4nkefP+sTe6hMjtWZ61XHUwMDFkgeJcdTAwMDVoXHUwMDFhKGm0JsFcdTAwMDRk46C6rWwrVsqo0lHXXG5cdTAwMTSXUvpVu5hcYmJcIphKXHUwMDA0Ojz/XHUwMDE4kWKI7cA1N1x1MDAwZvR1rfAwPLnbvVx1MDAxY5WqJbeXqCT2ty3nUHBrIFx1MDAxOMG5suHEYPoxJ1x1MDAwZaFUSlxyktlcdTAwMTJcdTAwMDdcdTAwMTEnXHUwMDAyS+SGU8NinSCmguXTj1GzRFxymfg3K8wsbrbfVjeqnTvppc5292hXXHUwMDFm9OrbXHUwMDE2QmBgS1x1MDAxY3NAI4BLw9iUcKIhOFx1MDAwM8xcdTAwMTiqgEe+jlx0XHUwMDFhMUJHNphcdTAwMThTwZSrvyv7ONQ8ULaHPSzSZr1cXCYjcZ/swzmnx8XGaTYrXHUwMDBmT7eNXHSUdGz8jVx1MDAxMFRcZjjK1M/BRM2ZLVx1MDAxZFxi21x1MDAxMEs0iDYtZWQ3KMZUMOXq7/JcdTAwMTSEXHUwMDFiXGLEgKawSEGj1MXNwcNTvkkrN+Xro1xcpi3zLHLlj2clXHUwMDFjXG7toOhcdTAwMDdccjhcdTAwMTeoXHUwMDE0XHUwMDA0NygqXHUwMDA3JFx1MDAxMIVcdTAwMTRcdMxPXHUwMDE0XHUwMDEx5YJxxUajdFSdXHUwMDA13ohjLvi44JucXHUwMDA1NNxCYIZcdTAwMTGEzVx1MDAwMm1cdTAwMTHOhzf5ink+6KaBpzP3rWN+n922xFx1MDAwMlSUcCpsk3LUiySnU3YocoSXTS2gike9xbKhOIdWx4mpIKaCNypwy0N3qlpcdTAwMTC6PVx1MDAxMZhUgDaxXHUwMDE3LZtZ5XBHXHUwMDE1X+qX3cu8e1QvXHUwMDE1nvs7yXTk3IbekbfiRcxuK6DSbuhl+HZcdTAwMDNtXHUwMDEz0Vx1MDAxZUCqXHUwMDAwm2SsXHKSxPpCh8bhytibMEFcdTAwMThcdTAwMTe+XHUwMDA2jVx1MDAxZe59Osi70JerapI4cWJcdTAwMDFEXHUwMDAz4Hsh3ntZXHUwMDAw0ZV2y72ovb6poFx1MDAxM0dcdTAwMGbyzVpjNDGr41x1MDAwNfwvOy1cdTAwMTOHdlx1MDAxYbVqayzrypXJXHUwMDA17taK+cbHabfd8c5cdTAwMTbxXHUwMDE2eZSNvc+vpN2rVWutfOPy8+2sND16n1x1MDAwYlv/zjfX/fJY1tqaMcvBMHRnoLK5btxcdTAwMWa0nlx1MDAwNcORqlbd67ZcdTAwMWPlj5J7/Lkk7/rHo2jDUFx1MDAxYeFQrSXY1kRogFx1MDAwN6xyXHUwMDAwR3E8pTRXQOn6/HPUNlQ2xoxcdTAwMTGovFF8XHUwMDA1Qc4lNXolXYu/xuBcdTAwMDfjezL5Y86zXHUwMDBmxWLuonggXtO9jGjuadk79TaDTizBvFx1MDAxNWc/Ps788S4+XCKD8OFmXHUwMDExPtxcZsL9tcODOrftOGJwyc2P8aNRrZDoNo7K5bvjbrZzOFx1MDAxMievqWhjXFxIcJhcdTAwMTKSoTjF9SRJwFx0z+2eXHUwMDFlkMh2gqBcXFuf741cblx1MDAwN2xtNkPsJkuq58O57Vx1MDAwNkG1JHJcdTAwMDVcdTAwMWL6fk3Wav96XStcdTAwMTKzm0VidrVIrPRw5nr5l2lo5KHtw7mhXG7Np1x1MDAwNYp1qX5cdTAwMWG68r7dTGZ2k9nkbvn04aVcdTAwMWF1LFx1MDAxMsdcdTAwMTh8ToSi3XlcdTAwMGZBLGo0l1xyXHUwMDFkVzDkmq8zTYZcdTAwMTDiPcNcdTAwMDf+XHUwMDAyxz/UXduhXGKtoLXL2llcdTAwMTbsUtJwxfai/1xyeUe8731cdTAwMTLsc9jCteaggY971sOXNOjZheP2XHUwMDA2vif4efztXHUwMDFkLSVcdTAwMDdFeM1MrbjkaNvC3NDrVVx1MDAwZVx1MDAwZrOXV8eVl1x1MDAxY2o9T+6wsr+bizj0NIpcdTAwMWYglEkrgNCuXGa4mkA5oCg34zL6Qq9PXGaCI1x1MDAxMN9GU1x1MDAxY4hcdTAwMDBO2VxcYlBcdNRTbJLxd0tBs1xmXHUwMDAyl5KCdLNSkG5GXHUwMDFm/aKONVWgqSBqflx1MDAxY+6P8pfPtYvkMHk/ornrdme3c06ijUMg3LFcdTAwMDVeKVx1MDAxYXpUsE9cIlx1MDAxMGytWmGYYGjbSbq+Rrioji5sc1ovIePy+3XRzaGQbVx1MDAxNoVsMyjU4Xs5tO1qTDn3JMAsXHUwMDE0XHUwMDE2K92LXFzqtX7Lzq7dRjHThLTpRFx1MDAxY4WcOFx1MDAxNLjiXHUwMDA0jG0l9W0g5I5EVCmjQXOj53W/okmoVtRD5pdwSIl/ta5cdTAwMTWHfLM45JvBIYQ6Z1x1MDAxOKFGXHUwMDEzNDzmx2FilFx1MDAwMl1cdTAwMWSpVJXneKo5XHUwMDE4ptzoXHUwMDA1RFx1MDAwM1opXHUwMDAzh1x1MDAxMcONZFxcXHRcdTAwMTLIhVx1MDAxMFI5KCQlY0IrXHUwMDA2a9w2wahDLFx1MDAwZVFcdTAwMTBcbq2Zpt5AvsKh7UdcdTAwMDV6JVxyXFx+XHKHS3VwW1xuh1x0uVkg+u+3ViSGljxgVKDCJvX8aunu5c1OS19AIbV/N3JcdTAwMGZLZXHf4Vx1MDAxMVx1MDAwN6IgaP9pZp9UKM5cdTAwMDNcdTAwMWKYUGk1iFLFgaF1KNaYobiceail3YipVlHcZFuA+Oc0XHUwMDBmabh9iNNrqKFyfoHIXy5vn1xuzbv00Wn1MVUl+1eJU4g4XHUwMDBlOVwiXHLAQo1Zb0ygNCmjzLFcdTAwMWLzqFHUXHUwMDE2JlqjZspcdTAwMWNcdTAwMGWIQ+BgW9PPZ1x1MDAxZlwiXHUwMDA2mO1cXP3dKFxcqnHZUiiEzaJcdTAwMTA2g0JcdTAwMTUqXGZcdTAwMDFQSnDGvDcxXHUwMDBihLR73G3s7Gp9WHiq36pdKL7ePUZcdTAwMWaENi9Z4eongviT4cY/oJXDuURcdTAwMGKRg7TVkNanl1wiXG6VlYZKXHUwMDE5ZuS8IUOKainakt+ulW5cdTAwMGWGXHUwMDFiVkpXrJN+XHUwMDE1MVxmXHJcdTAwMThSiuahjSPPv782d5fpnbRI+mp0z/cvXHUwMDBl7vak0TfRhqLt7CVs/1x1MDAxYiNBKCmCXHUwMDE5stw4KFx1MDAwNSWwcZbOXHUwMDE35XlcdTAwMTFcdTAwMTGFslxcXHUwMDFliVx1MDAwYkZcZiWSg6F6XHUwMDE1Jbl/LWK4lKf0/1XEcCn0oVxyJNAqWqDijaJcdTAwMGalSrt6cvp8zcrHXHUwMDBmiVx1MDAxNvBk5FNnbD9e23OcoCZqWX1cdTAwMDJ8wnba0iDQPlx1MDAxNqiTSlxit1xuN4w+JVxioNheRVx1MDAwMYtcdTAwMTh9XHUwMDExRFx1MDAxZuBcdTAwMDRLolx1MDAxN0iWXHUwMDEx9drxXrlyyUuidJqq5k6Sndeou2RsslxmSnlcdTAwMDHW4KNcdTAwMTCwXHUwMDA0XHLqqEpcdTAwMWIuXHUwMDEwd/xcdTAwMGJcdTAwMTVUXHUwMDE5IFx1MDAxNbYp6Fx1MDAwMVx1MDAxMJurxr4xQjhGnlxcKjJcdTAwMTEjb6bWXHRcdTAwMTTJ3lx1MDAwNq7nhl66XHUwMDA27Za5Se6z7nWym9itNV9eXHUwMDFlolxyPVx1MDAwMOlIM7ajQGvjS5BcdTAwMWR/32hcdTAwMDfwJXCmNUd0ftE4brPgw1x1MDAxMUumzCp6Rcbgi1wi+LikaFXwXHUwMDA1ujLcj45cbqX6bevqvku7hZfnYnJ41os2+KzWSamRlCpcdTAwMTRw+MyTWidjzFx1MDAxMVx1MDAxY5hcdTAwMDKgWjEmwtFXKItCqbAxrdPGK4Q031x1MDAxOYSI4bdWrZNT20B8fofLTYq95npDJVx1MDAxYve7pWblttHLZMrRRp9tn0xcdTAwMDRIrrk0mrKgycdcdTAwMWMrY6i1+pjdO1x1MDAxMlx1MDAxNfApfDSw3dpi8P0pwcc5Slx1MDAwMi58PuVZ4CM1tbNT6paGh+xI9Xs3XHUwMDA1mXmMeDpcZnBwbOVURSRoToLgI9rRtoRcdTAwMDCRglivS7i/pSyF0WRT4OPCJitJ+t3Ozlx1MDAxOHvrwZ7SQMa13+bHXjvPXHUwMDFmWtWbRnaYfWydXHLSvW59J9rYm+FuUTiPUlx1MDAxMdAoXHUwMDFjudLhgYZNQ49yLVdRcSNG3vdsTGJfdOHTaFx1MDAwYnGyyI6INqOsK6uZ3sjsVc19bXc/35RcdTAwMTFcdTAwMDdcdTAwMWXnjlx1MDAxMkpcYsJBotY5mVx1MDAwM8rAOMRIY6tTaE3NXHUwMDFhO2osl4xccmTcS+c7PZ5v0Xa+XGZcdTAwMDTjXFxsXHUwMDBmiDw09cyWcFwihvnaYs0sX9u8ubsjV/nn/cNSultcdTAwMTaNgz1aiT5cdTAwMGWBM4NkjjYu9TVcclx1MDAxZuNQXHUwMDEzR1x1MDAxMSGBXCI2UFxyJ+srSbPMziRcdTAwMDLMXHUwMDEwiMCOiM2h8M+5M4mGXHUwMDE3lKdcdTAwMTKNXHUwMDFmjUtjfnE4fDwlr7A3OLpO9LKju+b+ntiLXFzt2GDswfo3id1ubkNcdTAwMGIs0I9cdTAwMWGUw21ZXHUwMDE0229HalgjXG6XST2jXHUwMDFhXHJXXHUwMDE0natoKPVrOFxcqoncUjhcdTAwMTSbxaFYLVx1MDAwZcNqNYrwsjEoXHUwMDFkXHUwMDE0X6hUo6imr1x1MDAwZVx1MDAwYpn99sHlg6uGJ6nbh+Oo75fn2tEog2y9amLr303AUCjqgJCSXHUwMDExW7pdXHUwMDE5ub7EM1Q9XHUwMDFjJpTSXHUwMDA2QOAtYdrWJFx1MDAwM+MyfcQohlx1MDAxYbTPXHUwMDFjfMclVbaW10qqRa26NKMmSFx1MDAxOEvZj3/y0ozhM28/iU+T7v3eb/4/XHUwMDE3RT414ZuDiS1ZiJbaXHUwMDAyVWqOes2j9Fkl+9wrX9aOuumHXHUwMDA0yUZcdTAwMWL6kqCqa2xNXHUwMDEwalx1MDAxM99YIPpcdTAwMGY2XHUwMDA0opVmXHUwMDEyWYFrXHUwMDE27oX91ei/XHJ1Kttqnlx1MDAwM6da0WlcIphJh1x1MDAxOSNcZlx1MDAxMThvZGJn1ntYUlx1MDAxMm6zwaNcYn1BXHUwMDE0X6qmzZ9cdTAwMWP6idCpt5/Pk75cIujr8FwiObZpMN5cbuaPv+RypVx1MDAxM/50lWjoxlnpqJ9JpZ/EZbSRXHUwMDBmQFx1MDAxYyPAXHUwMDE4W1xykjJcdTAwMTVcdTAwMTT6ymG2hTpcdTAwMThUf7RcYlx1MDAwN/6vxj4pJXgnW5FVcY2DYlNkPie2SIHVQFx1MDAxOEN73L9cdTAwMTXsXHL4klOUrGxcdTAwMTVFWleOe3wmXHUwMDE1V2P+fHVcInzmx6c/TfqKgFx1MDAxZt7OkTK052yN1PlcdTAwMTP+6Fx1MDAwMVx1MDAwZf24/bx7ln1cdTAwMWNcdTAwMTZyiZv+yZ5cdTAwMWJx4GukW1ttwTZe0DxQI1JcdTAwMTjkW4GmsGFcdTAwMDRtclx1MDAxMV6H/VeDP2hUOThaa/crvKtP9fDh3u6IsVx1MDAxNeWRhzT14+hcdTAwMWT4hKPaXHUwMDEywTZNhmnl8yPEsH//JELnfXz285QvXGL7UGdcdTAwMWKEx57Q7lx1MDAwNZtfPv9264uT20ZcdTAwMTNcdTAwMGVcdTAwMWZcXNI9Or1KXHUwMDE27lxuN8+R2+FCXHUwMDFkgqxcblx1MDAwMihlXHUwMDE0NXifRfy230w4Wlx1MDAxOFx1MDAwNDpcdTAwMDfkV1x1MDAxYcjAYNxBqcptmTJUwHi49+2XiYBox5bBRJP9zVx1MDAwMedxzpdFodFmtF/4f+R+q/91+Ld/J9jw71x1MDAxYo5KTbvvWlx1MDAxZOM8XFxGS1x1MDAwNmgs+FxyxFlYNan9y+P7l1x1MDAwN5O5yqX2Zf1uaKqRi09cdTAwMDFCYJx6wqRcclx1MDAwNpnJ3ikgLFSlLVYyTlx1MDAxNlx1MDAwZcSrqLaVXHUwMDEyUEtCLDMhRDhWf9VDZ8BcdTAwMDFlNFpiaI3NW7GEgtZaafqdNWXfoLqUQF5cbqqVv97+7d9smNiwx3zKbdda4fKLhmeaM45m+/zVXHUwMDEzzq/P7lL9x1x1MDAxYb9cdTAwMWF0ulB5TuZPy2fRwymKTWOLV3MmtORcdTAwMDGRSoz1U9r660RrJvUkUCmAM864UIhcdTAwMDUl1Fx1MDAxN1x1MDAxZM9+1Z+mpSO59enb3GZcdTAwMTThnpT8qpqCtlx1MDAwZkXJt+d3bFx1MDAwZadVK9qGf99wgPnzXdfbXHUwMDE3IbxcdTAwMTCtsiV2cEHPr/q+ZiB/mnpcdTAwMWFkXHUwMDA3XHUwMDA3MCjLy8Lw5iZyvU/wXHJcbtvUhdjd2sqf3vS+7Vx1MDAwNkFhg8vcdlx1MDAxY1xulOJjxrGlMFxyoGXJga1v01xyJdJcdTAwMTGoxUrDbVx1MDAxY1x1MDAxOeS0eNfn+tAo45mMQP7HUl6tpVD6OFZA+fDvXHUwMDFirkE07b5cdTAwMGIh9befdvCPfKdz4eI7/PHuasBJq5V+vlxib1xmP55r5Zfk52X0l8r4Y3vKjNFvYTbOxPzvXHUwMDFmv/3xf4EjuF8ifQ== yxO123-6156324k(x)=-2x+3f(X)=2x-4g(x)=x+2h(x)=-3x+5

f(x)=kx+b

f(x)=2x4

x02
f(x)40

g(x)=x+2

x04
g(x)26

h(x)=3x+5

x03
h(x)54

k(x)=2x+3

x03
k(x)33
  • Jei k<0, tai tiesė kyla į viršų (funkcija didėjančioji)

  • Jei k>0, tai tiesė leidžiasi žemyn (funkcija mažėjančioji)

  • Skaičius b parodo, kuriame taške tiesė kerta y ašį

  • k - tiesės krypties koeficientas


eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2daW/jupKGv/evaOR+mVx1MDAwMa51uFx1MDAxNMniXHUwMDA1Llx1MDAwNtnjLM6+XHUwMDBlLlx1MDAwMtmWXHUwMDFkJ95iy0tycP77XHUwMDE03Vx1MDAxZFtWorbdnaTlM0pcdTAwMDPdXHUwMDFkUbYoku/DKrJI/vnl69eV8KlcdTAwMWSs/OvrSjAs+fVaueNcdTAwMGZW/umu94NOt9ZqUpJcdTAwMTj93m31OqXRnXdh2O7+648/XHUwMDFhfuchXGLbdb9cdTAwMTR4/Vq359e7Ya9cXGt5pVbjj1pcdTAwMTg0uv/j/i74jeDf7VajXHUwMDFjdrzJQ3JBuVx1MDAxNrY6355cdTAwMTXUg0bQXGa79O3/S79//frn6O9I7vxOp/UtY6PLk8yhil8stJqjfHLghlnJUIzvqHU36FFhUKbkXG5lN5ikuEsrg6fTi0GpaPPsfJv5XHUwMDE19XB3XHUwMDEyNCZPrdTq9dPwqT7KUbdFLzJJ64ad1kNwWSuHdy9FXHUwMDE2uZ70qU6rV71rXHUwMDA2XffmfHy11fZLtfDJXWNsfNVvVkffMbkypN+kZFx1MDAxZYDmWlx1MDAxYW2MXHUwMDAxO051n5cgPI5aIWPWXCJTNpav9Vad6oDy9Vx1MDAwZlx1MDAxZbg/k5xcdTAwMTX90kOVstcsj+9cdDt+s9v2O1RTk/tcdTAwMDbf31x1MDAxOLRcdTAwMTlfu1x1MDAwYmrVu3Aqq91gVOhcdTAwMWNAgFx1MDAwNSYmXHUwMDA15Fx1MDAxZdLOl0d1/59JUXeo1eTdR5q9ej1aXs3y9/J6aSOTVlwivl/5a/JcdTAwMTbu/s1I65o8odcu+99aXHUwMDAyN8JKKkfLXHUwMDE1n7xEvdZ8iD++3io9vNF4uqHfXHTXas1yrVmNfyRolicpkSx/b/KjV1xcsXc3pWG/cJ9bra3frjJ+2s5fXHUwMDE3xmXsiqNV6rn8XHUwMDBiT1x1MDAwMDCpNbeMa+Aqck/Vb7uXUZ5SXGaUMdJcdTAwMTimOJpXhVL3u+F6q9GohfT+R61aM4xnevRCq05yd4H/qlx1MDAxMuiVomlxbbbdN06k7H4m//s6aVx1MDAxM6Nfxv//zz/fvDvSrGL3f4n++/3l5seGkJjMXHJD5atBwdzc4KXSgby+102137C1jVx1MDAwMLd4cZBubihlPCGppUiNVlg+ebL7PCjuXHUwMDExPFx1MDAxNVBJSGss6Fx1MDAwZlx1MDAwM1x1MDAwN/NcZlwiXHUwMDFha1x1MDAwNclPMy4nxT7miFx1MDAxNNZDK1x1MDAwNaNcdTAwMWalrNJcdTAwMTPov4DFWG0kXHUwMDEw79JcdTAwMDdcdTAwMTaOipT4oWCZ/rIl0ncuufpHya9rfkFcdTAwMDJQaVx1MDAwN29cdTAwMDFcdTAwMDBEouGgkfJcdTAwMDJcdTAwMTAhxCz9XHUwMDBmO5qMhd6xeny4eTrrqj7cXFw8pE3/3KNmSDKRQpOg0apJX/dcclxi2pNS0cszlJyLSerIkGDoSa6FsZxcbkaJeEbfk1x1MDAwN5JJIS1llHFcdTAwMGJEqDeAIMis4cpoZjUne1wiiqdcdTAwMTdDg7l0XHUwMDFkSUlcclx1MDAwZsjQXHUwMDAws7w8mEp7V1x1MDAxOPyg6t3Pq0p/L1x1MDAxNCiZhFx1MDAwMiDgMKnU/ChcYrafwlx1MDAwNkJlb9jZuZStp1L+WG4sIVxuuLKWOn7mxD5FXHUwMDAygUCf5uRqUE1cYsZj2UxcdTAwMWJcYqTinNJ0xoGMXHUwMDAzszhgTPzqXHUwMDBiXHUwMDA3yK8mX8qa+V2Cyv7Qnlx1MDAxNdZxXVxc3e+d31x1MDAxNO/3du7LS8dcdTAwMDHwtFbOXHUwMDE2Mlx1MDAwNlx1MDAwMSZfO1x1MDAwMoHmXHUwMDFlUFx1MDAxMnlcdTAwMTLEXHUwMDAz+nTKSSBcdTAwMTj5XHUwMDA3VlqRoSBDwVxmXHUwMDE0KJY8rMiQ+j6JZn6b4KS3t189OL05XHUwMDA11vHPN1vVYffoeFx0WUBXkVxcNItcbuXEZFx1MDAxYbFAXHUwMDFhT1tK4JK8cGtcIoOB6YRcdTAwMDGgJE9Hp3C0IENBylAgXHUwMDEzvVx1MDAwM+pMXGbTbIGBwlpod/NcdTAwMDFs3Tfy3ec8dp/qrYPls1xulEdcIkdcdTAwMTRA7pGMyG9EXHUwMDAyXHUwMDBlXHUwMDFlZ4DaSKpcblx1MDAwMVrGcpo2XHUwMDEycE12XHUwMDFkQ1x1MDAxOfHxMlx1MDAxNmQseJtcdTAwMDWax6+OzVx1MDAwMq1cZjCwcn5cdTAwMTjkXHUwMDBicu1q9+boLMyXmlx1MDAwNbt6yLc1LCFcZpSyZFx1MDAxM1xiranvn8hr9IWWKkozqYU1Rlx1MDAxOFx1MDAxOVx1MDAxOVJNK1xmJL3olHGXwSCDwZsw0FwieVxukeQglTB8oqdZMLjur1x1MDAwNv1y4Xqzq/ZcdTAwMGbJKujhJlx1MDAxNJdcdTAwMGVcdTAwMDbaXHUwMDAzxum6XCJcdTAwMDNBYFxmXHUwMDA2XHUwMDFhPbJcdTAwMGWEXHUwMDA2w4WlplxmsZymXHUwMDBlXHUwMDA2RiGnvLJswCCDwSxcdTAwMTgoXHUwMDFkv/pcdTAwMDJcdTAwMDPBqT9cdTAwMDFkXHUwMDBizCc+lkzh6XSwKfqVg6HvK/9oq1xcX0JcdTAwMThcYvKwOZdcdTAwMTY43TJcclx1MDAwM1x1MDAwMFx1MDAwZrSlipDCXG67XHUwMDA0XoLSyopsxCBjwWwvwYr41cjgoVwiT1x1MDAxM8z8hlx1MDAwMbaHwVqV9Y5vyyxswnU/eG4uI1x1MDAwYowxVllgikXsplGskZCUiJohKM1cZnlcdTAwMTEpZ4FllFFr7aRcdTAwMTgyXHUwMDE0ZChI8Fx1MDAxMVj86nhKkVx1MDAxZVx1MDAwNlx1MDAxYSNG8ixcdTAwMTJcdTAwMTRPzs1Wrlx1MDAxMG7Vir21S93IbbLh41x1MDAxMpJAMyGMXHUwMDEygsrbxMJcdTAwMGVcdTAwMTnzmFx1MDAwNM6AXHUwMDE5XHUwMDAxQqU9uFx1MDAwMMh8kamNZs5I8Obdv4lcdTAwMDSYXHUwMDE4XFxcdTAwMDBcdTAwMWEsm3+Rws7g/NA2Klx1MDAxN/6V3Snv7a1XzfNJf+kwYFxc7IA1QkmBQkxjQFx1MDAxYeMhXCJjXG5cdTAwMTkya1PvXHUwMDFjXHUwMDE4TXaNiFxmaGRcdTAwMTjIMPAmXHUwMDA2TGRcdM6rXHUwMDE5XHUwMDA00lx1MDAwMVwit/OPXHUwMDEz9Hrb4vjy6e600oXdVu9ggFx1MDAxZHu/dChQnlGSIXlGSCicJlx1MDAwMXGCU5kxzlx1MDAxNKVcdFCxjKZcdTAwMGVcdTAwMDWKSaSazMZcdDJcdTAwMTbMnk1MXHUwMDBlMkJcdTAwMDPAlVhgzLBSOdk70u396/bT2uDy1s9ccmCDpY1cdTAwMDXS4/RaVmg3XG5ijeWTrn3EXHUwMDAy5J5cdTAwMTDW0C3SyOhs61xiXHUwMDA2knmcXHRcdTAwMDOMUlk0WjOlLFx1MDAxMKiEXHUwMDBiXHUwMDE2y1CQoWBcdTAwMDZcbjDRLLCGKUrm85Ngb33nabtYLPJV3arkevfF45v82ZKRQDPwjCVcdTAwMTRIaq5cdTAwMDZiQ4ZuVVx1MDAxOCN7m1x1MDAwYsZcdTAwMDSx8iNXJ75cdTAwMDdcdJBcdKBX5Vx1MDAxOVx0Mlx1MDAxMsxcdTAwMWEn4D9YhMCldGb03CRYU354Udpsnmye7ZVu/OZp0Pcvl41cdTAwMDRcdTAwMDI9TT9cdTAwMTZh5EdMXHUwMDA3XHUwMDFlS0pcdTAwMDUrhdNcdTAwMTefdi7SiVx1MDAwMsHdgFx1MDAwNvk1XHUwMDE5XHUwMDBiMlx1MDAxNsxiXHUwMDAxJDtcYtJYXHUwMDAzuEDocT7c2b1+OLNHp89cdTAwMGbdclx0JFZcdTAwMWZSXHUwMDE3ejyLXHUwMDA1invWaMGpnF3QwKR4XqxcdTAwMDJ0i8SV0FxijPO0XHUwMDBmXHUwMDE2KEqywHlcdTAwMTZsmKFgXHUwMDE2XG5M4ipcdTAwMDSqKFx0Uis1f0xB/WxzrclcdTAwMGY6djdfroq14/X7sNxeNlx1MDAxNlx1MDAxOOVJN2ZIqUYgj218RCwwLtBCXHUwMDFiXHUwMDBl5CSItLtcYm7HXHUwMDA1XHUwMDE0isksqiCDwaxJXHUwMDA0SIwq4FrSI/VcIstcdTAwMTB2L3X+KNeuru2WXHUwMDFh4bb261etm6VzXHUwMDEyLHqMS83RzVx1MDAxYlx1MDAxYTNcdTAwMWR57Fx1MDAwNlx1MDAwZYVcIpuAOCFcctdcIu2Rx4K5VaYyXHUwMDFhQZ3BIIPB2zDQictcdTAwMTBAkVkg7Fx1MDAwMlx1MDAxM4o7J0U0a7p0XipcdTAwMTm2c6yPg+fO/pKxwFxiclx1MDAxMlx1MDAxMNAozTlgbFx1MDAxZiNCgVx1MDAxMsbtX2JBM5Z2s8BFQTBcctlcdTAwMTKEXGZcdTAwMDSzR1x1MDAwZSF+9Vx1MDAwNVx1MDAwNFxu3CY40Vx1MDAxYmaB4CDXXHUwMDFk1psh7p1cdTAwMTTzq3ePt/3GXHUwMDE5XGaXXGZcdTAwMDTSMlx1MDAwZlx1MDAwNbhcdEM3m4hcIlx1MDAxNlsguadQa8tcclx1MDAwM0U1kXJcdTAwMTRwZ9hJjVx1MDAxOVx1MDAwYjJcdTAwMTbMZEHy9qaaIZN6XHUwMDExo2BcdTAwMThetZp1Xeyvr1x1MDAwZlx1MDAxYlx1MDAxYuHjWfG6tb5kLFx1MDAwMFx1MDAwZZ4kk0BcbubmXHUwMDEzwcaGXHUwMDBlnVnArNTCaKsx9Vx1MDAxMYdIXHUwMDE16HKaoSBDwSxcdTAwMTToxJWJVGNSXHTF9PzBx4ptXFxcdTAwMWTWUW2sXHUwMDE2XHUwMDA2t8NbLc1cdTAwMWQrLVx1MDAxYlx1MDAwYiR6QnOhtFKGIY+ZXHUwMDA1wnrWOVxiSiPa6GfTiVx1MDAwMlx1MDAwZUppMJBcclx1MDAxY2YsmMlcdTAwMDKb6FwiaI3SjaTPb1x1MDAxNnRcZmydli6uh1x1MDAxN6J2U3koMVhlqdvVbFx1MDAxNlxu9LfoZFx1MDAwM8JNKCqMm1x1MDAwNdyTVEtMM6msXHUwMDBiPUw5XGaM233BXG6TsSBjwaxxQ5G4Slx1MDAxOVxmU25h/vyBRlfHjYu1y74+e1x1MDAxY3TE9v1677z0qJeNXHUwMDA1XGLU8btcdHntJlx1MDAxNIG9ZoGA0XBcdTAwMDK6KH+b9kgjLkFcbiFYNomQwWAmXGaS449drFxygLRcdTAwMGLsZXRcdTAwMWagXHUwMDBicFx1MDAwYoOc2Xu8WSuUXHUwMDBi7OBiyWigmPE0OVx1MDAwN+RlI7JY+DGhwFx1MDAwMDPuRCUuuMG0m1x1MDAwNe7kJ8uzkMNcZlx1MDAwNLNAgMnhx1x1MDAxY6UzhKNb6c9cdTAwMDLB2ePdY6verbOH+0apeXtwvXl0n7r1ibNA4KZcdIxcdTAwMDUpjZtOtLGlylJ4jFOZoNKCs9Sfi0JvydCtuM5QkKHgp6OPheRWcblcdTAwMDBcdJ42woPb1efedpFVL/Z7V/dcdTAwMDHPpW6v01nziaA9XHUwMDE3dExOgNSWTOvX84mWUVx1MDAwNVxi19dcdTAwMTI2Uo5cdTAwMDKrLKOEbKvTXGZcdTAwMDWz51x1MDAxMJLdXHUwMDAz8jHNSFxyc7MgXHUwMDFjWmx05NZw/357f79+MdgrbC/bSmVpXFxcdTAwMWORRsbAtVd8Yz5cdTAwMTGlIIOBqSWYTiTDxVwiMMh2MMlYMHuoINlDsNYwmIpWm3kgQlBcdTAwMGJ5nu8h7uJueb9q1vy7ypKxwIDwUFiF5GS7PVxcYlx1MDAxZYKwnjtFznBcdTAwMDFKREGRVlx1MDAxNpBhwNFiWl2ESY4zXHUwMDE2jG/4XaNcdTAwMDXJLlx1MDAwMuVnwd2M9vyNO9tcXLtd1Vx1MDAxN0ePR4fN7Z12/3rZWKC1R0ZcdTAwMDGCMJwqg8dcdTAwMTZcIrhcdTAwMTWKUllw0Vx1MDAwNdzItFx1MDAxZpnGuVx1MDAxOVxyXHUwMDFkpnbkMGPBXHUwMDFid38sXHUwMDBiwmBcdTAwMTi+aVx1MDAxNyQuUDSkI20j/vAsXHUwMDEw5I5cdTAwMWGnN8+529Le7vpuXHUwMDE1SlZcdTAwMDTN3bSBIHacujFcdTAwMWVcdTAwMTNubVx1MDAxMYJcdTAwMTSaT+9cXMTJXHUwMDFkIFIoXHUwMDE3ZoxWm1x1MDAwZlxcgGQ9aax7iFx1MDAwMCZk9Fx1MDAxMOuJ7F+dnk65XHUwMDFh3fxcdTAwMGVhXHUwMDAzU1x0XHUwMDBi6Fkpa1x1MDAxNP8pPVdazfC09vyt15m6uuU3avWnqUpcdTAwMWQ1XzcgtTJ1abVeqzZHXV1QmW7eYa3k18fJYSuyTrZEj/Cpa+y8LpJWp1atNf362evHuc5056UuuFx1MDAxN6mNot9cckZdrVx1MDAxYmz/OVx1MDAxMSYvXGa0XFxrt3PW3Cq0dzelYb9wn1utrd+uMn7azl9cdTAwMTfSrUKD6LktlZVh5JNLXHUwMDExc8qV8VxmOe7SoKS2xj9ugI5TtUq3Q7hcdTAwMTNVxHn9gVx1MDAwNFx0ycJccqrCO5jdP9bgmPeTXHUwMDFleVxc54On04tBqWjz7Hyb+Vx1MDAxNfVwd1x1MDAxMjTG7zfVXHUwMDA0fdeZrYxT/nrpPGYo3ER18KFcblx1MDAxZn6uwoefo3DOf3BYOfnmRkdWws+SeLtcdTAwMDH2fGf3rFLYenhcdTAwMWFudlx1MDAxYXuXhU66JU6tyDNcdTAwMDa0oN5Um2jo8kji4Nb0qNGhxYybXHUwMDBmPFaEg6e462jdsmPDcU6Vg/OLlOK/vaf9PFx1MDAxZFx1MDAxZX6uXHUwMDBlXHUwMDBmP0eHkFx1MDAxOEnrtrIlXHUwMDE3Uc7f0249n+92reng9saGPFx1MDAxYdzV7tQmT7lcZo31mGJcXGinXHUwMDAwXHUwMDA1sVx1MDAwMFx1MDAxOXdYsHDjyVq47Xs/LlROeUAqtMgpXHUwMDFmoCRcdTAwMTfzydBSx4xTMU1/e1x1MDAxOfLPlSH/XHUwMDFjXHUwMDE5YqJcZoVCrlx1MDAxNPlkc8twXduji2d2UGO3vcfBVi5XofdJuVxmOfWGZNSTuyfN1EFcdTAwMTTf9tFHT6BcdTAwMDKuybXT1OI+brW7XHUwMDEwXHUwMDFluIFcIrI+yFx1MDAwNbbRfvlHfidzXHUwMDFi/eJ7bJb9azLEaGP9UFx1MDAxOebE5+ow+ryPXHUwMDE0YvL5d9wwzt1Z6/NcdTAwMGZcdTAwMDDtNK9M7vDw9MBWN+5cdTAwMTHkSblSvku5XHUwMDEypfKYQcHRrcaKnnQ7UlwiU551x4VLJZBcdTAwMDF84Izwz/WIqJkhK1x1MDAxNt4hVnxZlPg37Vx1MDAxMJPPnlOWoYBcdTAwMDXcQ87LXHUwMDA3J+18vahPn46uNvZaZWApXHUwMDFmXHUwMDAxXCJ5eVx1MDAwMsjxY6iltrFTJ6mTdONDzGqyvDSSL/ZhMuTCM06Gxu1ired1XHUwMDBmNbo9raOnXHUwMDAx/e1lXGKfK0N4X1x1MDAxOSbNjELydo3GOUyLLLQ80serypR2YatyfcY6w0vbfD5Mt1xmJSpcdTAwMGbdsIiUkvp/ZaZHYkmhnlwik4B6JyCpXG6bfC68XHUwMDEwWFxm9M/rUGpBNrAgXHUwMDFhgFRaikm9jHU4yfo4XHUwMDA0XHUwMDAyNdFDy1x1MDAxNE578tEk08+o828+7ZlY0bFPf4n+u7CsXHUwMDEzY5/QXHUwMDFkXHRqcP4oSCNRX3S3bi5cdTAwMGV3nqFXXG6Ot/r9atpVLT1h3ZHolHnl1oVNXHUwMDFiuWg9QVx1MDAxZFxipzezQv5A1MYqVlx1MDAxMb9cImrpuc5cdTAwMTUoR5xFR7yTRVxyXFy63Vx1MDAxZdK4XHUwMDFhkkuIrszPNP3yk1jPsU/PpelKh1x1MDAxYULHXHUwMDFmvKXrXHUwMDFmbK6sXHUwMDEwJbXX+btrfe3fnq5dtFx1MDAxZTdcdTAwMWHF82794LqwXUhdXHUwMDE4U3xSRXlKgVx1MDAxMpxxYDy+XHUwMDBigtM1XHUwMDFh7nZSdtOZyfOmv6pr5jHGJl8/XHUwMDEx8/T18Vx1MDAwMmdEYeFdXCJcdTAwMTV/1lqWXHUwMDA0QVx1MDAxZFx1MDAxOepfQLvvXHUwMDFj9Fx1MDAxMy2hyZXXXHUwMDFhWYRcdTAwMDK1Rq9Or3vUoULqdVxcu1x0O73IXHUwMDFifL/+rYzeX3xcdTAwMWGtdbvbzN+p8rPn/nruoDa8Wr06PYFSb/WkginXXHUwMDFlXG6PXGLDhKZcdTAwMTblXHUwMDBlXHUwMDA3eaU96rNcZvWoTJBvxpMjhz5XfG5jRek2Qvit2tNM/dTSgEx7s7QnjXFDXHUwMDAxXHUwMDExs2TmXHUwMDFlICePa1x1MDAxYsPurlx1MDAxOW7udnfysmKGzycp154yXHUwMDFlU9+GPNBqjHup6EnGtHYhfeBOXHUwMDFjTNTer3qpXHUwMDBidnzkNkumxe9cdTAwMWOtlSR9ZVkmvo9cdTAwMTBcdTAwMWZXylx1MDAxZGu3iDu5tf7QeNzuXHUwMDFkXHUwMDFj4XlRSzW4vYDN1O3AXHUwMDEz7/m4x93mXHUwMDFh0p3Yo8G8Ulx1MDAxZlBcdTAwMWIzgpq61dFcdTAwMTCD36s+QTCwru/5reIjl/Gnxmj/X4kvaZJEJCtcdTAwMGbJXHUwMDE5J7DB/LMkW5t+cLhxwo5z9X4tXHUwMDE0XHUwMDE3XHUwMDE34UHvMe3Ks54mY1x1MDAxMrU0QnBcdTAwMTNTXHUwMDFl1547ZIs8X86pscvkWZJfVZ4mXHUwMDAyKLdhndTIp1x1MDAxNlx1MDAwZf5orpLqXHUwMDA34V2O2F6WSZLKf1xy//vfnzxTXHUwMDEyf+ZHzlrK5DWlUpJt5jZamluQZ6rlh2Kn0jnC9cO6flx1MDAxOO7bwU3KXHUwMDA1aZUnraK+0K0pYyZcdTAwMTbHo6zHhaU2XHUwMDA3gMCtSF5D+qtOoCZn1Frrjp4h6eOc0Vx1MDAwM4KBNlpG7cHfJElcdTAwMWJtrlx1MDAxZirJqpPHJ1x1MDAwN/PEn7mQJL9874ZX/Hb7NKSyW3lcdTAwMTnJpsqqlb9cdTAwMTfA5Pkr/VowWHvdfv5RXHUwMDE5/bjQ/5HMnaBGnfGff3356/9cdTAwMDB27XpTIn0= yxO1-214f(x)=4g(x)=2

f(x)=a

f(x)=4

x01
f(x)44

g(x)=2

x01
g(x)22
  • Funkcijos grafikas yra tiesė, lygiagreti x ašiai

  • Ji - nei didėjanti, nei mažėjanti, o pastovioji

  • Jeigu tiesių krypties koeficientai yra lygūs, tai tiesės yra lygiagrečios

    Jei k1=k2, tai

    Jei k1k2, tai

  • Jeigu k1k2=1, tai tiesės yra statmenos

    Jei k1k2=1, tai

    Jei k1k21, tai ⊥̸

Tiesinės lygties rašymas iš brėžinio

  • Jei tiesė eina per koordinačių sistemos pradžią

    1. Užrašome bendrą funkcijos pavidalą (tiesės lygtį)

      f(x)=kx

    2. Surandame tašką, priklausantį tiesei, ir jo koordinates įrašome į funkciją

      f(x)=kx;     y=kx

      A(3;4);     x=3;    y=4

      4=k(3)

      k=43

      f(x)=43x

  • Jei tiesė neeina per koordinačių pradžią

    1. f(x)=kx+b

    2. Randame du taškus, priklausančius tiesei, ir jų koordinates įrašome į funkciją. Gauname lygčių sistemą Ją išsprendę, randame k ir b reikšmes.

    f(x)=kx+b;     y=kx+b

    A(4;3);     B(2;1;)

    {3=k4+b1=k(2)+b

    {4x+b=32k+b=1+

    3b=1

    b=13

    4k+b=3

    4k+13=3

    4k=83

    k=23

    f(x)=23x+13

  • Jei sąlyga prašo parašyti funkciją, tada rašome f(x)=kx arba f(x)=kx+b

  • Jei sąlyga prašo parašyti tiesės lygtį, tada rašome y=kx arba y=kx+b

  • Kartais būna duoti du taškai (per kuriuos eina tiesė) be brėžinio, tada rašome f(x)=kx+b, nes nežinome ar tiesė eina per koordinačių sistemos pradžią.

Teigiamų ir neigiamų funkcijos reikšmių intervalai

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1d+U/jyLb+vf+KVt9f3pNuPHVO7SNdPbHvhCZcZkuerlD2XHUwMDE4suE4XHUwMDEwXHUwMDE4zf/+ToVcdTAwMDY7XHUwMDBl7iQ9wHN0nWkxUHbs2r7vLHXq1J9fvn79XHUwMDE2Plx1MDAwZVx1MDAxYd9+//qtMa5VOn49qDx8+6crv29cdTAwMDRDv9+jSzj5e9hcdTAwMWZcdTAwMDW1yZ3tMFx1MDAxY1xmf//tt24luG2Eg06l1vDu/eGo0lx1MDAxOYajut/3av3ub37Y6Fx1MDAwZf/H/TyudFx1MDAxYv9cdTAwMWH0u/Uw8KKXXHUwMDE0XHUwMDFhdT/sXHUwMDA3z+9qdFx1MDAxYd1GL1x1MDAxY9LT/5f+/vr1z8nPWO0qQdB/rtikOFY5XHTJ0uN+b1JRUCikYYLz1zv84Sa9K2zU6XKT6tuIrriib/tXw92js4udwC93xLUprVx1MDAwN8dWRK9t+p1OKXzsTKo07FNLomvDMOjfNi78eth+6bNYedq3gv6o1e41hq7pUUP6g0rNXHUwMDBmXHUwMDFmXVx1MDAxOWOvpZVea/KMqGTs3qSsp1xyXHUwMDAyMjRSaaOj1rpcdTAwMDdwITwmNVNcXFx1MDAxYqs46ETFNvpcdTAwMWRcdTAwMWFcdTAwMDWq2D+g4f6Lqlat1G5bVL9e/fWeMKj0hoNKQGNcdTAwMTXd9/CjyVxcoydcdTAwMTVoqVx1MDAxOFxuwVjUXHUwMDA17YbfaoeuNVx1MDAxZWNCKVx1MDAwNGWtpLpcdTAwMThcdTAwMTHVpjFcdTAwMTlcdTAwMTTgWitBrYg6w9VhsFefTI5/R0NcdTAwMTHQtNpzX+mNOp14f/bqP/rzZVx1MDAxMkXTXGJ/lPxcdTAwMTU10t2/XHUwMDE1m37RXHUwMDFiRoN65XmmgEbLOUdcdTAwMDRuo1Z1/N5t8vWdfu32jck1XGYrQbju9+p+r5X8SqNXj67EqvxcdTAwMDNcdTAwMTOTJn5r+fvtRnh6sXMjutclMb6qllx1MDAwZqJZ5LqjX1x1MDAxYrn6o4dcdTAwMDKoc1EzQGlQx+5pVVx1MDAwNq4x0pOSXHSpNXU1k1xm9EyndCrDcKPf7fohtf+k7/fCZKUnXHJac5hsNyozg0BNil9Lgnfgnlx1MDAxOGHdfaLfvkbTe/LH6+///uebd6fOOveZnW/R477E//+j7UvQXHUwMDBlx2TpXHUwMDBi7VitkEmC4sKsXHUwMDEzfsdq8byMXHUwMDFiYsNUt1x1MDAxYv5+/UhcdTAwMWRlm3W4NVx1MDAxZUdrjDXU52BxmnWEdFx1MDAxM1EztMJoLYT6ONbxXHUwMDE4odIoyayR1oCNKvJKO1x1MDAxYzXNeSk5gcJKXHUwMDAzJrrnhXaIcSRRqJXZpFx1MDAxZFx1MDAxMY3SR9DO9MNWXHT9qaPvPoXZgV9cdTAwMTL/1NmNt+AvjEyWvmpcdTAwMWT0XHUwMDFlkIJpuzD+1Xr1XCI82l07udTdYfHi7nCnimtZwz94pEVoUiFQaUK1lVx1MDAxMb85Qlx1MDAxMFxmPKTZaoVCKUBFkn2ihVx1MDAwMHhgQaBkjJNcdTAwMTbyYXTAPM44ckv1pCFcdTAwMTck6KKKvPJcdTAwMDGiR0OkXHUwMDE1s1xuhJ1ip2c6MFpcdTAwMTl0bczZ4J3ZYOrau1LBT0befWbG/J2YQFx1MDAwMk+WvjBcdTAwMDGZJqSXsMWtXHUwMDBmcT14Km5d7GyJXG5iZ1x1MDAxZrZcdTAwMGKl3ftcdTAwMTXkXHUwMDAxsjc0UP8rIDVoilx1MDAwN9Boj8otMkVaqrYm40RcdTAwMDBcdTAwMDbRWZBcdTAwMTCRec5cdTAwMDQ5XHUwMDEzvM1cdTAwMDRcXCdLI0+E4YA2rnjO44JcIn+s3Fx1MDAwN7XRXHUwMDFm20H1LqhttCq8469cdTAwMThcdTAwMTfQXHUwMDEwkG3GUTrAgzBRVSZcXKCER8BcIlx1MDAwYlSRfYY681xcwKWlgcy1gpxcdTAwMGLmc4FKt1x1MDAwZjRcdTAwMWGFSsrF7YPLY1OrX5RcdTAwMWZcdTAwMWa7+4eX9/vh5eVwLXNeyVx1MDAwNbiAk5GtUVx1MDAwYmaMXHUwMDE201x1MDAwNlx1MDAwMlxuRt9cdTAwMTekXHUwMDEzkFx1MDAxMYFayayzgVx1MDAxNFx1MDAxYYDxmHaXk0FOXHUwMDA2b5OBTTVcdTAwMTFIXHTmXHUwMDE2SLIszFx1MDAwNb54uKr6W/WLwD5UtyRrXHUwMDFla9haMS5cdTAwMTCMeU4tsMJcdTAwMWFtuYlcdTAwMWU7oVx1MDAwMlCe8ypcdTAwMDJNZKZcdTAwMTmXXCJR06xRXHUwMDAxSKNcdTAwMTVcdTAwMTJv5YpBzlx1MDAwNXO4QGHqciWhhCtgZvF1g974Vlx1MDAxNvZOu6XBnrkwt9+Pq6awvYJcXCDIQKCGM6N0YvVcdTAwMTIs95BLSVx1MDAxYVx1MDAwM9dMxlZcdTAwMTkySlx1MDAwNVx1MDAwMlAxwU2uXHUwMDE25FQwj1xujEmWvlKBXHUwMDExWmkhXHUwMDE3V1x1MDAwYpr732/Xdkv9zZLu1jrieDTGg+8rR1x1MDAwNeAhjVx1MDAwMnNcdTAwMGIomieWXHUwMDE0QYPHjFx1MDAxNcCcXHKBSmTdQlx1MDAwMG6QWcRcdTAwMTih51xckHPBm1xcoEElS1+4wFx1MDAwMFdkXHUwMDE3R4M1j1xuNm7ubZvvXd2bh+a9v1eulKqj8VxuUlx1MDAwMdAw0D9qvYbEMlx1MDAwMlxi7XEhLFNgLNMyWdOsUYHRklQ7g7lWkDPBXFytgCVLX5nALZgpuVx1MDAwNFx1MDAxNXyXI31z+sf1ebH81DnYa68x3rlaQSog/rNGa+pcdTAwMWLNXCK36STQiKFnScrSXHUwMDFkzl0gWNYtXHUwMDA0Kai1RrFcXCnIqWCeUiDSXHUwMDE3XHUwMDE0heSWXHS7xFwiQndcdTAwMDePh4pdsLOjo/2T6+L2eLizesFcdTAwMDVIclx1MDAxZpWRzIXryWku4IZ5WnGQoFxcXHUwMDFjtMl6lFx1MDAxMTIlwVx1MDAxOJ3HXHUwMDE25FQwh1xuTCxcdTAwMDBlJrZcdTAwMDDQcNJcZlx1MDAxNo8taFx1MDAxN4Ozk8ur7oXeXHUwMDFjXHUwMDFkNtT9Xb/Ya69cdTAwMWNcdTAwMTUwT0lmmHNcdTAwMWOSZlx1MDAwMIltXHUwMDBminlMXHUwMDAyXHUwMDEzyoJcdTAwMTA0mz8uXHUwMDAy+b3IgJRcdTAwMDK6kitcdTAwMDY5XHUwMDFizF9ESI0uIFx1MDAxNVx1MDAxOLWi4VqcXHKezqut7tXl2vn4qT+4W5dPrd3uKGtswD1cdTAwMTAgLSrJpbODYnCfsFx1MDAwMSpcdTAwMGZQXHUwMDBiNIIow21cdTAwMDWZZlx1MDAwM05WgtbGXHUwMDEwlSiDseCMbJJcdTAwMDEgl4qrXFwzyLlgLlx1MDAxN4hUzVx1MDAwMIEqoi3axZdcdTAwMTGO5N65rLLdtizBUNz3in1eq6xcdTAwMWFcdTAwMTdcYuspy5RRgrqbXHUwMDE0gKj5z1xcXHUwMDAwnmVMSm1cdTAwMTRcdTAwMTBXZD26QDBuXHKLO4BzLsi54G0u0KlcdTAwMGVcdTAwMDMrlHCrUYtcdTAwMDdcdTAwMTdcXJ4/VU/MaWWgXHUwMDFlS92Dxlx1MDAxZlx1MDAxN80uq61cdTAwMWFcdTAwMTVo7kklXHUwMDA0XHUwMDEwfiw3aKPmv1BcdTAwMDFXLrJAXHUwMDFicF6FjFNcdTAwMDFcdTAwMTClUVWZyG2EnFx1MDAwYuY5XHUwMDBmWXpcdTAwMDSykVx1MDAwNpTzPC1OXHUwMDA24UFv+2694Fx1MDAxZu/55bPa+sZ1oZU55+E8MrDKM5pbNIR0VFolPFx1MDAwNmQjaFx1MDAwZaQzXHUwMDAxXHUwMDFhMIxl3WNcdTAwMDDKXG4t3SaznFxycjaYw1x1MDAwNjw1XHUwMDA0WShcdTAwMTJ+bvf7wmRQaVxmXHUwMDAz2Vx1MDAxOH1fk0NZqK/vXHUwMDFkbzcuT1aMXGYkMlx1MDAwZlxyd/1M9pGZXHUwMDBlL3BUoDhXiFJz6lx1MDAxZJZ9xVx1MDAwMDSj5uRhhzlcdTAwMTXMXUpgqVx1MDAwMVx1MDAwNmRcdTAwMGVrq1HxxVdcdTAwMTVcdTAwMGZHpnpY7GyfPVx1MDAwZVx1MDAxZq+/l+5O77e3WqvGXHUwMDA1XHUwMDAyPbdcdIODoFx1MDAxMTGQJFx1MDAwM/o6d1x1MDAxYjXosrBcdTAwMTIyT1x1MDAwNvRcdTAwMDBcdTAwMDFaqZxcZnIymEdcdTAwMDaYXHUwMDFhg6yFVGiWXHQ8XHUwMDFjPVx1MDAxZV2d4vC2XGL7R0W8v9+4PNvM3JbleVxcoMhIMCiNXHUwMDAxybVlSYdcdTAwMDH3XHUwMDA0XHRaxZVcdTAwMTR0WWY92lxinMtAIMtXXHUwMDEyci6YayNgalxmsouyVcytrS1MXHUwMDA2cDcsdHfKwXX7YofVSkGhJzYvV4xcZkij9oAuKMuc+1DyWY+BkchcdTAwMTGky3LGslx1MDAxZYXMgS5h7j3MuWA+XHUwMDE3xDbdJqOQ0fnG9Fx1MDAxMuFGXCKUt1x1MDAwZo3SbtmCbjavT06bT4f1XHUwMDE1o1x1MDAwMs6UJ5RcdTAwMTGGWi4xqVx1MDAxNVxijziASaJJqUhxyPqSokJU1tBTclwiyIlgXHUwMDBlXHUwMDExmNQ8p5K7RVx1MDAwNGSLr1wi2GFhz8enu0anNroxm2ejw0PdWTVcIkDrua1cYlKgc1x1MDAxY2qb9Fx1MDAxNlxiz2V90/RcdTAwMGKgQZ35VVx1MDAwNC45o/bkWY1yMpjrLUiPNVwi0cfdTsUlYo2GxVx1MDAxZPt9XHUwMDFmrotHeqT2i+XLm/5aYdXYQKJHgt8lXHUwMDA1c65DntiQQGSg6NuCW1x1MDAxN4FcdTAwMTD3yGWUXGaQXGZcdTAwMDSdZzX6mpPBfDJIXHUwMDBmNlwiveD53+JkcLZ2u7s2XHUwMDBlXHUwMDBlm8MtaFcu1ObGpm9XjVxmNNlcYlqDy4DMtY1lOX4hXHUwMDAzY8g8cNtcdTAwMTHMKmxO4jangueH5VQwRy9Ip1x1MDAwMkNCcXq/6zwq0DvV8uMtf9rdkU+77ZubW7BrdytGXHUwMDA1ZFx1MDAxOHguS4k1krtgo9ntXGJCMFx1MDAwNFxyTDJlsu4vXHUwMDAwpZWw1MzcRsi5YK5a8LO4Q0lqsMDFXYcnT/u22Fxuz1x1MDAwZk+gXGbN9dvTTbueuZNR5nBcdTAwMDFpQp5cIlwikMRcdTAwMDNguZyNNXKZRI12loLErGc1Qlx1MDAwMJRcdTAwMTJs7jzMueCFXHUwMDBiwsY4fItcdTAwMGIgPepcdTAwMTCMQtRcdTAwMTKXiEFcdTAwMWWNN1x1MDAwZsZHcMzVWvB0tNmRzdJp5nYtT5+SRJq+Z1G49D+EfyX09FYk6lx1MDAxZs9tSiTGIIVBqFx1MDAwZlxmLbJcdTAwMWVZJCTCXHUwMDE1kt7BXHUwMDA1j2gmgn7s7c9Yd+NcdTAwMDNT+8d+XHUwMDE56lNcdTAwMTeWwLSU1sbPdFpcdTAwMDLTzX4vLPlPz7tip0q3K12/8zg1qpMp/LtcdTAwMWKWqaK1jt/qTcRdozk9xUO/Vum8Xlx1MDAwZfuD6GqNXlEh8Vx1MDAxOMx2ST/wW36v0jmbfZ1cdTAwMTOou9FBebHRqFaGjYm4dbD5RSCmxvyhm55cXNjFcfjzs+gyiUNFQJMuasflWFx1MDAwNa5cdTAwMTJcIlgxT1x1MDAwMVx1MDAxOeV0XbuQp1x1MDAwZkMhuDOSSHROIFx1MDAxOCODn2FQo8sv/Fx1MDAwZTH+P4fgK+VHQvl1xH9+KubUXGZ8Puzr9cpfL/IjM1x1MDAwMFx1MDAxZn8uwMefXHUwMDA0cJ0uaYVxXHUwMDA3IC7jmb8r3+iePjspKmg8nuyXuqq2d51thFx1MDAwYiY85c5cdTAwMGVQzFjG4tlQXk5BXHUwMDE1k8SiXHUwMDBlflJ+nPdccoTntGOqXHUwMDA08YxcdTAwMDazXHUwMDE4yp1O7XxcdTAwMDXvsZdnVURt8XORWPxcdTAwMWMk2vQlMu2MQMVcdTAwMTaPoVx1MDAwYppcdTAwMGbVQrcth4/lqn+z3lx1MDAxZLTUOHNcdTAwMWJtklx1MDAxYS/3rNCGW8FRJFx1MDAxM3Qp5/dS7nhApVxy6o9DofTcKbjWgDJk7nDAhVDoouPIXCJ5jzz+f1x1MDAwZoRcIj5VP1x1MDAxNITwuSCET1x1MDAxMofp6XRpRlx1MDAwMLgkMIs7oaqVcmc0XGaal61HU+jp0fnBxk7m9rgkjufV1rNaWrefVTOuXHUwMDEzXHUwMDAxa8x4zuoktjeEQ/6BXHUwMDBl6F9cdTAwMDNcIoJcdTAwMDB3bvDHq705XHUwMDEyP1x1MDAxNolcIjWOlMQhonJuz4WBWD9cdFx1MDAxZs9cbofN9k29KC6uodPt1G+yXHJEQYon51xcU0PdiTbxXHT1LFx1MDAxMcHTbis6XHUwMDFhXHUwMDEwkuHHRYuRXrqs6eli/ok6/oOkIX4uXHUwMDA28XMwXHUwMDE4Q1hcdTAwMTKDTJNcdTAwMTQgW2VxYcjkVdBbXHUwMDFm3fInu3vewr1a7WE7c/s6pjEoQT1cdTAwMWY661x1MDAxNli4iFx1MDAxZLvx4v2RXHUwMDEyUaC0XHUwMDFhlP44WVxi6HGa0GTmSZBqMUlcYlx1MDAwNlCjeZeD6VdcdTAwMDWF8nNRKD9cdTAwMDeFMlx1MDAxNYVuR1x1MDAwMWNcdTAwMDZcdTAwMTd30MC6PdjqVTf9783S2UG9XavY/kO2Qcg182hcdTAwMTJZsv5cdTAwMDQqy1x1MDAxMme+Ke5xXHUwMDA0hpJ+cGk+MF0rcO/H2dP0XHUwMDFha1x1MDAxNlxcXG5xh79qgLjn6P9cdIcyPls/XHUwMDE0h/xzccjfXHUwMDE3h82ARi6oPLyFRZ6qlbqsXHUwMDFmpJkukVxyZW/c3rBXJ1x1MDAxYptHXHUwMDFkuD4+b/mF88vMpUxMKqXWU4xcdGlcdTAwMTVZZ5C0XHUwMDBlhfK4dlx1MDAxOGUuJFx1MDAwMeAjo5ZcdTAwMTmLMcEr/lx1MDAxMuWvXHUwMDE45Ia7TVjvsIHxVzH4N2JcZt55RT/eQ1FJ9L0vie8vXHUwMDEyreB3R1x1MDAxZGruSUCdNFxu3MRcdINRrFx1MDAwNT/Kn/vop+hLXHUwMDBiXHUwMDBmXHUwMDAymZ59hFx1MDAxM+w4oFpcXFx1MDAxOX1cdTAwMWPv3J+cjsvHnXvpl1x1MDAwZbbWLnZu1rONPbdjgMwqXHUwMDE3XHUwMDBiQMbV1Olgk/NMyF407ixcdTAwMTOyu1x1MDAxNMP4OsZ7g1x1MDAwZulVTJJBSDJQasFjMjcmXGKFJ1x1MDAxOWhcdTAwMTJ8RmpcdTAwMWR3XHUwMDE0vSRcdTAwMTjgXHUwMDFj5FTKmDxcdTAwMWMo6+FA6SPvPoWZQZ8llV/Dfvr2IdLHXGapwEtAf33fXHUwMDFl1U/vO+W9p3AnuNPt29udT7NDo+8sJXal9CwqRoqkMVx1MDAxYcVMYmLjXHUwMDEyXHIpaZBcdTAwMGJcdTAwMDSRnk5cdTAwMDCbtiHE31CBXHUwMDA1eGRUcmCC6kRUXHUwMDEzcdAr8oHmiFx1MDAwYkpCXHUwMDAxmjhrSlx1MDAwYnhNUu6OZcA8z9BcbkE/fejdpzA76u+FfUh3QvGJPaaXOMvo4rLbXHUwMDFkKdtjw7Pr44vC2tlheU1mXe6ThcuNXHUwMDEwpFkrwfh0XGKSXHUwMDEw3NNuSNBqlFx1MDAxY9KdUFxyxokk/kYgIPOI+Unr55NzY95cdTAwMTL6lqSDZdqdaFx1MDAwZZxoecZcdTAwMTimWkK+Y/jrKuE+ddjdpzAz4kui/qe2dvp+XHUwMDAwJrTLtrtEZNKV2D+765+vK1x1MDAwNVsjaNavZbmzl23gS9CeUshcdTAwMDEmOcb5tPdcdTAwMTm1oKtCudglY8DyrFx1MDAxONucXGZ/IeJcdONzWztRMlx1MDAwYpJleOH9bO3UKFxiTM3dQao4XHUwMDAzZGyJKIjt5tGu8Fx1MDAwYmJwe9ZZU3td/7rZ3MxcdTAwMWH0pCdcZkHMukw90pJyKqewKEj7MY7hpLBcdTAwMTZcdTAwMTNcdTAwMDeMkzXkISnfLqGXtupcdTAwMDNjXHUwMDA0pfY0p1xuWNJ7cOFcdTAwMTDBietcXCr+XHUwMDFm5IF+/Ffzv8b//ckh+Yl3LuWL/vKDXHUwMDA0vlVcdTAwMDaDUkh996rj0GD59Vx1MDAxZlx1MDAxZFx1MDAxML3/273feFifnT7/aE4+LpB6gnpcdTAwMDevXHRcdTAwMTX8+deXv/5cdTAwMGYteVxyMyJ9 yxO11253y=f(x)

f(x)=0, kai x=2

f(x)>0, kai x(2;+)

f(x)<0, kai x(;2)

Intervale, kur funkcijos reikšmės yra:

  • Teigiamos - grafikas yra virš x ašies

  • Neigiamos - grafikas yra žemiau x ašies

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da09cdTAwMWLLsv2eX1x1MDAxMeV8uVc6nt1VXf060tFcdTAwMTXPmIdcdIRAgKsjZPxcdTAwMWPwXHUwMDBie1xmJlv7v59qJ2HGXHUwMDAzju1sMGNpJlKAnrGnu6vXqkdXd//57v37XHUwMDBm0UOv9uFf7z/URpVyK6z2y/dcdTAwMWb+6cvvav1B2O3wLVx1MDAxY/896Fx1MDAwZfuV8ZPNKOpccv71x1x1MDAxZu1y/6ZcdTAwMTb1WuVKLbhcdTAwMGJcdTAwMDfDcmtcdTAwMTBccqthN6h023+EUa09+D///0G5Xft3r9uuRv0gfkmhVlxyo27/+7tqrVq71olcdTAwMDb87f/Pf79//+f4/0Ttyv1+93vFxsVx5VxiTLr0oNtcdTAwMTlXVGpcIiRj4lx1MDAwN8LBJr8qqlX5bp2rW4vv+KJcdTAwMGaq3t1cdTAwMWG5e2qul29cdTAwMWEt026XxOVx/NZ62GpcdTAwMWRHXHUwMDBmrXGNXHUwMDA2XW5IfG9cdTAwMTD1uze1r2E1av7sskT5tE/1u8NGs1NcdTAwMWL4lsNjabdXroTRgy9cdTAwMTPisbTcaYy/Iy5cdTAwMTn5RlxuXG6UNlx1MDAxYVx1MDAwNZHWglx1MDAxZW/6j5OQgUHtpJBagSaVqtZGt8VcIuBq/Vx1MDAwM2r+X1xcsaty5abBtetUXHUwMDFmn4n65c6gV+6zoOLn7n80WFx1MDAxYVx1MDAxYiApLdBaJVHIxyeatbDRjHyfXHUwMDA0YJRUaI0gZayKxTKojSWirVx1MDAwNiCV+KyvQW+nOlx1MDAxZVx1MDAxN/+JxdDnXHUwMDExteM/0Vx1MDAxObZayb7sVH/05c/xXHUwMDEzjyD8UfJX3ET//FZi5MVvXHUwMDE49qrl76NcdTAwMDRcZjopJTdccihcdTAwMTZqK+zcpF/f6lZunlx1MDAxOViDqNyP1sNONew00lx1MDAxZql1qvGdRJV/wGHcxFx1MDAwZv3Nu62HXHLavVxyi9X1SO72NmTZPVxuwHdHtzJcdTAwMWOM+1x1MDAxN6XT1jpFXHUwMDE2iKRMPNMo93xjVKCU73wjjVx1MDAxMUqAedIprfIg2ui222HE7T/shp0oXelxg9Y8XHUwMDFjm7XyXHUwMDEzIXCTkvfSuO35b4xh7q/4t/fx0Fx1MDAxZf/x+Pt//vns01PHnL+ejLb4294lf/5o+vyEg24q4WgylkWA8Vx1MDAwMJ5FOFx1MDAwN0fHXG7wXHUwMDBlzlx1MDAwYmJcdTAwMWbOq3fHw1DsZ5twiETgSFxui2ClIYi/Zcw4XHUwMDE2XHUwMDAyIzQ4lISGyFGqYi9HOVwiYNlcdTAwMDJXgN9pJVx1MDAxYfdcdTAwMWPnOM3jgFx1MDAxOLvKWUVk05yjhCFJZOJWZIpzIO771+CcyS9bIehPl72/XG5PxL4g+Lmva89hXyVcdTAwMDZQXG77XGZcdTAwMWONKJye39q46G91I9q8bH9pNi+3ro9Lp05mztqAQFx1MDAxOWGclqiNI1Yucfu+s4HHOyOdrVx1MDAwYrY0cNL+kFx1MDAwNlx1MDAwMyHBWWRcdTAwMTFpPaHzX5xcctjIYVx1MDAwNcg1XHUwMDE14NiKoLgqMVx1MDAxZLBWXHUwMDAwZTSLXHSYmkin6Vx1MDAwMNCgXCKlKKM2yFxu88HEvVx1MDAxNyaDqaL311x1MDAxM6G/XHUwMDE0XHUwMDE5XHUwMDE4nS59JFx1MDAwM3I84Fxyo2VuMiitX9hPl/eFbyTD4/7V9tdcYu/tXG6SgUK2LFxyaStcdTAwMDTEVVx1MDAxOZNcdTAwMDGxuWZccjtk1mm2PWWqopnjXHUwMDAyJlx1MDAwMymVM7FcdTAwMTBzLsi54Fku0Fx0sKS4wIB26FDNT1x1MDAwNahPa8fd07XwpNj8SCf0edD51Fk5Klx1MDAxMKz5UVx1MDAwYulcYpyTsd00plx1MDAwMlRcdTAwMDFwnyn2VtlWU/h6gYmX4Vx1MDAwMkvegjEqd1x1MDAxM3IqmEVcdTAwMDU43UdcdTAwMDBprUaYn1xuXHUwMDBlXHUwMDBlty9cbkel0vXNZdWFXHJ1Uru9LK5cdTAwMWFcdTAwMTVIXHUwMDE3WKVcdTAwMWQ4o71Gpfj2mFx1MDAwYlx1MDAwNFx1MDAwNFx1MDAwNIptbiWchNeMXHUwMDE3vIhVQFJcYlx1MDAwM1x1MDAwZXIqyKlgXHUwMDE2XHUwMDE1qOlcdTAwMWWCYl/ZXHUwMDFh5eJhNItcdTAwMGL216o3Z7XDvcPz9aszuiivbZ3Ib6vGXHUwMDA17CGAXHUwMDE3XHUwMDAxXG7B/lx1MDAxMU1cdTAwMDZcdTAwMGbRmMBcIrtcdTAwMGaCnDYkXFzWw1x1MDAwNZpcdTAwMWKIXFzh3EPIuWBcdTAwMTZcdTAwMTdYSpc+coGxwLrPiPnnXHJG+qa+3il/oqh9uHdXseaA7PrKcYFcYlx1MDAxY2pUxkrBMHKTXFygKFx1MDAxMCxcdTAwMDat2WpcdTAwMTKWyVwi41xcwIwuNDc3N1xmcjKYRVx1MDAwNklHMj2HaMlwfWh+LqieVs6Ld2rvtFEqbVx1MDAxN28+qz3xcLByXFxcdTAwMDCB8dpUgTSeXHUwMDEwYniNyUBcdTAwMDJTXHUwMDA1S4lNXHUwMDA2a7TMvGHA9ZQ+9ySngpxcbmZQgXHp0sfIIUolXHUwMDFkzj+heFbec+rkfqfZ7d1XzFx1MDAwMVC73m+vIFx1MDAxMygn0Vxip6xcdTAwMDRcdTAwMDMxXHUwMDExjplA2Fx1MDAwMKxcIi1JK1x1MDAxZqFPVzVrTFx1MDAwMNxYaaTNJ1x1MDAxNHMqmEFcdTAwMDVcdTAwMTamTlwiXHUwMDAwklVK2Fx1MDAwNVKLXHUwMDFlOtWPX2qldn9vp02tsHlUuNtcdTAwMWOtXHUwMDFjXHUwMDE5YGBcdTAwMDFZXHUwMDE43NfOJFx1MDAwMqdcdTAwMGY/qEJcdTAwMGJp2Dsg6SBcdTAwMTFsyShcdTAwMTWwK2O50llNcMy54Lmn34hcdTAwMGIspktcdTAwMTOhQ8Uvslx1MDAwYswobp/Ls1x1MDAxZFx1MDAxMW7avcuPnbNqv90tPJyvXHUwMDFjXHUwMDE3QMBU4DO+XHUwMDA0cmfD5DRcdTAwMDKhXGKsXHUwMDAzLVxinCBlbdanXHUwMDE0wUmFhjBh/2WLXHJiueVs8PjAW1x1MDAwNVx1MDAwZqfOKXJFNClcXMAw6HSuTauqd0ZcdTAwMTW8Pr4mp6j+ZTdrZCBcdTAwMDNGuHKolVTWXHUwMDE5l3BcdTAwMDPGZKA1e1x02lx1MDAxODaKQFx0lUovcJLNXHUwMDA2VrUkXGZaTVwi81xcoLRR2iaTR3MuyLng+YBcdTAwMDFMt1xmgPzr3Fx1MDAwMlx1MDAxM1x0m7p4tD2i4e1cdTAwMTE8XHUwMDFjd7unxX7nglaNXGacXHUwMDE4Z1x1MDAxM0lJPudcdTAwMTInI1x1MDAwNtJh4JcpgFx1MDAwMmn5IZeqaOa4gIibqozM6qRizlx1MDAwNc88/UZcXEBTI1x1MDAwNlaiVULOn15wWVx0h+ruoHal90rFsNKslb7sl1eMXHRcdTAwMTRQwDRglFx1MDAxNVxiiPYpXHUwMDEzoGCCsILhJTJcdTAwMWYu8CFQblxu5ESQXHUwMDEzwSxcItBTXHUwMDFkXHUwMDA0VE75LNxcdTAwMDWSXHUwMDBiXHUwMDA2NMLhoHV+u3NRXHUwMDFj3N1u6NueXFw1JpAmkCTR+JhcdTAwMDKATK1LYlx1MDAwN0FcdTAwMTnQypIgXHUwMDA0k3kqIM1Gjlx1MDAxNHmsIKeCmVTgfpF0XGJSkFQqXHUwMDFlRrO4oLvf2Dlf/3pcdTAwMTA508JuuXlCR1x1MDAxYjerxlx1MDAwNVpcdTAwMDRGIZHkXHUwMDBloGSK8U8uIHZcdTAwMTCMs+Qs2MxzgTFgrM+DyLkg54JcdTAwMTmzXGJapktjLiD0W0DYXHUwMDA1Nis40Dut252OOfu4d1Fxa9WP+6tnXHUwMDE3WFx1MDAxOUgrfFwikUJEPZl06LnAXHUwMDE59JtkgFNcdTAwMTKznmbEYJNGs/2Sc0HOXHUwMDA1s7jATc05RFx1MDAwMD/BTlx1MDAwYkxcIpxXr9Y6u7XtjW93I9O8aJ5cZs6qVyvGXHUwMDA1WrCPoPw8XHUwMDFjXHUwMDE4paWeXFyMwC5TgD6LTzg2miCxQ0g2uUBJsOhUZtOPcyp45uk3clx1MDAxMezUnEN2XHUwMDEwXHUwMDE0XGKfgTy/i1x1MDAxMK19XHUwMDFhtffL5qC/3aqYm539+tFgxaiAhVx1MDAxMGi0XHUwMDEyNCCgXHUwMDE0T81cdTAwMDLt0LLZjWSFMZlfpIjEnC4yu5VaTlx1MDAwNs89/VZZh1P3M1x1MDAwM2uIvMc8/yxCWFxcP9w4rF73JOyvt8TaWXd0fLZqZEA6cNJYyY6CXHUwMDAxmFxciiCdXG6EUixcdTAwMDY2XHT8OuCsU1x1MDAwMVx1MDAxOPZoXFwyQSSngpxcbp6ngsRcdTAwMDahT+xcdTAwMDLS4LRbwC4o4trJfcO0TTOqXGaPKscnjcLX6qpRgWFRkPF7XHUwMDE5+dBhOnJIgVOWTSZ2wSf2PM0oXHUwMDE1oNDSqjxakFPBTCpw07OMpCEljVrAKOhVo2p//+xEXHUwMDFjbTEyTj73tkg0V41cdFx1MDAxY1x1MDAwNs4olFr5wKGbXFyK4K1cdTAwMDJSWlx0YJtJSMr8qiStXGLJRz5yKsipYFx1MDAwNlx1MDAxNUxPMlx1MDAwMj/DPlx1MDAwZZjPzVx1MDAwNa4s966H3+6urm5Ob+F6XHUwMDE0qXVaNauAgFx1MDAxZFx1MDAwND8l7/NcdTAwMGJYpeqnLoJBI/3Ob/xZm/mFScjOjDBcdTAwMDbzKcWcXHJmXHUwMDFiXHUwMDA2U9lcdTAwMDBB6lx1MDAwNZNcdTAwMGVLhZ1iKVx1MDAxNKenxYvdxqHYO90rgF4xNuA2XHUwMDA37Fx1MDAxYWnyUVx1MDAwMVx1MDAwNn1qezMnXHUwMDAzXHUwMDFjx1xmpfUhucxvXVx1MDAwML6pkGdcdTAwMWbnVDCTXG7k1KRDyW+zXG5cdTAwMTbYuyC6vivW1vY/XHUwMDFm7jXU/rfK/VVIo+6qMYHintbGXHSfemzsM7NcYsqfwkLWgXNCZn5VkiQhwFc254KcXHUwMDBivnNBVFx1MDAxYkXPcVx1MDAwMUzPOmT/XHUwMDAwjMNcdTAwMDScZnHBeud8vbk1rKriut4s4TZtnkDmXHUwMDE2JaVORdFcdTAwMThIR4hIwkws8Vx1MDAxZn/eUaDRIVkt/Vx1MDAxOTH69TxcdTAwMDJcdTAwMTdI45x1miuCklx1MDAxMlx1MDAxNFx1MDAxZFx1MDAwMz9BPD/XXCJ7WpPCvYDWn7ixXHUwMDAwpNl4YvPot85Yqnc70XH4bcwqYqJ0u9xcdTAwMGVbXHUwMDBmXHUwMDEzUlx1MDAxZI9gvz/Gh4mitVbY6Iy1Xa0+OcKjsFJuPd6Our34boVfUWbt2H/aJd1+2FxiO+XWl6ev8/q0+FNcdTAwMThcdTAwMTAkxHFVXHUwMDFl1Mba1s+9/SZcdTAwMGWnZ/whXHUwMDAz3lx1MDAxYUicXHUwMDExNlx1MDAwYoi/Pnsqk0DUhvz8nE/ud+Rs6kBcdTAwMTJCXGLIL7tcdTAwMTfOsFx1MDAxMmFcdTAwMWb91YBcYuDP42I971GYOEPgXHUwMDE3MPSHj1hvYbw2XG5cdTAwMWZJP1bLjzL/9Vx1MDAxOXhcdTAwMTOD8PtcdD+Pd/76qUFmYFxcJpHwqlx1MDAxOFx1MDAxZi1cdTAwMTfjo+VgXHUwMDFj5fRcZn82SdnTXFxcdTAwMDTj9fWbwr0+rO9cdTAwMTbvdy5Gpah5PLo5zDbGiZQ3xLWV7FFbpWxqK1x1MDAxMKHYXGJcdTAwMDKprTbKeWv99UBOgVx1MDAwMq9u/etcZtj5cM76X6OWL3GwyN/TtstD4qflXCLx05K0rZ46S+aDYcZcYptIXHUwMDFmmX1cdTAwMDTQztbl5W5xz5XC3eG6Odv61nrIOFx1MDAxMjVcdTAwMDU+N9ZqUiRcdTAwMDWpyUg4oVx1MDAwZn5cdTAwMTnh/Fx1MDAwZV38zOuZvSrwx4w47m5+lZKAc1x1MDAwMdGylUzavcQs2KpcdTAwMDBcdTAwMTGWXHUwMDBiRFhcdTAwMTJcdTAwMTCn76JJLGJcdTAwMWWXbn5cdTAwMWNcdTAwMWXX9r50KdJbolx1MDAwN73Nrbuj6KNpZFx1MDAxY4coXHUwMDAy8oatXHUwMDA1tNbK1MJ37Vx1MDAwMuOPJmS9wzB8xTM2flx1MDAwZoZ+XHUwMDExXHUwMDBiX2/vfVJysOYwXFxcdTAwMTiGcnr+XHUwMDE4w1x1MDAxMKxbXHUwMDA0hnR3WT39svbx5rp5W9rYvN00p6dcdTAwMTfLgmH8mYVcdTAwMGXjtlx1MDAxOFiyQirB5p1cdTAwMTOT21J551NL9CAldlDN65mliOzlOmd8ylx1MDAxZbJxmjBTfmmW8qN8vcAs8KrAsIDLxWHyfW9cdTAwMDREXHUwMDFlfGj8xlx1MDAwN3NcdTAwMDPxtFLbVpv1z9tcdTAwMDebl+LTSePwulBcdTAwMTLZXHUwMDA2olJcdTAwMTSAZLWC0pmJo6HHQFx1MDAwNFx1MDAxN2i2WpWPe5pXPKJcdTAwMWEwkIxDq6TyXHUwMDA3/synXGZcdTAwMWSy+mQt+uZG6fJgqJaLQrVcdTAwMWNcdTAwMTDS1FCsNJZdI5WIds/CYGu73zi5XHUwMDE4XHUwMDFkfzl5uO5+7t/WTu9PT7ONQVx1MDAwMlx1MDAxOVxiQ344I2q/oHrSKEVcdTAwMWalcUhKsb1o3OulTHI9PJ5cZuPQSmfnnVx1MDAxM2FNqIRfXHUwMDA28tY4VMnR+qo4lMvFoXxZXHUwMDFjTstTkHZqypJkN4WkWOBExpNC+9NpuVRcdTAwMWW4+8rZybD9XHUwMDAw7c+X2XZcdTAwMGWlsIF2IJ0wypFwNrWMQYjAIFx1MDAxOaFcdTAwMWNcYsm+2OutY5Ba+cRJXHUwMDA3lu1gsvaZrFx1MDAwNFB+u0attD9cdTAwMThKMlx1MDAwNlx1MDAxMtr5Z4KSXHUwMDE26EC9hILM01x1MDAxMpaUljBV8v56KvP4694lfy6+V+pU4Gtccsoskqp4ePv1sHj39WBj87IwWsPL/bXuduZcdTAwMGVXSVx1MDAwM99cdTAwMDXk/Fx1MDAxYU70XHUwMDEzni41XHUwMDE5is6yXHUwMDA21srvJs+aRv1iXHUwMDFiNKy7XHUwMDFh0e9cdTAwMDOf6YU9UkPjM1x1MDAxZrlcIlx0gzxGvlBcdTAwMDFYpyw/wz40wFx1MDAxM+T7NVj4Mlx1MDAxYTlcdTAwMDf+koA/XfL+eirzXHUwMDA1kV/v89Dol++fnSedOk2KglU+WivnX824XHUwMDExXHUwMDFhe/Rtd1BcdTAwMTA02O+dtK5EZ+so21x1MDAwNvh4yVx1MDAxMvrJRmElXHRjU1x1MDAwNrhkXHUwMDAzfHyeXHUwMDFh+8LG6ddcXLPEtnRcZo5HxKfKXHUwMDFmXHUwMDFkYC21cMmDr5ZueP9ccjy/cDZfsofikqcoWYRcdTAwMTnC9rDFzT3scydccvt+4ET9YaJcdTAwMDU/yr/30W8p3umHnVx1MDAxMjonXHUwMDE32mrok8A9bdRFWD2+3K3IL26nXslcXGZwKvykiV1OXHUwMDFm8dasVe3kxkIkNNvbQlx1MDAxMnlsWppubte8OVx1MDAwZX/D8Vx1MDAwNVxmXHUwMDA0gVx1MDAwMO2kXHUwMDA1ZoBntC7TMyjplD9qzbK7btJwVFqB4Krm1vbqKN3pgvfXXHUwMDEzkS9F54KRYFx09Vx1MDAwMib3RX2/cHt1UVx1MDAxZe5XXHUwMDA23SiCwo2Nlrb56G9cdTAwMDaeNVx1MDAwNv54c21cdTAwMTDQXHUwMDE5TM1cdTAwMDDNXHL9JatcXKF9mj+8ZUZSrnL/rsqd6uzCOCvdaDM/9G5JXGbWXG5cdTAwMDOq2EI53Dkz7XK31M+a0p3j9EBcdTAwMTBcdTAwMTbR8UNCp/b9Jc1yRUlcdTAwMWGF1ago8+vyrCdrJfM9vVZIXHUwMDExv9FqXHUwMDFjhOlTT9ZIbc1cdTAwMDJcdMLqqFFcdTAwMTd6t7Rxu0bfXHUwMDBlcb+yv7VcdTAwMDdZo1x1MDAwMlx1MDAxMfhcYlx1MDAxNzpcdTAwMWZeZLtcdTAwMWJcdTAwMTJcdTAwMGXI9zxFXHUwMDE1OEBDbFx1MDAxMElcdTAwMTSU8oSZKJxEi37LX2VRv55eVibwmyuiX1x1MDAwMYjz5lx1MDAwYlx1MDAwM7voXFz7XHUwMDE3OVx1MDAxZWxVpqJcdTAwMWX+Xf+f0f8ueY1O6p1cdTAwMGJNSr37QVx1MDAwMlx1MDAxZsq93nHEfffIsyws9l2/d0D8/lx1MDAwZndh7X796fD5R318+WVcdTAwMTVj2HuAje2CP/9699d/XHUwMDAxxIRcdTAwMDfAIn0= yxO11-253y=f(x)

f(x)>0, kai x(;5)

f(x)<0, kai x(5;+)

Teigiamų ir neigiamų reikšmių intervalus galime nustatyti ne tik iš brėžinio, bet ir algebraiškai.

Kaip rasti taškus. kur funkcijos grafikas kerta koordinačių ašis

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da1PjuFx1MDAxMv0+v4Jiv+ytWrxqvbVbW7fCQHhcdTAwMGWvMLxubaVM4iSGJFx1MDAwZY7DXHUwMDA0tua/35aB2DFcdTAwMDTDLpl1qpypISDZlizpXHUwMDFjdbdarb8+LS0tR3dcdTAwMDNv+belZW/ccLt+M3S/Lf9i02+9cOhcdTAwMDd9zKLx38NgXHUwMDE0NuIrO1E0XHUwMDE4/vbrrz03vPaiQddteM6tP1x1MDAxY7ndYTRq+oHTXGJ6v/qR11x1MDAxYv7X/txze95cdTAwMWaDoNeMQicpZMVr+lFcdTAwMTA+lOV1vZ7Xj4b49P/h30tLf8U/U7VzwzB4qFicnFROXHUwMDEwmk3dXHUwMDBi+nFFQXNjtNBCTK7wh2tYVuQ1MbuF9fWSXHUwMDFjm7R8WP+6ts133d6XsL7Z0DvDY32/nVx1MDAxNNvyu91adNeNqzRcZvBNkrxhXHUwMDE0XHUwMDA2196p34w6T22WSp91V1x1MDAxOIzanb43tK9cdTAwMGWT1GDgNvzozqZcdTAwMTEySXX77fhcdTAwMTlJylx1MDAxOP9S3Fx1MDAwMcYoaEYlUUImJdv7KVx1MDAwM4cyXHUwMDAzkmmhOKFEZCr2OehiL2DFflx1MDAwMs/+S6p26Tau21i/fnNyTVx1MDAxNLr94cBccrGvkuu+Pb4yk8SR2lxiSVx1MDAxOJNcdTAwMTR48jpcdTAwMWTPb3dcIltzR1x1MDAwM1xiRohiSlx1MDAxYWrStfHiTtFcdTAwMTLTXHUwMDA1NWqSYasw2GrGY+PPpCdCXHUwMDFjVVv2jv6o2003Z7/52JxPYyhcdTAwMTlF9DHle/KO9vr11OhLSlx1MDAxOFxymu7DQFx1MDAwMUVccsMmlspcdTAwMTA9ye/6/ets8d2gcf3C2Fx1MDAxYUZuXHUwMDE4rfr9pt9vZ2/x+s0kJ1XlR0jEr7g8vlx1MDAwZur9nrvDXHUwMDA27cF+uNpZ3T+uNiY9YJsjaIxs/alDOcW6Ylx1MDAwM1x1MDAxYlx1MDAwZYC9kbqo7Vx1MDAwZezbXGJHXGLChcI+UERcdTAwMTDFn7VK11x1MDAxZEafg17Pj7BcdTAwMDFcdTAwMGVcdTAwMDK/XHUwMDFmZWtcdTAwMWS/UcVisuO5z3pcdTAwMDHfKZ2XXHUwMDA178A+McG6/SS/LSXDO/5j8vufv7x49cxRXHUwMDE33/1svCWP+5T+fnz3t9NcdTAwMGWTfCbtXHUwMDE4XHUwMDA0XHUwMDFjk0YlYziPdlx1MDAwZVx1MDAxYee6rndDvls7XHUwMDExu1x1MDAxYtHVQOz0i007YJhDXHUwMDAwKEeC1YJcdTAwMTLJpniHXHTM1jhcYpFzcLiZubHOdFx1MDAxN1x1MDAwM/5/TjuMg8NcdOOa4WSghEnV5oF1XHUwMDAwe4sySnTSXHUwMDE2RaJcdTAwMWSt5VxcaWf6YVx1MDAwYlx1MDAwNP7ZnW8/K8/6/Z3ox7b2Xlx1MDAwMr9cdTAwMDSdTX1cdTAwMDI/05JTXHUwMDAz5O1cIoc8v2mt3lx1MDAxYa9ye1ivjILT9ftcclxiioZ9cIRcIsrIeFx1MDAxMuRIt1x0tz2RgVx1MDAwMkqNZT1JlZ4mXHUwMDAzMNpcdTAwMDFNXHUwMDE4MrBcdTAwMTJcdTAwMTRQSJkjXHUwMDFkMMKQf7GqXHUwMDA0XGbHiS7h6Vx0XHUwMDFmUOrgsFGSXHUwMDE4XHRcdTAwMWMpKlWdJz5ALjCal3zw4XwwlffBZDCz6+3nWad/XHUwMDE0XHUwMDE5pIZPhlxmuMGpUadcdTAwMDThXFz1ozLQZ5utM9Gh58d+0PlydH7xeVx1MDAwMblAMCmBKqPxO2md+IGornCkY2xcdTAwMThcdTAwMDNCpqSGgjKB0pazuExcYr1kgpJcdF5mXHUwMDAyRbKpXHUwMDEzJlx1MDAxMFx1MDAxMkFjTDLc86iA7uzwtZ1rqmt9tXO00T38ptf2XHUwMDE3jlxuqEM4XHUwMDA1YSiK11xi+ETwjp8oXHUwMDAwO0pzaaxcblx1MDAwMZzyTFVcdTAwMGJHXHUwMDA2+EKcXHUwMDE4XHUwMDA1STeWZFCSwctkYGbqXGKARIBcdTAwMTNK2siVx1x1MDAwNs37aLVdPVJrl/REanNR3brqd1x1MDAxN45ccsDRUnIliGFcdTAwMDRFoyQ7flwiVY6QzGDDXHUwMDEwrosvXHUwMDE4cEGFUMyUXFxQckFcdTAwMGVcdTAwMTcoOlNFwHlcdTAwMGZcdTAwMTVcdTAwMDSi3i5cdTAwMThcdTAwMWPWT7vrN3V2eq8uW1x1MDAwN7vq6NvJ1ZeFo1x1MDAwMoYtjW2sXHUwMDE4J/glMvZcdTAwMDLCXHUwMDFjgzSn7YRLNXZX0clcdTAwMDBvXHUwMDE3XHUwMDEyXHUwMDA0Le1cdTAwMDUlXHUwMDE55JGBmLlyIEFcdTAwMTOJgvI7yMBcZr7C0fqB3F1cdTAwMGYuVr0vurehw4UjXHUwMDAz6lx1MDAxOCY0MJBE64ztUFx1MDAxM4dSzpXUXHUwMDA0hVx1MDAwMp1aVCkmXHUwMDE1MFx1MDAwM0ozzksmKJkgh1x0dGq6eMZcdTAwMDRCKtSKXHUwMDEzhTmPXHRa7bqqno429vXq2Wbt5r4+rp34XHUwMDBix1x1MDAwNMxRXG5FXCLCbT5T07ZDoVx1MDAxZILYwlx1MDAwYjhnQI2Yny/Dx3CBNEhoJi3clVxcUHLBy1xcwE02daJcIiitqJLs7VLB9mrLu9rvX1cru1x1MDAxNYTb9mD3blcuIFx1MDAxN0hCNZVcdTAwMTRcdTAwMDeqpimpKfYv4Fx1MDAwZY5irTjKXGZSgoJMTYtGXHUwMDA1ikuKOlx1MDAwMimXXHUwMDExSirIU1x1MDAxMLTIpk7EXHUwMDAyrVx1MDAxOJuyOeVRwVx1MDAxZKxccoLw82BlRXerwuPm9qixsnBUwFx1MDAxZFx1MDAxMFxcKE6NXHUwMDExXHUwMDFjL5qmXHUwMDAyQKbgVFFKkVx1MDAwZnjKN6OYVMA4XHUwMDE1lNBSQyipIFcqSK00ZVx1MDAxN1x1MDAxMah1b9ZY4NtVXHUwMDA0OLjfurmknZXz6uDusrr75eJoXHUwMDExvVx1MDAwYlxmXHUwMDBlUkOAWumATatcYlRcdTAwMWJHXHUwMDFiVKyUIVxm/4uim1x1MDAwYlBy0Vx1MDAxYZQsPY1KNshlXHUwMDAzPdO/QGqCslx1MDAwMX/HMsLtWv3i9HhbNXbqO8FRL2iaK3m6cGTAXHUwMDFkxLrAN6coXHUwMDE4yWn3XHUwMDAyvMex7obWOG+45LLo7lx1MDAwNUxTblxm6FJHKKkgh1xujJi964lcboO6pn6HvYC1Ro1t+vnsMLr2Tzp+q7qyf7V4XFzAXHUwMDFjoEZcdTAwMTHGXHUwMDE5fqWzYzLgyiGcXHUwMDEw4DiOXHQ+p+BcXCCRXHSMIClcdTAwMDNwyVx1MDAwNSVcdTAwMTfMWFCc6WlEgVxiXHUwMDBlVuF8M1x1MDAxN+iwetY8rlxmLi5cdTAwMGZXzlx1MDAwZseKXlx1MDAxZJ1cdTAwMTduXHUwMDFkXHUwMDAxoc6tV6FcdTAwMTRMaFx1MDAwNHtKTVx1MDAxYcevrVx1MDAxZEkkY0Qz0HZjwjRcdTAwMTeAcYyUWthVRWxcdTAwMWVSdMGAc1x1MDAwMqBpKVx1MDAxN5RcXJBrO5wtXHUwMDE3XHUwMDE4XHUwMDE0XHRA0ndsR9hX3UFtN+Tj25swPHdcdTAwMTlcdTAwMWb4XHUwMDAxWzQu4NjUsYexplxiIWWm3Vx1MDAwYixVaFx1MDAxNCaowNZcdTAwMTGCXHUwMDE2XS5cdTAwMTBI5lLK0nhYckG+8XCmuUCjZMlEWtPMo1x1MDAwMtJUtYNRq73tbp/dXHUwMDA09Yu90K9cdTAwMWMvXHUwMDFhXHUwMDE1SIk6XHUwMDAwkiBcIlx1MDAxZC9jyeb4XHRcdTAwMTUwoeyqoqBaXGJS9DVFsPuSXHUwMDAwWLlcdTAwMWShJINcXDJgs7csSyCgxDu8XHUwMDBlYfV6U3lepbtcdTAwMWb078+OO93APy3cluU8MtBcdTAwMDbRTlFBIExxZUhmIVx1MDAwMXVcdTAwMDRFXHSRhlx1MDAxOKPSu1x1MDAxOIvJXHUwMDA1TEjGtSx1hJJcbnKpQM7cjVx1MDAwMMC54Ia8Q0e4XHUwMDFmbVxuXHUwMDEy+aPK3rq+XHUwMDFm1IZcdTAwMWJReFxcOFx1MDAwZuRcdTAwMWMuYEBcdTAwMWQlwcQ7/pVRZNrXyHKBpFRcdTAwMThcIrhgUlx1MDAxNZ5cdTAwMGKosn5RUMxcdTAwMThKJVx1MDAxN7x49b+0jsBmO1x1MDAxOIBcdTAwMTRCS/GOMEYnK1fDinuxs3p9ODKrXHUwMDAx2Vx1MDAxZnlDd9G4gFx0h1x1MDAxOUJcdTAwMTlTXHUwMDFhIU8zW5MoJVx1MDAwZVDbXHLYXHUwMDFmRIMsurdcdTAwMTFcdTAwMTfGlMbDh4eVZPA6XHUwMDE5yJn7XHUwMDExrLqsNDP07YJBZXPYXGY3mrtnXHUwMDE3XHUwMDE324dfOlx1MDAwN3u91k590chAoJJgXHUwMDFimVxiXCJcdIHMmlwiclx1MDAwMTOgrVVVXHUwMDE4KUnRXHUwMDA1XHUwMDAzYFx1MDAxMlx1MDAwMcd16WxUkkG+s5HKpk6sh1JgiZS8nVx1MDAwYiS73b87P7s7rIVjt9a6PN9cZmRjwbjAaMdwxTSmK1RcdTAwMTN4Zk2RgkNcdMdcdTAwMWXSUlGpSeFcdTAwMWRcdTAwMGbtuzBcdTAwMWKwreSCklx1MDAwYnJcdTAwMDRcdTAwMDOYuSNBXGJcdTAwMGVAXHUwMDA0vN14WN+5+9pr3Mva9U3lql11u+5Kc9GMh4AtzVx1MDAwNOpHUliDgcnYXHUwMDBikFx1MDAwYoBI63lcdTAwMDFUS1P0UCaKgsZbS3tByVx1MDAwNLlM8Ip/gYWC3bv79kVF93zzrlx1MDAwM6ebp53h2c0+izona3eFXHUwMDBiZZJHXHUwMDA1nDtGc0zX1l7AMz7ISFx1MDAwNZJwq4Fr62JcdTAwMDCFXHUwMDE3XHUwMDBiiMFGoLpcdTAwMTRcdTAwMGJKMsgjXHUwMDAzILM9XGawIFxygrB3uFx1MDAxOFB52vDqV81LXHUwMDFkidv2zeFcdTAwMWVx2e2isYFELUFIXHUwMDFiwMxcdTAwMWFcZnh2VVx1MDAxMelAK6G0jVx1MDAxMM+lKnxcdTAwMDRcdTAwMDNEXHUwMDFlMjolZfjTklx1MDAwZfJlg1fYgCqlgPG3s8H+pdw5M2dHXHUwMDA3u7JyXHUwMDEzrlx1MDAwN0eVXm20YGzAbPBcIlwiKXmIXHUwMDAyorKbXHUwMDE1wTg2WDxcbt9KorpQ/DBnQnNuwzOWu1x1MDAxMko2yFx1MDAxNVx1MDAwZcjsXHUwMDAwqDiEYty83YLIzS1cdTAwMTmeXHUwMDA2W2drN/1d0VZcdTAwMDdcdTAwMDf3XHUwMDE3i7aawFx0d0Apjq2N13GZXVq0LkeEXHUwMDEwIVx1MDAwNMpcYlZAKDpcdTAwMWRcdTAwMTCK7MXLU1x1MDAxMko6mNBB5I2jl+iAznY6okxb7TlcdTAwMTXgJ1c2XHUwMDE4XHUwMDFlb5zVxjvrN9fV7traylx1MDAwZftcbltFI4Pp45IocHtcdTAwMTRcckpB9tgtVFx1MDAwMTLYJ1x1MDAwZaZKgUOX2MEr5od94zBlbOBcYspcdGU85Vx1MDAxN5og/9mxbMCZ4sDoXHUwMDA3TPxTXHUwMDE574A0alWQjiD/XHUwMDBlSLeCflTz7+PBRqZSq27P795N9Wo8gm3knOWppErXb/fjXHTPa02P8MhvuN1Jdlx1MDAxNFxmktxcdTAwMDZcdTAwMTbh4lx1MDAwNFx1MDAxOT5vkiD0237f7Vx1MDAxZT8vzk6pm099XHUwMDAxTqo3Lt2hXHUwMDE3T7iYrv8mXHUwMDBlX3H4sdvhRPpwozwgvn4uXSGByKl0UJ2lXG6sb1x1MDAwZtdZXz+uXHUwMDFjXHUwMDFjaCBASq3VXHUwMDFjY1x1MDAwNkB8MKMxMVxiVdLHr6CQoZqA7EA+YL59XHUwMDFkhVx1MDAxM9JPpuVJn79+RObUIHw4+muS8/1pXHUwMDA2KVxmxsc/XHUwMDE24+OPxXgrxGHxdF7rU01cdTAwMWZxzmeu2FGipbJcdTAwMWJg3r5kN9zax/mre7ri9T9fX9G94Hx4sFZsmD/EXGbDydZcdTAwMTAu7SmFUyhcdTAwMDdgXGI+1MopSC5RXHUwMDE0mqdZXHUwMDFlRfpcdTAwMTePQp1Kf9r2r21cYmTxb86z/0B0/mBBNd1AScpzgfQ9QrjfXHUwMDFidfF1XHUwMDBmQmykUWjHTVx1MDAxNI5Sb/CY/tBGc0BcdTAwMWZcYtR8Ubt7h1ct6W/J9bOroHV/se5cdTAwMGVY6J6snlx1MDAxNU71nUZcdTAwMWZcdTAwMTPKoXZcdTAwMTdcdTAwMWSK9jhpiYzdi2FPXHUwMDFhoJQqrTheM09F9z3oszGFUSX6kDD+JfzmXHUwMDBiv5lW6Jlua4ahqIXT3juQV69pw7bumuud1p2qsP1qdForNvLwXG5cdTAwMDdFXFxcdTAwMDI4ilGNZ3p6PdpcdTAwMWWIXG5cdTAwMDSlXml3/aW9wj/8NHAmXHUwMDFjIVGjXHUwMDEwgjBJzYtcdTAwMDIuOGAvUNaF1lx1MDAwNv/PXHUwMDAyklx1MDAxMo5g5KY8ZGeBLEwze95+nvf5c0J5XHUwMDE197NcdTAwMTRbSClyz8zN9lx1MDAxY860PTV3I1x1MDAwYq+Gbr1yfLjudzfajftcdTAwMWKPjknhgO8gvLngXHUwMDEylUJ7rFx1MDAxNplcdTAwMGWIhfB3rGNcdTAwMWVcdTAwMTikXHUwMDAxXHUwMDFiWG5aXHUwMDAy5tTRXHUwMDAyUD7WQlGlzPyYXHUwMDAw64HFXHUwMDE4iopcdTAwMWTK2/ptqi7YoJg4gD5i38o/sjillMm5W5z+aP08/s9cdTAwMGY2O2XKnKftXHTI7P0lXHUwMDE09X6BdJBcdTAwMDAmXHUwMDBmo/761fXN9c3m4V5QXHLG6mBcdTAwMTQ0vMPCYXRcdTAwMWGSoFHwRaFXouxrj5ufgiRqrPEpoaiwamJcdTAwMDM+zVx1MDAwZpHMYcLYXHUwMDAwXHUwMDE4SoBcdTAwMTHsXHUwMDA1XHUwMDAx+Vx1MDAwNURag5mCXHUwMDBmXHRJtyiI/Jn8vnT3g1x1MDAxMZktc66IhJmnTlBBXGZhXCJpqjw89lb8y1x1MDAwZbRcdTAwMDMzPtXkZL23Olx1MDAxNtuFXHUwMDBiXCKZVVNRXHUwMDE40VpcdTAwMTPNrFODYNNcdTAwMDFhMMuhRnGKk6RGeXl+saGEcJBcdTAwMDBccieAklx1MDAxMcL/rXOk4sxcdTAwMTD1XHUwMDExh0osXGZcIse/L5FcdTAwMWaNyEyZ80Skmbk8Q4FQY/BHonPkxmbYJLfS9Kpfd8zu6Yr7dbxxXi/4OilKq3FcdTAwMTAmYiThXHUwMDAw2WVSXHUwMDA2XHUwMDBlQ1hyUDai81x1MDAxYz0kXHUwMDAwJ2NcdTAwMWJcdTAwMTDCXHUwMDEwYFK9VWpVwoaUMepcdTAwMDOcp/9cdTAwMTkgIT1Y51xuyP1cdTAwMWaLxf2/XHTDT4/q6rI7XHUwMDE41FwibLHlJ4tcdTAwMDB2kd98fO2k6OVb3/u2+nzQ/NSKP3ZRK4a2XHUwMDA1UWyu+uv7p+//XHUwMDA3dMaL0SJ9 yxy=f(x)(0; y)(x; 0)O

Taške, kuriame grafikas kerta x ašį, y koordinatė lygi 0, todėl ieškodami šio taško koordinačių, į funkciją vietoj y įrašome 0.

Taške, kuriame grafikas kerta y ašį, x koordinatė lygi 0, todėl ieškodami šio taško koordinačių, į funkciją vietoj x įrašome 0.

f(x)=13x+12

Kerta Ox ašį:

y=00=13x+12

13x=12

x=36

Kerta Oy ašį:

x=0

f(0)=130+12=12

Ats.: Kerta Ox ašį taške (36;0) ir Oy ašį taške (0;12)

Tiesės x=a ir y=a

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daU/jyNb+Pr+i1ffrjeec2muk0SugXHRcdTAwMDRIsySsr65QSExIyFx1MDAxZbNezX+/p0JcdTAwMTM7XHUwMDA2k4SG4EjOaGiwy3HZVc9z1jr13z++fftcdTAwMWU89Pzvf3377t9XK61GbVC5+/5vd/zWXHUwMDFmXGZcdTAwMWLdXHUwMDBlnWKjv4fdm0F11PIqXGJ6w7/+/LNdXHUwMDE5XFz7Qa9VqfrebWN4U2lccoObWqPrVbvtP1x1MDAxYoHfXHUwMDFl/p/7+bPS9v/uddu1YOCFN8n5tUbQXHUwMDFkPN3Lb/ltv1x1MDAxM1xm6dv/n/7+9u2/o5+R3lVcdTAwMDaD7lPHRofDzknU8aM/u51RR1x1MDAxOYLiYLlcbls0hj/oXoFfo9OX1F8/PFNcdTAwMWLd5npLr/xcXH/Mw/Dy8XzzqJr3d1vhbS9cdTAwMWKtVil4aI26NOzSk4TnhsGge+1cdTAwMWY3asHV8zuLXHUwMDFjT7pq0L2pX3X8oXt0XHUwMDFjXHUwMDFm7fYq1Ubw4I5cdTAwMDGMj1Y69dF3hEfu6S+umIdcdTAwMTI4XHUwMDA3rTWTjI/Puuu5Rs8gs8wwXHUwMDAxWlojY1x1MDAxZFvrtmhcdTAwMTSoY/9C3/1cdTAwMTd27aJSva5T/zq1cZtgUOlcZnuVXHUwMDAxjVXY7u7XI3NcdTAwMDWeMlYq6otiKMLHufJcdTAwMWL1q8D1nPqCklx1MDAwM2iulWVcdTAwMTZcIr3xR4OCjCmpLZ1cdTAwMWafcX3oXHUwMDE1aqPJ8Z9wKFx1MDAwNjStXG7uks5Nq1x1MDAxNX2fndqv9/k8icJpxH5cdTAwMWT5J3xI1349Mv3CO9z0apWnmYKaWc65e4s2fKpWo3NcdTAwMWS/fatbvX5lclxyg8ogWG10ao1OPX6J36mFZ1wiXf6FidEjfm+sbNy17zrweFRcZton5+X8ca25O1x1MDAxZVx1MDAwMvc6utVcdTAwMWLXf+YxwbibXGbcXG5EYyNt6pWee1x1MDAxOOlJXHRCanrHXHUwMDFhJGjx4qW0KsNgrdtuN1x1MDAwMnr+vW6jXHUwMDEzxDs9eqBcdTAwMTWHySu/8mJcdTAwMTDokaLn4uDtuW9cZrHuPuFv38LpPfpj/Pt//v1q68RZN7r6xXxcdTAwMGK/7o/ov7+efXba4Vok0Vx1MDAwZVxuIJjNwzonl3uPXHUwMDBm8OhcdTAwMTeGOf9Hbvdk+35tNeWsI1xmesBcZldcYtwqq1wivOK+QFjuXHUwMDExjjVcdTAwMThcdTAwMDHGKKV1rGdcdTAwMWZHO5NjjPT/S97hXHUwMDAyPVx1MDAwMVxcXHUwMDE4Lo0kXHUwMDE2XGabPNNcdTAwMGVcYoXcXHUwMDFhm1baXHRH9jNoZ/LLllxi/cmD7z65XHUwMDE34z4n/Old+6+hX7G3lFx1MDAwZSAuwoigmFx1MDAwNn/dP+ld92vNXHUwMDA36LXKR6Xti3P/cC9t8EdPatBWcaa0XHUwMDE1RLjhXHUwMDFieOZcdTAwMDOarkR9glx1MDAxOVx1MDAwM8KqSTWEXHUwMDFiT0uBUj+NXHUwMDA0V7GufiRcdTAwMWZw4Ixb6iqgXHUwMDE1JOpCplx1MDAxZVx1MDAxM1x1MDAwMiOdiTqjwCpcdTAwMTRWiEh3nvVcdTAwMTBDtEaXZ3zwwXwwce6DySBx5N3nxZh/XHUwMDE0XHUwMDE5SFx1MDAxOT86Jlx1MDAwM6DpzrVks+tcdTAwMDLbze1+Ta3+bFx1MDAxZdShX6hXL+qrpcJcdTAwMTKSgZTcWSPCSsF1zCYhXHUwMDE1XHUwMDE0aFx1MDAxNCSzWlhcdTAwMTYxXHUwMDE00slcdTAwMDX0OIxJzLgg44KpXFygbfxoyFx1MDAwNc4usFKGLaZxwXCX75pcdTAwMGK9v55f7W+s4nopV1+/XFw6Llx1MDAwMFx1MDAwZqRlmmYsJ7k/SVx1MDAwNcyiZ1xmI4vVajRcdTAwMWFtrKNpo1x1MDAwMkvGXHUwMDFk6TahWZ1RQUZcdTAwMDWvU1x1MDAwMYFcIolcbtCgkdIoXGYlyjQqUP3e48ndxc5D4TK30Ttu+qrQ/7lsVKAtgZ00XCKyXHUwMDA0XHUwMDA00zL82lx1MDAxMVx1MDAxNSjjIdc0maVjXHUwMDA0+EyPwYdoXHUwMDA1dL0hOy8ktIxcbjIqeJ1cbniihSCF1dzo2XWCy93r4i1u7W1cdTAwMGXqevN456FyetJcXD6dXHUwMDAwPTKw6T1ri5zJiC91xFx1MDAwNEJ4klxiQkippVx1MDAxMlqn3VlgJTeMdJu0alx1MDAwNSFFZVQwbvBFVFx1MDAxMFGA41pcdTAwMDEqXHRcXLJIXHUwMDA0b1x1MDAxYVx1MDAxOWxud5tbt/29i1teuVvh51x1MDAwNVaqXHUwMDFmLVx1MDAxZFx1MDAxOYBnJc1TqZCBXHUwMDEyk4FcdTAwMDRSXHUwMDA0PG1cclx1MDAxM4hcdTAwMTZpsD4vfPlBfkNcdGjoaVnGXHUwMDA1XHUwMDE5XHUwMDE3TOFcdTAwMDLDIX50zFx1MDAwNYqIQFpuZueCIDjO/9zy9fnGznXvqnJ4cDs4XVs6LkBCu1SMXHUwMDEx2IlcckJcdTAwMTCNvtBcdTAwMWFPSYaCJrJWOvVcdTAwMTZcdTAwMDIyOieJ2NJcdTAwMWFUzLjgldZfxFx1MDAwNdIkclx1MDAwMVx1MDAxMFxcjFx1MDAwMTNHXHUwMDFh03mlfNTtrD5cdTAwMGVvz1x1MDAwNVxmL+6sat8tIVx1MDAxNyhcdTAwMTL5ZFx1MDAxZHFrpFWTXHUwMDExRdTCs0DqlJFCjEYq5WxAllx1MDAxZWM6vWRcdTAwMTA+U0ZcdTAwMDbjXHUwMDA2X2Qk2OTkXCJuXHUwMDE0coU4u8dgZfegr4rQq9WPyJ7ebPH+z5XS0pFcdTAwMDG9ao3KKC1BR9LanrKNpPBcdTAwMTgq4Vx1MDAxMo3oS2za/Vx1MDAwNUiqjUtcdTAwMTLRXHUwMDE5XHUwMDE3ZFxcME0xYCx+9JlcdTAwMGJILmpcdTAwMGVMzW4jnFx1MDAxNI9EsN41LICrpjnYb/Ry2/dLR1x1MDAwNejRIFx1MDAwMJAoRSFtLPGQgyc0WVxujFx1MDAxOTpt0p9oXHUwMDA0zEiyeTCtcYSMXHUwMDBiXmn9RVxcYFx1MDAxMrNcdTAwMGKQaVxyZDTPkV3Qq1x1MDAxNq9211x1MDAxZbrl08fb3v7hduFcdTAwMDKON5eOXGaYZ0glstZoI1HAZHqBXHUwMDAw43EmjVx1MDAxMUB8wFhcdTAwMDShKWVcdTAwMDNcdTAwMGXGgrWZZpCxwTQ2oK9LYlx1MDAwM2OAW1x1MDAxNs1zn0ZcdTAwMDblzXXbPHps2PyB1NeHW3v9pu4vXHUwMDFkXHUwMDE5oIdCXHUwMDE5dIBHXHUwMDE5WYAxyjo02lMuwcAyZbmSafdcdTAwMWVcdTAwMTJncclcdTAwMDWELyddTFx1MDAxMOpdXHUwMDE5XHUwMDEzjFx1MDAxYnxVUDEx1WhcdTAwMTRhVzhHXHUwMDFjoWvKrbtO9/zwPldcdILmXUlcdTAwMWPUUqdcdTAwMTZwXHUwMDAyOkpCsuTSjJ5xglx0JChPMS5cdTAwMDRnhoNb/jFJXHUwMDA1XG48KUChRYmjRUpp51x1MDAwMq1cdTAwMTl1OrW+w4xcdTAwMGJeaf1VvsNErUDQvcgwnsNfsLNcdTAwMTF0muXcrjKNtdwx5INmgz0uXHUwMDFiXHUwMDE3cPDQKFxyZFwiWcHFZNYhl9ZcdTAwMTOkUFhgqCymPqbIQDGphIC05lx1MDAxN2RU8ErrL3JcdTAwMTdgsrtcdTAwMDCMXHUwMDAytzhn9lWKu8OVm+BicHW82lx1MDAwMCyeP7RO7W172bhAXG5cdTAwMGZcdTAwMTRcYiZccjCtMc5cdTAwMDXGs1x1MDAxY1x1MDAxMTi6peTMxDqaNi7gZFx1MDAwNXFn6mRUkFHBXHUwMDE0Klx1MDAxMG8sRpBcdTAwMTY1ScjZ1YLr9k5cdTAwMGVK/f56mf5dg8smsG5z2ahAa4+7XHUwMDE1vlxcXHUwMDE4o6SMLVEkXHUwMDBigbn0K7d2XHUwMDFjl8BvyIxcdTAwMDZteGpXI2RcXPBK6y/iXHUwMDAy/cZ6ZVx1MDAwMZK6Msd6hKo8XHUwMDFimuAkX4ZSWZxcdTAwMGbuXHUwMDA3TaymbmHSXHUwMDE0LlBcdTAwMDCepqNcYpa7NclhV565XHUwMDAwaYxcXFx1MDAwMo/RTKadXHUwMDBitHCsZWVaqSDscEZcdTAwMDXjXHUwMDA2X1x1MDAxNEJcdTAwMTCJyVx1MDAwNaiBa+pccp/dQmiVb6o5XHUwMDE1WLmGur2+enVz3SylLtFoXHUwMDFhXHUwMDE1MO5cdNBcXNAvrqRMLIbgik1cdTAwMTE9XHUwMDEyXHRYI7hNe84hXG5XXHUwMDE1XHUwMDBlVWpNhIxcdTAwMGJeaf1FXFygXHUwMDEzVyNcdTAwMTBIUIGco6LZWVVcdTAwMDX9+7V+f8VfXHLsoFuty4vUJVx1MDAxYU2jXHUwMDAyQVx1MDAxNoJ2flx1MDAxMis1alx1MDAxM7pcdTAwMDOeqcCS3eAykUhr4Cb1iUZKwGSedEZcdTAwMDVcdTAwMTlcdTAwMTW8biFEXHUwMDA2I24hSMlcdTAwMTjZmTMzwcH6j5Or3MmVPT25Uz9OhyeXXHUwMDFifm/JmIDATVin1+8yXHUwMDBilDQyXHUwMDFlTkQyXHUwMDFmtDaCSeeeN+lcdTAwMGZcImh0yyZSXHUwMDFiT8y44JXWX6RcdTAwMTaw5LVcYqCkXHUwMDFkoWJmNti5u1x1MDAxN9uXpfxRa6d5c1o4XHTui2dnS8ZcdTAwMDZcdTAwMDJpKDRXyoLzXHUwMDE2yFilQ1wiXHUwMDAzZYCTumRcdTAwMTVjOu3FzVC6/FxiN5RcdTAwMTlcdTAwMTdkXFwwhVx1MDAwYpJzXHUwMDBiSDKS0SzVXHUwMDFjxVx1MDAwYupC9Lb4xeVqddAqnVxysHX2o1BeNi7g3HNaNdAv/GVA0ZVmJ1x1MDAwYkIr5phcdTAwMTJSvzBJMqIvXHUwMDE2LVx1MDAxMp8uLlxi9ZWMXHUwMDBixlxyvoZcdTAwMGJcdTAwMTCSs1x1MDAwYrhwtUzmqXR4W3moXHUwMDFlVlnv6qSck5tH3cJNb39n2bhAkpWgOSpcdTAwMDRJ+jXEI4rMXHUwMDEzrlx1MDAxYarSWrlqQWlcdTAwMGYjuGXVZCekNqKYccErrb9IL3hjXZLRgjNcdTAwMTnVg6dxQf524+p6uN/dWnvcN1vFXHUwMDFkv9a5PlkyLlDKeK6qKXLiQoviZf4xXHUwMDAwszRcdTAwMDZcblxcXmLa9Vx1MDAwMjpqwJB2lylcdTAwMDZcdTAwMTlcdTAwMTlMV1xmXHUwMDEyc400k2A0m6OSiVx1MDAxZVx1MDAxY/ZvuP/QyrPOdunospc/8JfNSFCWXjVccoBcdTAwMDaysmlEXsZcdTAwMTSZ5lx1MDAwNq3VQFdj2lx1MDAxNVx1MDAwM1x1MDAwNsqCUiy1K5MyMnil9eeSQeDfXHUwMDA3r5FcdTAwMDFLzjVcIsig05PlXHUwMDFjS5NcdTAwMGX2++t27Wht69q075qs2F1p7qeNXGYm90mSQGo/c4t60Vx1MDAxOCtZbJ8kMlx1MDAxNjwuUVx1MDAxMCkgJ1h9XHUwMDFl9q3HtSVFTTFcdTAwMDGMXHUwMDBiXHUwMDFlRjND5L/Yjc3Sh0ulP8BcdTAwMDaYODFcdTAwMDekpVx1MDAwMmZcIlx1MDAwYrTmgPRlt1x1MDAxM5RcdTAwMWGPT4ltXHUwMDEzR/OVdqP1MDGoo1x1MDAxOfyXXHUwMDFilYlDK61GvTNcdTAwMTJ3/uXkXGZcdTAwMGZcdTAwMWHVSmt8OuhGglpVukWFxOPg5SvpXHUwMDBlXHUwMDFh9Uan0iq/vJ1cdTAwMTOom89jgV5kNC4qQ38kbp0+/U5cdTAwMWMmJvpcYk1Twug5XHUwMDE09Lc3o0slXGZJqnpgXHUwMDE4N4JrJclcdTAwMWWZXHUwMDE0wcZ4qIV1SVx1MDAwZaS1i3i/Plx1MDAwZYVI40okbEdcdTAwMTCMcONcdTAwMWJcdTAwMThExVxcmOFDXHUwMDAy92+DcMz5oVRcdTAwMWWP+dtcdTAwMWJjTszBp/2+xmf+eVx1MDAxNiBTIP6uXGbhd0H8frFcdTAwMTC/X1xmxE1yXHUwMDAxQYvOL1x1MDAwNbMjPLg82j8/3uKd9Yfbwka9ivnS4Xm6XHUwMDExLozwXHUwMDEwXHUwMDE406SbSobx/cc081x1MDAxNFlcdTAwMWYjz1x1MDAxYlx1MDAwM/uJSjYxjUQnaYEkutvUZCaUk2JcdTAwMDDW7eL61ZJ2cTDcXSxcZndcdTAwMTdcdTAwMDNDkVjfm1x1MDAwYtL2aFx1MDAwZc6RUHu0a1x1MDAwYqIhN7bhJrexWe7dXHUwMDE3znm6YUiGhedqb4BcdTAwMDTgmrN4XHJcdTAwMGXpWUFcbi8woS3jn5c/K6lcdTAwMTckZ1xyKkOSkyObUdZcIlx1MDAwMZZ/iJ/r92D4rqj3u2CIi4UhLlx1MDAwNoZcYm+4pJlyg6xn90I1+NqgtcX8i9Jpfvua7dzmusdXKVx1MDAwN6IwnlXaXGJrXHUwMDE4iUU2WTGTXHUwMDE0YbJcdTAwMDc1mYM04Vx1MDAwNbLPc0AjXHUwMDFmVfHV1kjDXdL8TIansFxmJEnEXHUwMDBmSFBbXHUwMDE2XHUwMDFj8sXikC9cdTAwMDaHyTWqXFwhV1x1MDAwMdbOnjx2trrZuGndrone/mlNna4+/uiU0o5CKzxcdTAwMDPMbYDtKvTZWH6IUVx1MDAxZWiyvoVUnKtPXGZcdCPzuLRuW3KJXHUwMDEzYZw3hSEn8Wk/ZFubZVx1MDAwMaFcXCxcYuViQChcdTAwMTNTOFx1MDAxOVx1MDAxOUNgo5uuTFx1MDAwM+Hjaq12uq1cdTAwMGZLvVx1MDAwM1s+POiubNyubaVcdTAwMWKEQtL7NNZcbiUl8uhcdTAwMWUyT7vRkig0ylxioZyG/om1oOhGczt/yGJFRtLwXHUwMDAzYi2/h8F3XHUwMDA1Vd6FQbZYXGayXHUwMDA1YfCtXHUwMDFk47mwQs+OwcLx4KJu71x1MDAwZrqHp/ViqXm5q6CdutVVMVxmXG6SQIrgx5jztLLJxVSCWVx1MDAwZtzCXG412uxcdTAwMDI+MVx1MDAwZcLQMy5cZiZJLZ7ZLCRcdTAwMTltLWr4crNwcSjMLVhcdTAwMWbNLUghTd5zSWjlgvBmjkyl9nB37+ZofaXC1u/O7N49rFxcpq72QVxmhzT/3URGO9qOXHUwMDA0Ym5SUkjJVmTcVURDXHUwMDE1cVV9OFxmmSdIIdVkXHUwMDFiKpLNoMJX8Fx1MDAxNlx1MDAxMNFK59D5iNSDpVx1MDAwMeKC5WHug1x1MDAwNWJynlDiXCJDi1KQijRH/vBgs/jQO2edXHUwMDFjr7ZEodUpY+XMTzlcdTAwMTI584B0QePCjlx1MDAxOK2z8LS90aiCKWdkXCJz81ZcdTAwMDFcIlvl6kK+XHUwMDFmiWGvxsDjqD2yulximFxiXHUwMDA2MNK1cbkhXHUwMDAxhkvN07qA0EancJZcdTAwMDL0svWLIVx1MDAwZa/+I/rvvKhmPDH+wVx1MDAwNOeWq3mS/7aOzlx1MDAxZjZyfaxcdTAwMTVcdTAwMWJcdTAwMDdcdTAwMWJXm4V8WaWuXHUwMDE0cczhI4UnXHUwMDE0XGLjaviLqI/5XHTVxpNAXHUwMDEzXHUwMDE0XHUwMDE02aI6soLihXy1XHUwMDFhq2zBqFZgMcU1xDJQT2n9aaBWydlDo4yZeYpcdTAwMDf+KNU7VTPYzLf2YWuwXCL60M510lxyapLPnnJldOi9XG5BNmxcZtTWUySvNenWmpNenVx1MDAxY9WkNlizi0U1Q4ZIylx1MDAxNmayOoP1XHUwMDA0rE2iS4pcZmFjlZpcdTAwMDPVpZX16tr5fXl4dli971x1MDAxN3Mrg0uZ8pxALslcdTAwMTRcdTAwMDZcdTAwMTebdKn5iDrmXHUwMDE3ZookuTJcdTAwMWNIKnLgJlx1MDAxOda+q1x1MDAxOIzvhzVX0jPo6qpcdTAwMThNZGr5K2n5Yd/Dkp9cdTAwMDBMRPeEynCddlxcJ4907PLfXHUwMDAyNtpEJ5dLRddao5hcdTAwMWTa7WbH/qi2Tlx1MDAwZoWPxVrFNlx1MDAxZoPH1C3BiUFbkEg2JJKNS/jVXHUwMDEx63nkbVx1MDAxNsztI87c1sHKuPBsMrKNtFBdNLK5c8+R7ZBOiW0jrz9D9vPnY5GdmNaUjGxcdTAwMTJkXHUwMDEyhI4m1U1D9v36UflcIr+7s9O5Kuz92Ngs53EldXEk9KSVXHUwMDA0WSlpXHUwMDAy2ok9/J5cZm5wOVx1MDAxNNJcdTAwMTUlXHUwMDAzKeNuNMs9xbk04PKfXHUwMDA1qDdcdTAwMDJLv2lxc+25jEOJOHPSL1x1MDAxYdIuND3Sl2dYLM6dff/3glx1MDAwM0tcdTAwMTM3/NyUw2RsXCLpkYpcdTAwMDTv7FJ3cLqx1Xo4qlx1MDAxNYerXHUwMDA121xczZvdvcP1XHUwMDE0YtNwQiS4slx1MDAxN/QjspD9KfvJekyhNaRcdTAwMWVcdTAwMGLUkymIaJnnXHUwMDEy9SWZzYJx+0Zd7d81m7n0iDqsJItGXHUwMDAy0UTYyzfASbThmPzzl91Mw6aJzt5PxuaC858mbvip2ExOy0eXlS/c9lx0M2Ozh7ftnvbPisOd4mrnLles7Vx1MDAxNVO3PMZhk3HSfVx1MDAwNWlcdTAwMDVcdTAwMWOEjFWrYSRcdTAwMTmZXHUwMDA0l1x1MDAxNUjQlJMqMkkmj0s3XHUwMDAzOenIJDqT98L53fiTUFx1MDAxZWHS5b+A1Wrm5ETOXHUwMDAxlbJfn5y4SHguOlx1MDAxNjx5x89cdTAwMDSoTt6fRroqKpLPITtr56d7qINg3e5sNjpnVds6zKd83YxixiMlXHUwMDE33e61+KLCLHNqrLajXHKYkVx1MDAxMZQ/0Vx1MDAxN0WykjhBgZ01RdF5JEHA16+ZWVx1MDAxY1x1MDAxMlx1MDAxZv5eMFx1MDAxMCdu+KmCkiVmZUjpXG5cdTAwMTWwOfJcdTAwMTRr11x1MDAwN1srw25+bfeQ71xy+MW1tXup2z4yhkO3WyTQ9Kd5JUWsVItA6SHJTEJcIlx1MDAxYSF0ssb6u34jwT1JKORKzp4rzMBIXHUwMDA2IL8+S/Fdnt93XHUwMDAycdF5ipN3nFx1MDAwYop//HJcdTAwMWV9r/R6pYDe2/dn/1x1MDAxY1xyVKP26+HDu3+/bfh3qy9nzr8uR1x1MDAxZrfEflx1MDAwNG9cdTAwMDckf+Ts++ePf/5cdTAwMDdcdTAwMGZMmXwifQ== yxO1352-3-2x=3x=5x=-2y=2y=-3

Tiesė x=a yra lygiagreti y ašiai ir eina per x ašies tašką a

x=3

x=5

x=2

Tiesė y=a yra lygiagreti x ašiai ir eina per y ašies tašką a

y=2

y=3

Kaip rasti 2 funkcijų grafikų susikirtimo tašką be brėžinio?

f(x)=2x3     g(x)=4x+3

  1. Lygčių sistema

    {2x3=y4x+3=y

    {4x6=2y4x+3=y+

    3=3y

    y=1

    2x3=y

    2x3=1

    2x=2

    x=1

    Ats.: (1;1)

  2. Sulyginimas

    2x3=4x+3

    2x+4x=3+3

    6x=6

    x=1

    y=2x3

    y=213=1

    Ats.: (11)

Kvadratinė funkcija

Kvadratinės funkcijos grafikas - parabolė.

f(x)=ax2

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1d+09cIslcdTAwMTb+ff6Kyewv9yaX3jp16rnJ5mZcdTAwMTTfI+o4jo+bjWmhQVx1MDAxNGhsXHUwMDFhXHUwMDA1N/O/31M40m0rXG6zwDRcdTAwMTkwUal+1eN833nUqeq/371//yHut4NcdTAwMGZ/vP9cdTAwMTD0yn6jXon8u1x1MDAwZv9x5bdB1KmHLTrEXHUwMDA33zthNypcdTAwMGbOvIzjdueP339v+tF1XHUwMDEwt1x1MDAxYn458G7rna7f6MTdSj30ymHz93pcdTAwMWM0O/91v0t+M/izXHUwMDFkNitx5CVcdTAwMGYpXHUwMDA0lXpcdTAwMWNGXHUwMDBmz1xuXHUwMDFhQTNoxVx1MDAxZLr7/+j7+/d/XHUwMDBmfqdq50dR+FCxQXFSOSVUtrRcdTAwMTS2XHUwMDA2XHUwMDE1XHUwMDA1hsCYXHUwMDAyi8Mz6p1cIj0rXHUwMDBlKnS4SvVccpIjruhD09dba5vl2pY+7nc/71x1MDAxN1x1MDAwM35zv508tlpvNFx1MDAwZeN+Y1ClTkgtSY514ii8XHUwMDBljuuV+PKxz1Llo66Kwm7tslx1MDAxNXRcXNNhWFx1MDAxYbb9cj3uXHUwMDBm2sCGpX6rNrhHUtJzT1x1MDAwMutJzrVcdTAwMTRGXHUwMDBiobhcdTAwMThcdTAwMWV11yNHT2hcdTAwMDXCMkuf1NGHeq2GXHJcdTAwMWFcdTAwMDSq129cdTAwMTC4n6RmXHUwMDE3fvm6RtVrVYbnxJHf6rT9iIYqOe/uscVoPcvAXHUwMDFhZTU9UYNcdTAwMWWeclx1MDAxOdRrl7Frjac0XHUwMDEzTKGSoITkXCLVTcFgUEBJLaU2JrnaVaK9VVx1MDAxOVxix1/JUEQkVlvukla30Uj3Z6vyvT9cdTAwMWaFKFx1MDAxMSP+veRb0kp3/lpK/JIndNtcdTAwMTX/QVJAc4soXHUwMDE1/eZJjVx1MDAxYvXWdfbxjbB8/YJwdWI/ilfqrUq9VcteXHUwMDEytCrJkVSVv2Ni0MRcdTAwMGZnq/dnoluqs41ccnW22drr3Tdu/OFcdTAwMTi47lxiy92BXGZ5XFwygYZgwYyTXGKVOqnmt51IeCCYpl5cdTAwMTbIUFx1MDAxYWrUs15p+J14NWw26zF1wH5Yb8XZWlx1MDAwZlr00YHyMvCfjVx1MDAwMrUpfSyL3ra7Y1x1MDAwMnb3Sf57n8j34Mvw/7/+8+LZo+XOfVxuz0UuueG79N/vrVx1MDAxZp95ZFxumlx1MDAxOeZBrlBcIqpcdTAwMDTRb1x1MDAxMU9cdTAwMTDtXHUwMDFmnfbORFx1MDAxMFx1MDAxZl/dXdbEebTV2Mo38aBgnlCWKSlcdTAwMTlXRiZPXHUwMDFlXHUwMDEwj1x1MDAwNVx1MDAwZpCGXHUwMDA1lVx1MDAxMVx1MDAxYZjK1GuKxONxY0iSkcRaXHUwMDAwN0lrhrzDXHUwMDA1XHQ9p1ogaVx1MDAwNMmkTjTCI+9YQGNQyuTqX4l3nt5sgdBfXHUwMDE4OfpcdTAwMGZHn1xy/ITop85cdTAwMGVeNDvkSLODSJegwfX4Vkfp4365t39WrVx1MDAxNOx6sLq/U1vvwGbewFx1MDAwZp7UTFtF3KatMFYmXHUwMDFhesBcdTAwMDZEw8DAkLxyxUBA0j/ujtxcdTAwMTJZgEZtOGjDXGaTM+NcdTAwMDPmkV4jrUBVJbUgSFx1MDAxZCZGT8JcYtxcdTAwMDOQWjHrbCORMlwih4ZcYlx0XGYyvSSEqVx1MDAxM8KTY1Nlg1eG3n2eXHL6tMjAiGzpI1x1MDAxOWglrORWJ2B5i1xmbqo3XHUwMDE3XHUwMDFiN+2r3fLe1f7OXpFv7zfMwpGB8Sx3nYxCaWr/U6eEK0VWXHUwMDE5N1x1MDAxYVxyXG6QyuScXHUwMDBitEFcIjaDdklcdTAwMDVLKnidXG40M9nSYTiCXHUwMDA2XHUwMDBimDUsXHUwMDExo7e4YPXzhX/88aC3Y4+idvV85/KueC9cdTAwMTeOXHUwMDBitCdcdTAwMTCUJVeTaSFcdTAwMTPF3/9umUvhflxiY8DE7NyEKZlcdTAwMDVcdTAwMWNcdTAwMDCZZalmLLlgyVx1MDAwNS9zXHUwMDAxjvRcdTAwMTHIXGJmXHUwMDAy077qmz5CZ0ufb5xcdTAwMTZvzq4j3274t4VepFx1MDAxNpBcbrgk71x1MDAwMJRcdTAwMDCRjVx1MDAxOLhApmHMuuEhniCBzjlcdTAwMTdYLlxygyVcdTAwMTEsieAtXCJQI/1cdTAwMDNAw7VWiidi9Fx1MDAxNlx1MDAxM4S9QvnkS5tHZydhp1dtrnza2cndXHUwMDFjxVx1MDAxOFx1MDAwZYJkLixjjJEozdNoXHUwMDAxWOVxJq1SXHUwMDAyhVx1MDAwYu/oTFXzRlx1MDAwNSA0WXacXGacJVx1MDAxYizZ4FxyNrA8WzqMXHUwMDE2oJZcdTAwMWGYXHUwMDE530NYXHUwMDBiRW/74lx1MDAxOM9cblx1MDAwN6W4XHUwMDE0nFx1MDAxY13fXHUwMDE3mlx1MDAwYkhcdTAwMDbIJVxuSyDiWqgkctp/XHUwMDEwY0/QXHUwMDEwKGJcdTAwMDTg3ELew1x1MDAwNcRcdTAwMDLAXHUwMDE5/KpzmEsymIBcZtLS/CxeYFx1MDAwNSqrJ4hcdTAwMWSeXHUwMDFk+JtfXGZcdTAwMGa2y3u17dXq9kVcdTAwMDM264vGXHUwMDA2gnnkZFx1MDAwM41cdTAwMDWRIcdsQoO0njVcdTAwMTZcdTAwMTjZXHUwMDA1PO2G55NcdTAwMGJAcUWDyJdUsKSCt6jAjs4n0DRmRk6QyNS7aZ+d3oedXV1cdTAwMGWLe9FFXHUwMDEwmsP7RWNcdTAwMDLnJIB1I2FcdTAwMDCVTKyiXHUwMDAxXHUwMDExoPXIdWKMgetcdTAwMWGDmYrmjVx0kFx0SVx1MDAxNVx1MDAxNUk9l0ywZIJcdTAwMTFcdTAwMWXCKzmNUmpNbvH4VHBcdTAwMWF+Plx1MDAwYlbXK6u95uFG9GllZ1xySrmLXHUwMDE3uKQ0Mni4csFcdTAwMDCrLSTtXHUwMDFiUIFCz1pplEbDuEtcdTAwMTF8ylx1MDAwNcA9ztBcYlwiXHUwMDAzujvK2aU5TiteYCRDVGrJXHUwMDA2SzZ4g1xyyMxcdTAwMWTFXHUwMDA2Slx1MDAwM/nFwMePXHUwMDE37LK1XHUwMDFiW1x1MDAxNqbY2WAnzfWjRowhLFx1MDAxYVx1MDAxOVx1MDAxOO1JaYFL1EpcdMGfXHUwMDA2XHUwMDBmXHUwMDExwFx1MDAwM7qWmMAlPmP+uUBYLZTK7ZRi0vtLLlx1MDAxOJ7wk7hAvFx1MDAxNi6QVFx1MDAwZjuBk/DVL7Tuj+ud9WbHL6xF29FcdTAwMTWe21x1MDAwNSNcdTAwMDNBaHczqcJcdTAwMWFLflx1MDAwMntcdTAwMWE7RGCeXHUwMDBio7iRkkLkPlxcwIGhVdzovKZcdTAwMWEtueCFs39SvCA1Z/hsVpFLMMjk+KHD09LhauvqkDf92q4oru/elj7dXHUwMDFlLlx1MDAxOFx1MDAxN3AhPHTRNqmM81x1MDAxNXTWS0BPXGK6r3RpWNLIvM8qWoc5I3NcdTAwMWI8XFySwVx1MDAwYmf/JDKQmC19JFx1MDAwM5eAzDny8XONimFgV5px7eupWPvcalx1MDAxNFx1MDAwZrprXHUwMDFmK4vGXHUwMDA1SntkVTNLqGeQxvojXHUwMDE1oHBLXHUwMDE1pCSryeZ9StG4loLQeV2MsGSCXHUwMDE3zv45TFx1MDAwMGx0vFx1MDAwMDiSo2lJ9Y3NXHUwMDA1oSqr1ZXVi5ZcdTAwMGXjo5WIXHUwMDE3jd9YWTQusDRcdTAwMTZ64CUgaX7IrFQkLjBcdTAwMDLoOiCrSaPKf1x1MDAwZTIq0Fx1MDAwMCyvwcMlXHUwMDFivHD2z2KD11wiXHUwMDA2aDWDXHRWKZuPXHUwMDA1sVx1MDAxN1x1MDAxY15+6Vx1MDAxZVx1MDAxZrFStG0u+u32gpFcdTAwMDFcdTAwMDI5XHRCXHUwMDEyXHUwMDA3glx1MDAxNGhZJr2Ajlx1MDAwMnCttEJF/pPNVDR3XFygXHUwMDE1wc7w3K5NWnLBXHUwMDBiZ8+WXHUwMDBi4qBcdTAwMTe/xFx1MDAwNZhcdTAwMTKSLFx1MDAxNVx1MDAxOESuOGPjc8HGWvu4UlXls+I6bqzeVLb6ndtG3rggs2OBtJ7bKUIyXHTU91mngPjAY8xwLlx1MDAwNrtJ8NnZXHUwMDAxlsxcdTAwMTFrjVVcXDAyyTCh6Fx1MDAwNPmpUOVjWiFjXHUwMDFj7FS2KHhyYEJMi1Q8Ylx1MDAwMkxXw1Z8WL9cdTAwMWbQXG57UrruN+uN/pNRXHUwMDFkiPBcdTAwMWZuWJ5cdTAwMTR9bNRrrYG6XHUwMDBiqk9FPK6X/cbwcFx1MDAxY6a0UplcdTAwMWXhk3qMnndJXHUwMDE41Wv1lt/48vxxTqFuJvvWpIbjwu9cdTAwMDRcdTAwMDN162DzY0BUI511zshcdTAwMWNVXHUwMDFhcHxcdTAwMGL99b1hclx0RPK4PZSCXHUwMDAxV8KQXHUwMDA3nsns4cKzQklwSyOMwtk550BcdTAwMDNLNGxcdTAwMDcgTEVcdTAwMGJfQSFxhyXW1lOYrHtcdTAwMWSEQ9JP1PJwyF/fpuqJXGY+bL4xPPLtUYO8XHUwMDAxcZNcdTAwMDbCTCHemy/Ee/OBuFx1MDAxYWl1c9JAZFlaNj7Cte62z9j18SbeXHUwMDE52C7K/l67U843wlFcYs8l7Fx1MDAxM8ZJqoTOTNFzJPxrrchcYjdki89Q1ZI9T8qedC1cdTAwMWLwqlx1MDAxOVx1MDAwZuWAXGKWWTaNXHUwMDE0/n+ma+dcdTAwMDfEvflcdTAwMDJxbz5A5KPdX85ccllTSow/SXZ5rLf21fHJkVRxx+D95orFrzlcdTAwMDeicqtnJENDXHUwMDAypTVmYl9oPEWgIHCQ18vF7JJopUdWtUvkVYY8XHUwMDFlXHUwMDA0Plx1MDAxNlx1MDAwZZUy3Fx1MDAxYT6FQNeioFx1MDAxMOaLQpiTOlx1MDAxY71bXHUwMDE2t1qgnSBcIt3qtVxmXHUwMDE2rqKT45OgfXp3rHTn9jznIFx1MDAwNJfJzoRcdTAwMDHGXHRcdTAwMDHqaczJhadcdTAwMTlqXHUwMDE0Rritw2a47v3HQFxiTCpGnqqduc37XHUwMDE2XGZtWliXMJxcXFx1MDAxOY7MXHUwMDE4caFcdTAwMWZDqnBcdTAwMTK/M1xc7emoUDDx+WV9tdFcdTAwMGaLm9e5W3qawaGBgd1pnF7hyFQmQVx1MDAwNMktNdaQVrTk5c1wXCKIrNJJXHUwMDFkT0AyV5gx00hcdTAwMTlfXHUwMDE0XHUwMDE08vmikM9cdTAwMDeFOHp+VpHTXHUwMDAxYpKE7rVC4byxXHUwMDEztC9cdTAwMGVLpW65uFx1MDAwMp9vv57kXHUwMDFjhYx8Q2TMRb5cdTAwMTGFzpqk1mNMcKWV2554hlx1MDAxYkVcdTAwMDJSNUhcdTAwMWJcbkDmXHUwMDE2142LQ2WJXHUwMDFk2DS2evhHOEyJ0axxWJizOizMSVx1MDAxZuqR+7JIqVx1MDAwNdfpXGbCt4BYi1x1MDAwZuql7Y/b+qh3f9k32ydnvJu7TVxcM1vHa7dcdTAwMWaTMEa7TCmpn6lD7bldXHUwMDE3yPZz2zTOMF2Sk48qrdVcblxc8rNlKumD15BoXHUwMDExXHUwMDE4umzpX1xiiXNWiYUp68RqRGP3+I6Jx6o+5iqM3iWJOlsqUDB+qObwq91fK510O2vF8PCqd7TR+3yR91xy1ZXwyDZcdTAwMTWoXHUwMDAwnFx1MDAxOZBZysCY52ZpmVCkXHUwMDE4Qc90XHUwMDA3ZZaeXHRcdTAwMWVCMFOebJ3u6Fx1MDAwM6aRpvxPYPiDuVx1MDAwNlOe2U/3UFKSXFz3LnP9OFlcdTAwMGL1ZrdBzd2PqJO6kVx1MDAxM5w46qZa8L38oY9+XHUwMDFjfiO3JVx1MDAwMlx1MDAwNpLEUU2QXHUwMDFksLl1cLVcdTAwMWXefOlcdTAwMTe7u1x1MDAxN/JSXHUwMDFlXHUwMDE3rktRzuFH9iBcdTAwMDCXkkTJrZ54OinJrfEsk6jdO1xyJPXFLJdcdTAwMTVOXHUwMDA0P0WGitFcdTAwMTKmkFx1MDAwMbSE32zhN9IjXHUwMDFjrfm0RkncOsF6/6PW59LN6epcdTAwMWHoI77x6bZcdTAwMTidYHs359Bj2kNO8DJSkD/GdCZA6nZcdTAwMDYlMTfo8vVhhoYocE+7XHUwMDAwqdaWWzXmZKFcdTAwMDYyodH8Slx1MDAwZaGYr1x1MDAxNSrmaISO3pyPOUNcdTAwMDcnmKn4dLYlitfhJ2ub1dLBWtNfa9q8I9EoXHUwMDBmNSOJXHUwMDE2hlx1MDAxYpV9i1x1MDAwNycgkn/GlFFKa6VnuW5mXCIlSOShXHUwMDE5l/Yn58YtleDsbFBGzI9mgtfqdEytcveRXXf0fjW6+lxcubYrh7V8w49cdTAwMWLpaTdcdTAwMTVIrq42NuNcdTAwMDJyLj2uuNuCnjQlm+HL/CY1Qd2+PJZPYy/sJfpyiT7N3Fx1MDAxYiQnmJeofjGH+377sFnWnc07OFx1MDAxNvFFM+/zXHUwMDEybr85aS03bmrQZsIvhD3JrFx1MDAxMFx1MDAwNE9wXHUwMDAwzFx1MDAwZviMkELg0v/LP/hGrdKSfKRcdTAwMDOIXHUwMDEymKJcdTAwMGVcdTAwMWVcdTAwMWZ5zZXr84v+/W3UXHUwMDE329C+7Fx1MDAxN/rnndN8I4/cOnLwUCsrXHUwMDE4WaAys6NcdTAwMTPpQk9rYSVcYi7cXHUwMDA09OywXHUwMDA3SJ6olC43XHUwMDA2kSrEXliUXHUwMDA1QrvF46CVk/wnKaWPaWvAqJJqXHUwMDFheWvLRVlzWpSl3aJcdTAwMDMmhZbaMFwieJu++vmQv3W70YI0qI1nLWqujdBkyJHov0BRrzLJyFxmn1feP+VSW9ys5vhR3L09re+/3G6d9izD2/ubuFE738lcdTAwMWKVSI9Zg+SNclx1MDAwMaCkyWxcIqvBrVx1MDAwN1x1MDAwNcVccliwXHUwMDA2MqElpGFXVE63oIGycnZcdTAwMWWtYlx1MDAxZSnpwZylezvoi8s9nzFcdFrFNDf4sl+bcMPXm+1ecy3ePSjXqlx1MDAwN1x1MDAxYq3dTzsnd8Hjso85hqCSes46XHUwMDA0Vf3Xyb//nPPikewzZ5urp7OliS9sXHUwMDA0N2aSV8zedbY3WKdcdTAwMWbAtrg864LaK++VgsVCsmBAXGZNSCUzXFxalVpcdTAwMDb58MpcdTAwMTjrWSR2I1x1MDAwNiczwopcdTAwMTlcdTAwMDaJwUPLmXvv8Mi0oaRxw11cdTAwMWVBcuZeUP6LIDlcdTAwMTU6XFzwLD/xgN9337v/g99uXHUwMDFmxtRjQ+uMRrJe+d7s5NFcdTAwMWZu68HdynPZ+q06+LghXHUwMDFkcIJcdTAwMDPfwHn4+9u7b/9cdTAwMDdTgO8xIn0= yxO112-1-24f(X)=x2

Parabolės viršūnė yra koordinaąčių pradžios taške O(0;0)

Jei a>0, tai parabolės šakos nukreiptos į viršų.

Jei a<0, tai parabolės šakos nukreiptos į apačią.

Grafiką galima braižyti sudarant reiškimių lentelę iš 4 - 5 taškų.

  1. f(x)=x2

    x01122
    f(x)01144
  2. g(x)=2x2

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daW9cIklcdTAwMTL9Pr+i1ftlV1pq8ojIY6TVXG7fbt/4xKuVhaHAmNNQ2Nij+e9cdTAwMWJZblNFYVxmZoxdzIIldzsri8rKjPdcIlwiMzLy91++fftcdTAwMWU8tv3vv3377veLhXq11Ck8fP+nK7/3O91qq0mXRPh3t9XrXHUwMDE0w5o3QdDu/vbrr41Cp+ZcdTAwMDfteqHoe/fVbq9Q71x1MDAwNr1SteVcdTAwMTVbjV+rgd/o/tv93i80/H+1W41S0PGih2T8UjVodZ6f5df9ht9cZrr07f+hv799+z38XHUwMDFka12h02k9Nywsjlx1MDAxYWeUSZbut5phQzlnaI1SJqpR7a7Rs1x1MDAwMr9El8vUXj+64oq+X6/jdfu0VMs/ZHQum89jY/9aRI8tV+v14+CxXHUwMDFlNqnbojeJrnWDTqvmn1dLwc1Ln8XKx93VafUqN02/616dXHUwMDBmSlvtQrFcdTAwMWE8ujLGXHUwMDA2pYVmJfyOqKRPf0nNPCZcdTAwMTX9XGKLWkk5uOruXHUwMDE3lnlcdTAwMTI4XHUwMDAyXHUwMDE4rYzliWattuo0XHUwMDA21Ky/cd/9RFxyuy5cdTAwMTRrXHUwMDE1al2zNKhcdTAwMTN0XG7NbrvQoZGK6j28vLDknlTcamONloxZPahy41crN4F7XHUwMDE5j2vDXHUwMDA1MiEtU0JxjJrjh2NiLEil0Ebd59rQ3i6FovHfaCA6JFTb7o5mr16P92az9LM3X0QoXHUwMDEyXCLxs+SP6CVd/fWY8EVP6LVLhWc54VpYSVx1MDAxZuXkaXC9Xm3Wko+vt4q1V0SrXHUwMDFiXHUwMDE0OsFKtVmqNivJW/xmKbpcdTAwMTJr8k9EhK/4nT3024ytXHUwMDFld7cze5Uts3a4X1tRgyFw3dEq9kJcdPKAa2mFMShcdTAwMDA5aFx1MDAxNatUKbSpXG56QjOkXHUwMDExUkpcdTAwMWHOjVx1MDAxZOmUeqFcdTAwMWKstlx1MDAxYY1qQO9/2Ko2g2Sjw1x1MDAxN8o6RN74hZFBoFeKX0tCt+2+MUK6+0T/+1x1MDAxNlx0d/jH4P///eertcdLnftkRlx1MDAwNS76wl/i//58++lpR3OWLH2hXHUwMDFk5Fx1MDAxNkla7KDvJ7KOKFx1MDAxNS5PXHUwMDBmXHUwMDFmso+3qrFXWt2s1zbyXHUwMDE36WZcdTAwMWSw3GNAgmQll4hcdNZBYT2QTFx1MDAxOFx1MDAwMZxzmFx1MDAxZuuApyTToJGwKUHGXGJlQDpcdTAwMTKUh0qi1JwrXHUwMDEyh1x1MDAxMc5R0lqheUyPpItzXCI5mlx1MDAwN+dcZn/ZXHUwMDAyQT8zduzDqyPD/k7kU1/7r1x1MDAwMl/zZOlcdTAwMGLwSb9cbolMRyicXHUwMDA0/MY+9/e72Dip31x1MDAxZVx1MDAwN+umvvH4VO6kXHL43EPNtCX7QmlcdTAwMGKGjIxhJjDWU87A4Fx1MDAxNjSNQkxHhlx1MDAwNlxiao94QJNaoutMoUw09ePIgCxcdTAwMWQmiempqYxcdTAwMWGDXGZglFx1MDAwZYTwOCc7iVnFwVx1MDAwMkTo+klcdTAwMDdWWUvtTatcdTAwMDWyuGwwdO1DqeCNgXefkSH/KCqwdqzrYVx1MDAwMLXWKKc3XHUwMDAyTi+v26vw4z63YvZcdTAwMWU2XHUwMDBiXHUwMDFiXHUwMDFk7K01XHUwMDE3kFx1MDAwYkBaTe+uXGZDXHUwMDE5qdSQXG6k9KhMkGnkTGlcdTAwMTRpp1x1MDAwMi6o2GDclEtcdTAwMTdcdTAwMTlEvb8kg0GFryFcdTAwMDNcdTAwMTOT5pF5XGIpXGYwplwiXHUwMDE5nERcdTAwMDZrrJ0pyW4/V+xt7Z1cXJeV8W/uXHUwMDE3jlxmtEf9L1x1MDAxOVxiXHUwMDEwXGZib1x1MDAxZpJcdTAwMDFn5Kwyg0wxw5iMmVxy6SRcdTAwMDPURiojTXTvklx1MDAwYpZcXPAqXHUwMDE3WPnGnKTV5Fx1MDAxN4OJ4DSJXHUwMDBi/FpmLVfc2qvuPN1d9va3bXX/4GnRuMAyj5FVwC1pfyHZsGEgtfA0ILlxkilcdTAwMWK/mk4qoDuVXCLOXHUwMDEyUT8suWDJXHUwMDA1r3OBUsnSXHUwMDAxXHUwMDE3oCWsMPNcdTAwMGW74HzjvHr5kN3NVY5scCC3yzlTPVo0LiAnwVx1MDAxOMEkMkOjXHUwMDExM65DLlx1MDAwMOsx5lx1MDAxNm6IJ4S2XGKJlqaOXGZQKU2OQmrXLJZk8ErtryFcdTAwMDOn4caxgUVUyFx1MDAwNZveMFhZvdxSulc3d1snZ3xne+VMl25cdTAwMTaNXGbIMCD0aDdcdTAwMThkXHUwMDE4xZZcbkIyXHUwMDEwyjNIw8NcdTAwMTTSrbHZlHRygTFu1keYpV2wpIJJVFx1MDAxMF9MTlx1MDAxYVx1MDAwNlx1MDAwMlBpp1am5oJyoaUg2Mfj03r2x87tvf7Ra/ZcdTAwMTeNXHUwMDBiyDBgbqrEXHUwMDAwXHUwMDEzSqmEk8CUx4FcdTAwMDZcbi1DsMroREvTRlx1MDAwNtRYI1x1MDAwNVF6Sskg6t4lXHUwMDE5XGYqfJGTwMcuKnJJZlx1MDAwMeFFTG9cdTAwMTfUK/mL9Z3dg93i09pJn9d/lFx1MDAxZXJXaeNcdTAwMDJJYCZcdTAwMDdIKJSk2rXlkWHkuFx1MDAwMDl4yCxoNIwjmsTkoSamcFx1MDAxM1x0qI22LNnOtDFcdTAwMDFyRXZcdTAwMGVfMsGSXHQmT1x1MDAxZI63XG6kXHUwMDAxpcmDmH5Nsb9cdTAwMTbsZnZzXHUwMDE3Vl4jbtiTs82W3lg0JpDGY1poKbWbLlHDXHUwMDFlgtDas5ZbpoxbaeA20dC0UVx1MDAwMbdaS2MtLrlgyVx1MDAwNVx1MDAxM6dcdTAwMGXHTlx1MDAxNoDRXGbJW56eXG5wM7+jitnH9eJZhbF8867dPltfNCpQ3CNcdTAwMDZcdTAwMDAku5pcdTAwMGJcdTAwMTPTpy9UXHUwMDAwaLWDmJCQ+nlDXHUwMDBlRGs0jmldUFxcMsErtb9q3lx1MDAxMMaGXHUwMDFic07PU5zh9FxcUOj+KGxl1lx1MDAwZp82UHRWS7erKyuPx1x1MDAwYsZcdTAwMDXSgmeQoVx1MDAwNM5cXPBuMrzAuKFSwJgxSqNOfXiBYEwqbVhq51x1MDAwZSPLaklcdTAwMDeDXG5fRVx1MDAwN+M3PdGIXHUwMDExaKyafrpg96FcdTAwMTbc4cF6q1xcy+9ulFx1MDAxZvrq9rq6YGxcdTAwMDDceIJ0v5sr4GRcdTAwMWMlYpCJXGZcdTAwMDQzVlxiSaOFRqR96tByYa1cdTAwMWLFJVx1MDAxNyy5YNI6wlx1MDAxYjNcdTAwMDZWXHUwMDE4cMpxejJYK1x1MDAxY19cXObwnPe6t9dcdTAwMWJn901zzs2ikVx1MDAwMTDPXHUwMDE4baUyKIRJbIgkLtBkeFx1MDAxM7qYoH956v1cdTAwMDSiNVx1MDAxMEaxtO5PWpLBK7W/ilxmxk9cdTAwMTlwzVx1MDAxMZA8zqm5XHUwMDAwdlx1MDAxMezpWrelbtZJKtb7ldxO6tZcdTAwMTQncYFyboLlVqJGRVx1MDAxNsBcYlx1MDAxOVhtqNeANC6qtDtcdMT1wnKtl3bBklxuflJB4PeD16hcdTAwMDBi8WhJJlDg0lx1MDAwMYCMhmtcdTAwMTJcdTAwMTW0dJDtn1V2Jb8vli/rpdsnXU/d5qThXHUwMDFkysjcVnfNwG1C1krJYZ+AXHUwMDE4wXN7wslTolx1MDAwZof5hVx1MDAxNllPamuNVVx1MDAwMpiQXHUwMDEwi1xyj4A/silZcKqppYBcdTAwMGbQ+kNcdTAwMTfegWlUoJSKRuxcdTAwMWSYLreawXH1KaRcdTAwMTU2VLpRaFTrj0OjXHUwMDFhivBvbliGirL1aqVcdTAwMTlqO788LOJBtVioXHUwMDBmLlx1MDAwN612dLVIjyiQduyMdkmrU61Um4X6yejjnD7dirJUxIbjutD1Q23r9vTNXHUwMDA2RFx1MDAxY2+fg1wi4EtcdTAwMTHLlTFcdIhvp4JIJ1x1MDAxMFx0adLlXG6Q5NZcdTAwMTLSklx0SsBcdTAwMDPptuA7Ja3Qzk9cdTAwMDdzXHUwMDFhWXqQXHJRqF9JXHUwMDE1MFxuQy6eI5Y+YlbubVx1MDAxOFx1MDAwZWg/UsyDQX87K82QXHUwMDE0Pu+4XHUwMDFmXFz540WHTFx1MDAwMLmMQ2GuIO9/Lsj7n1x1MDAwM3JcdTAwMWVcdTAwMGJQXHUwMDE5XHUwMDAxuSFcdTAwMDOTXGbUqI8ngfzw8egsqJZbvWPf5DawXFw7uGKVdINcdTAwMWMseqSy6GXRXHUwMDAyaa3EXHUwMDA0nGWeXHUwMDEwklxmXHUwMDBmsrLlPON4XdhcdTAwMTB32pZxqTQ308FcXFlcdTAwMTRaxZdTv0jZQlxcWueKw4PPxeHBJ+FcdTAwMTDHWr2CWVx1MDAwNsooPT1cdTAwMGVbKzVcdTAwMTbk4HzTnlxcsfJ27TR3u3WYblx1MDAxY1wiKTlmLHlcdTAwMTKKVFx1MDAxYynW4WUxckE8S14vhFavwjnOfqFcdTAwMDdcdTAwMDRES9xn3C5gLqZCojAoXHIqNnd9O1x0iTNl+ppcdIn8c5HIP0sjjkVcIuHQJeSJxbxOXHUwMDAy4t5cdTAwMDUrXV/mty7u5fpOd+fo+K7bXUs3XHUwMDEwQVmPkcdHwu/AqFx1MDAxM1YvKvI+hVx1MDAwNnBcdTAwMDHiML9cdTAwMDDW2VBoXHUwMDE4wUDCRyTB+XMonCnbzf8hXG7HhpCNt0ul1FxuwfLp95hcYpU7zlTMtZX3XHUwMDFipr+/efe0drSfNlx1MDAxNE6z31xmgF6d3FJcdTAwMTcsNlx1MDAwNEs3W4xMu+0nUlxukfqgXHUwMDExbrjmamhzQKomhGNcdTAwMTS/nFx1MDAxMFx1MDAxZVT4qqBcdTAwMTH+hm2sXHUwMDE0U4DvIFx1MDAwM96rsVVzWGjk1Hle6Nv7lWbnx1x1MDAwMpJcdTAwMDEqy1xmJ8eVVE5sS1nIXHUwMDA2QFxcoYSxRpB7q2zq01WRd+NcdTAwMTK/pjWEbMlcdTAwMDav1f4qNtDjk9cxLVx1MDAxMYcyNk1ig+JjoHLrkl9tnNZXbrcuXHUwMDFiXHUwMDFkvVZcXDg2cOmTudZGXHUwMDBiLi1cdTAwMWL2nF2EmeJ0I1x1MDAxOdOEMSnTb1x1MDAxYiBcdTAwMTUjve2SXHKWbDApblx1MDAwNMdvQFx1MDAwNSM5l+pcdTAwMWSJKezDpt+HUjXfz5bEfeXi/GC3Vlo0NjDW09yS16yF23SXSExhteemXHUwMDEzLVxuybVRaU9MXHUwMDAxLj5GXHUwMDFiTGngyJJcdTAwMGJeq/1lfsJYy0Ci1uQzv8NL2Drr7N+cdPLr501+W+OV/GYhv2hM4HLXOVx1MDAxOVx1MDAwNclcdTAwMDUnQlx1MDAxOGJcdTAwMDLymTxyXHUwMDBmlEt2b8GmPqet5iC4XHUwMDEwXCKlu86WTPBa7S/bdaaTxdGuMyHIXHUwMDEwZu84W8eWT/Zy/p5WRb1ccvubmM83zMLlsXS56yRcdTAwMDKNg1x1MDAxNFaY4XBSMMZDhsxcdTAwMWEyvFxyxGQ5nVxcgORcdTAwMWWE3LXkgiVcdTAwMTe8vZz3VnyLXHUwMDE0IFBMXHUwMDFmTHpeaW+3LT40L1bPTs9cdTAwMGXWs1cr6ct0n1jNQ+lJVFx1MDAxYcLV6ZiB9LxqID1g4TqeRYxcdTAwMWS69OGwXHUwMDE3Moxu0W5p35ihXHUwMDFk8G+t5klmwaWr/fMw/3OreTOln5tpNS9cdTAwMTPbs/RcdTAwMTnLefHnzXVVnY3XyJozgVx1MDAwMDB9MKmq3T3dXHUwMDFk7Wa3smeV5t2qaFx1MDAxNNr+XrqBiO7ALzRcdTAwMDaNi27BkVx1MDAxY3HcM1x1MDAxYVx1MDAwNFOaMTLH55dImsNcZrGkWpBa+1x1MDAxMCd8UXAoPlx1MDAxN4bic1Boxu6+JtdKMVx1MDAwZVpMXHUwMDFm29LqXHUwMDFjP163Myunu3VWqz5e/cDG5ma6QVxiqD2yMLhcdTAwMGIqUSPJ3Fx1MDAxOUFcdTAwMDOAhI1EzVg9x51cdTAwMTVcXHru8DaytKlcdTAwMTFop8ShVFx1MDAxMO6j+nJcdTAwMTjOlGBlNnX4ydEtmc9cbjKLiepIkJlh5MOp6bVhY/ewtYrNS7+UXHUwMDE1h5WNXHUwMDFmZqO0v5VyIEpG+s5aXHUwMDAxpFxmyVx1MDAwNFx1MDAxZHZHyVHwLHmhViiyXG5cdTAwMTjOMSVcdTAwMTK5XHUwMDFkgGSYkmnsXHUwMDE2zJmayjDlRlx1MDAwMjkyXHUwMDFmsrV5YaD4ySox80k6cfyxiG7S1EVY6OmhuHHTK1b9h8v1XHUwMDFk365cdTAwMWTeY/601mqkXHUwMDFjiop7iNqdR+lOd1x1MDAwMZtcYviU0tNaXHUwMDEzMDRJvVx1MDAwNJ0u01QrSVxyw4/ISrgoQPxrmqZcdTAwMTLGXHUwMDFmMEBcdTAwMWVcItdcdTAwMTKnn6g56tpcdTAwMGXulXcvjrdXXHUwMDBl6plcdTAwMGU+3bRTd9pI0jQ1nkbhTlx1MDAxYTVcdTAwMTY5JDSiXHUwMDE07jxcdTAwMDFwh8KTtM9xr+GMXG6RWOSjXHUwMDBlXHUwMDEw+HM4nGkn//+lQix3aOw6hVdPXHSP7VwiSTqK7vhL+Y5kXHUwMDFjO93t3lx1MDAxOcirYq9R3a9tXHUwMDFk3cDJccr3XCKFiyWM5Fx0XHUwMDE4IU6z5Fx1MDAxZVxil+5cdTAwMWZ1eGiyk7y5Zux0e/xHXHUwMDExmCh/QSFcdTAwMGKPjZZcdTAwMWZxos+sKHxeXHUwMDAwmWnv/Vx1MDAwNy83xHsoKonu+yVx/zRLKdVGr06ve9ihTup1nORcdTAwMDSdXuxccn6WP/fRzOh7K1x1MDAwM1x1MDAwNlx1MDAxYVx1MDAwNainT5l5ddI+6Tcy15V2p79cIla7vcrjhk03/FxcXG59i8CkUpLU4XBss5TGXHUwMDEzblx1MDAxYVx1MDAwNLmxZPuJ1IBcdTAwMGaFXHUwMDAxOZTx/4vAN9Oe+CX4XHUwMDA2UzNj0efCXHUwMDA2tHxHhsrLs91cZju+qa/4J63d22a2c5av1NNccj6yoTxcdTAwMTJja4wg/9dCYlx1MDAxYq7UnrBuXHUwMDFiLrpcdTAwMTOm53rg5XvAp1x1MDAwNLmNRn6lXHUwMDFiuMTeR2BvfGy/XHUwMDEw3EhcdTAwMWQ/f2BituiiuvXlzmpj/6H/1NhX2fpcdTAwMWWm3fKUllSfXHUwMDBi11x1MDAxN9oyrodXKEBLT3KX8FxymTbS6NToPqEkkcVS931bbPyZsatcdTAwMTLcXG5cdTAwMWTGbkyv/M7tVXfrrlDdvzipnVx1MDAxZmFw3Xo6SF165oTlXHToWcmlQoYuxlxmRuDnznskKkJGXHUwMDAwnOdGmvegz9CwaPEhhzovwTdf8I2LWCWBeiM+Rlx0kCpcdTAwMWX5PHFcdTAwMTnCh5P8id8rljZ2XHUwMDFh5yvmiu2UUu70kc1JI6WM5IaTXHUwMDFliUn5S4AqybhcdTAwMGL/JvU3v/BUTq6nNlx1MDAwNqwhruPO1Vx1MDAxZVx1MDAwNSG3lixkq1xcY6xcdTAwMDJcdTAwMTCvXHUwMDFjiVx1MDAwMHQvS+3JyrNcdTAwMDH1L1x1MDAxZZ+KypNaMmVd/3BcdTAwMTmbY3GfjFx1MDAxYnW6IJlwZ3lJbid933hRXG6b40nhvlx1MDAwNciU48Jl/IJRjnqTSsYtpFxiMX5Bk9w5zlx1MDAxNfDpXHUwMDE3NMunW4Wd4HindLyuXHUwMDFms5VcdTAwMWXUT+5S58GC51x1MDAwMtfJOTAo3GxtZDU/XHUwMDFmuMI8jWROu6lRkv+EUmfGQ0HjTrhQaJiYn1Y3wiPH2jLLSLi4jlx1MDAwNeO+tbJiLVxilHyMaVx1MDAxZLGDf3LYq9TaxYdGtn9zWjrHh+Mg95JQ8S+5XHUwMDAwU/l7/1x1MDAxZv/KiE9OzDj61Hkui1xuNT5+XHUwMDFkXHUwMDExiUJYLE3rxPmo7SY7aJY3s1x1MDAwN9ncYfO63jdcdTAwMDeli8VCs4tcdTAwMWNcIutcdTAwMWJcdTAwMTTSVSRYJyaolPTCXHUwMDE1XHUwMDFil1xcxlx1MDAwMLfzc5E596RcdTAwMTVMkE80NoYveruXXHUwMDAzUiBcZrdcdTAwMWaziy11aNYsLuUzoDmWmXLBw1x1MDAxYZ71s8tLXHUwMDFi9tn3Qrt9XHUwMDFjUI9ccmw0XHUwMDFhyWrp52tHj/5+X/VcdTAwMWZWRkXrb+Xw44Y05Fx1MDAwNFx1MDAwN77Qg/j9j1/++Fx1MDAxZu7hhVUifQ== yxO11-82-1-22-2g(x)=-2x2

    x01122
    g(x)02288
  3. h(x)=15x2

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da0/jStL+fn7FaPbLrnTiU119rZVWr4BwXHLDcGdgtUIhXHUwMDE3ksmVxIHA0fnvb7VcdTAwMTlix1x1MDAxMEhmXGKY3WRcdTAwMTBD2m273d3PU5euLv/526dPn8PbbuXzPz99rlxmS8Vmvdwr3nz+3ZdfV3r9eqfNhzD63u9cZnqlqGYtXGa7/X/+8Uer2GtUwm6zWKpcdTAwMDTX9f6g2OyHg3K9XHUwMDEzlDqtP+phpdX/P/97p9iq/KvbaZXDXlx1MDAxMN8kVynXw07v/l6VZqVVaYd9vvq/+funT39Gv1x1MDAxM60r9nqd+4ZFxXHjhFx1MDAwNJ0u3um0o5Zcbqu1XHUwMDE2TkhcdTAwMWHVqPfzfLOwUubDVW5wJT7iiz6rQVx1MDAxZFx1MDAwYst0vXKzeVx1MDAxZJreav9LcX0/vm+13mxcdTAwMWWEt82oTf1cdTAwMGU/SnysXHUwMDFm9jqNykm9XHUwMDFj1lx1MDAxZTotUT7prF5ncFlrV/r+2cWotNMtlurhrS9cdTAwMDNcdTAwMTiVXHUwMDE225fRNeKSIX+TXHUwMDFhXHUwMDAyXHUwMDA1RitptSFBNu5cdTAwMGZ/XHUwMDAxqWxAhlDxXHUwMDFmlpxSMtWylU6Tx4Fb9jdR8f/itl1cdTAwMTRLjUtuYLs8qlx1MDAxM/aK7X632OPRiuvdPDwzXG5/K+FQXHUwMDExSiVEfKtapX5ZXHUwMDBifdtcdTAwMDPkVlx1MDAxOFx1MDAxMEI7IO1k3Np+JVx1MDAxYVx1MDAxNiE1n1xmqOIjvlx1MDAxMd3NcjQ//lx1MDAxM1x1MDAwZkaPZ9amP6U9aDaTPdou/+jRh3lcdTAwMTTPJPxR8lf8lL7+amJcdTAwMDbGd1x1MDAxOHTLxfu5XCIskuSPU1LG3d+st1x1MDAxYunbNzulxlx1MDAxM9OrXHUwMDFmXHUwMDE2e+FyvV2uty/Tp1Ta5fhIosk/YFx1MDAxMT3i58vWccdcdTAwMWPi+vWgtK6KtFRuh3tnozHw3dEpXHKiWVx1MDAxNFx1MDAxOCBpeOJrIGW4s1x1MDAxM5Uui12uYlx1MDAwMyNRKXRE/EPa6Ee90iz2w5VOq1VcdTAwMGa5XHUwMDAzdjv1dphudfRES1x1MDAxZZe1SvHRKPAzJY+lXHUwMDAx3PVXjPHuP/Ffn+JcdTAwMTlcdTAwMWV9XHUwMDE5/f2f35+sPXneRac/mnHx9X5L/v/j4afnXHUwMDFlXHUwMDFkd22aelCgsFx1MDAwMsnZqaln2KvfXfZcdTAwMGJhfnlPl9ZcdTAwMDeD9mDpsJRt6lHGd7yQljRpiSTi/vBcdTAwMTdQSlx1MDAwNUhcbpRcdTAwMDVcdTAwMTJKzI94IOChIFx1MDAwNLLCWKeA3GPikSBcdTAwMDNcdTAwMTTEyEBcdEjaJppzTzzEXHUwMDEzhznUxdLif4l3xi/2gdA/efD9J/d43GeEP3d25Sn0s7SdqHggt1x1MDAwNYFn/dToX2tsnTd2cyvLl233ZePWXHUwMDFlNo4vIGvoXHUwMDE3gbZgiYWHsaRcdTAwMWN3ZopcdTAwMGWQu1r6oXCATFxialxcXHUwMDEzXHUwMDExOnDEalxugLNOazNPQuBhR0ncVFx1MDAxMKQ0qLgpI0ZAXGZYJliWlkYoUipcdTAwMWXOXHUwMDA3TURcdTAwMWJF0jF7LVx1MDAxOOGVXHUwMDE5YezYK9PBxKH3n0eD/lps4FS6dMRcdTAwMDZGWFBcdTAwMDbi6f5cdTAwMTJcdTAwMTncXHUwMDE1JH0p31x1MDAxNK+h1t3oXHUwMDFkfT9qkPr+XHUwMDAxyVx1MDAwMFicojZMhFx1MDAxNLfEX1x1MDAwZomHQbFWxpdQmERnNpnAKcenO1x1MDAxYj9itoggXHUwMDFls1x1MDAwNVx1MDAxMYwqvFx1MDAwZlx1MDAxMThw6dJcdTAwMDdcIrA849E7JaYmgqvC5v7FXn4oitVaXHUwMDBmj3c6O2Hl9MNcdTAwMTFcdTAwMDFraEqCRfBcdTAwMWSgxm1cdTAwMDQ0XHUwMDE0XHUwMDAwsjFqrLfQMN3QrDGBMM5KobSLe2dBXHUwMDA1XHUwMDBiKniaXG7kZFx1MDAwYsFcdTAwMTlWkXncpldcbtRFrSBKuru2i+W9K7e3lT8xt1x1MDAxZpBcdTAwMGKksaxT+0OoU1qB0lx1MDAwMVo+XHUwMDBmJbMka1xyJtXSrJGB95xJxIRnY8FcdTAwMDVcdTAwMGIueJpcdTAwMGLMRPtAXHUwMDE5XHUwMDA1Rlx1MDAxYTG9s+Bws352fHX9fWO1XHUwMDBm+6uD6lx1MDAxMSzv7H44Klx1MDAxMIFcdTAwMTGoXHUwMDA0XGLFoNdu3FngfbrGoffXglwidJB1XHUwMDEzQTttSINZ6Fx1MDAwNVx1MDAwYi54iVx1MDAwYlx1MDAxMtZwilx1MDAwYqQmgYgz+FxurrF1dLF5e7O3Ubtuqq2Tvfpp6+JcdTAwMDNygWK9XHUwMDAwNVfRXCJlXCJcYrJcdTAwMDHxXHUwMDFj1pJQoDUu1dCsMYFcdTAwMTJopGLkLZhgwVx1MDAwNM8zXHUwMDAxaUqXPjCB4SZcdTAwMDCAnj52oVhcdTAwMTn078qFXjvXlWe3W5fuWyfc+nBMgH65li1cdTAwMDC04MNcdTAwMTniw9FcdTAwMTWtXHUwMDBlLKHUrHh7aUs21dSscYEhclpJvXBcdTAwMWMuuOBFLlx1MDAxMOnSUTRcdTAwMDGQkF63nJ5cZkprXHUwMDE3K40ju1G4LVx1MDAxZnWb7aVhXHSHrVx1MDAwZkhcdTAwMDbKklx1MDAwMyREXHUwMDAya8fJQIH1XHUwMDE2hGBcdTAwMWVcdTAwMTBGYdLCyiZcdTAwMTmwoUPOXHUwMDExZXY9ccFcdTAwMDZP1H5cdTAwMWY2YLN44jpcdTAwMDKbXHUwMDA3qK2m6ddcdTAwMTFcdTAwMGVcdTAwMGLDLshtPC13r062NiRSrV38cGwgXHUwMDAziahcdTAwMDGYXGbIJDynUXCB04Eyflx1MDAxOKxGXHUwMDAxmHXFQGNcdTAwMTSzXCKyqlx1MDAxOMRcdTAwMDO9oIJRhfeiXHUwMDAygnTxaFx1MDAxZMFcdTAwMWLFxkxcdTAwMWZlWGmttzr2rHVSP7w76F9+q1x1MDAxY/Tay1x1MDAxZo5cdETAQ2BcdTAwMDSTgDaQinc2KrDcKyRY9TYq60tcYsIqXHUwMDA0o0Rm11x1MDAxM1x1MDAxN0TwRO338lx1MDAxYk5cXE9kXHUwMDFjsPBDN73fsHZcIs9tWOhdVrC8eXG+qVx1MDAwN71m5ohAXHUwMDA2Qlx0zVxmp6V2ZCmx0lx1MDAxNlx1MDAxMYGzgVx1MDAwMItKXHUwMDFhqVx1MDAxNJlxv6GUbFx1MDAxZjhwUjgnQCfWV7JJXHUwMDA1KKRl3lx1MDAxM7TQXHRcdTAwMTZU8JKzXHUwMDAwJ6pcdTAwMDRKkEOwZnoq6DZLXHUwMDE39Vx1MDAxZHU02Lva3T5oN9BWq1x1MDAwN1x1MDAxZoxcbrSAwFjwrlx1MDAwMFx0zilMaVx1MDAwNdJcdTAwMDRcdTAwMDakXHUwMDA2JNZcdTAwMWUo+1QgSJOTmNU9UFx1MDAwYip4ovY7UYGa6ChgXHUwMDFjSVx1MDAwMDWLWrC1e3K1vX3qypVv1+WVJVx1MDAxNFqt7n00LpAq0EohXHUwMDFhbj3yUDyiXHUwMDAysEJcbu2MViSzzlx1MDAwNUJcdTAwMGKUymV3P+SCXHUwMDBinqj9Xq5cdTAwMDKcuFx1MDAxYlo61HzPXHUwMDE5NkPffmv0z4brsFRcdTAwMWLgnd1s7Fx1MDAxZIbnmVtQfIFcdTAwMGKksYGKovdJgVx1MDAwMONSbkPpXHUwMDAyXHUwMDEylseJTyVgwsg6XHUwMDFiXHUwMDAwXHUwMDAwXHUwMDAxaJnV6IJcdTAwMDVcdTAwMWI8Ufu92EDLdPFINeDG+Glvp19E2NpQJbhtfjXbuc2988NT6PXLl1x1MDAxZo1cdTAwMGVcYlx1MDAwMqetMj6giI2E8Vx1MDAxNUXPXHUwMDA2bDtp4e1cdTAwMDdccjbrXHUwMDBiilKzaiesWWhcdTAwMDZcdTAwMGIueIlcdTAwMGLEZI9BNGRMXHUwMDE2M2xMalx1MDAwZvbOSlx1MDAwMN/s4Wm5ve229/NcdTAwMWI5/GBcXKCEXGaU8ztcdTAwMTCN04hifDOClFx1MDAxNHjPoV+wj45mnVxmXHUwMDEwwGnprMrqSkLc+1x1MDAwYjZcdTAwMThVeC82mOw0QJA+4N7I6dng27a6u2z3XGKHw/A0v3vcWTtSXz5cdTAwMWFcdTAwMWJINlx1MDAxNLTxXHUwMDFkXHL88JB2XHUwMDFhUODP0lGIP+isLyv63DOCmSurS1x0XHUwMDBiLnii9ny5IKxcZsOnuEBNVlxmXHUwMDEwXHUwMDE0N8YoOb3/8LzXX1x0L7pf20d0urfWrJh+OV/OXHUwMDFhXHUwMDE1pLJcdTAwMTg5XHUwMDExsK6q0Dg2XGKMsuPQXHUwMDE3Wlx1MDAwNGCIbVx1MDAwNmFcdTAwMDCMMvNzXHUwMDExsMZhfUoug1xuUCr5RFx1MDAxYSN8lC9ccoV04JiSXsFcblx1MDAxODswXHUwMDAzqPnmiDb2LM1cdTAwMDDqaqdcdTAwMWRcdTAwMWXU7+6n21jpWrFVb96OXHJrNIe9Z+rzWNFSs37ZjuRdpTo+x8N6qdhcdTAwMWNcdTAwMWRcdTAwMGU73fhoiW9RZPnYe9wlnV79st4uNlx1MDAwZlx1MDAxZt/OS9SNh8FcdTAwMTBBYjguiv1KJG/97t6fQ+Iz5jo6IVx1MDAwNMhcdTAwMTmE8vNcdOMyiURcdTAwMTa/XHUwMDAxgVx1MDAxM1KCscrF0z9cdTAwMTLBWlx1MDAwN85cdK18Ulx1MDAxZUPzU8dcdTAwMDVcdTAwMGYrszBFXHUwMDEwTPhHnsGgsJaJWb2Kj/55XGaOSD9cdTAwMTbLo1x1MDAxMX8+eeXYXHUwMDE0vE/INTry14NcdTAwMDR5XHUwMDFl4e6nXGb6n0L48G1cdTAwMTE+fFx1MDAxYoRcdTAwMGIzcb+P0NKyXHUwMDE5Snb6WL79w626hOuL71x1MDAwN9+/Vlx1MDAwZk/3j1x1MDAxYsuD62wjXFxcdTAwMTlcdTAwMWJYKchcdTAwMDfsW+FMOmRHucBJxViSzmlAO79cdTAwMTRhQlx1MDAwNdqHXGJcdTAwMTJcYmm4KVNcdTAwMDJdobCsXGa8RtzuL1x028R26XlD8evbQvHrXHUwMDFiQVFO9odcdTAwMTkpo11m0+/IL2xcdTAwMWSvhkW6KuxUrzZ3T1x1MDAxYmHl+CbryTudXHUwMDBlvLorWLFcdTAwMTUg0vH0Rlx1MDAwNUAskKVwPp0hpdr1ikDEQGq/TY77W1x1MDAxYpxcbobkIUtcdTAwMTZewdX1UVCo31x1MDAxNoX6jVDoJm6FNyDAaTLTr1evbNdb+bPb0sU5brqDq1x1MDAxYto4v1nLOFxipVxyXHUwMDA0RptWXHUwMDE0aGfSbiehWVxcOorsfeVwfrEqP4NC4bSy7nVi139ccoY6OVlcdTAwMTcwnFx1MDAxOYaTt6FLnzpeKDu9KOxst3ZrN7vdi5ZcdTAwMWHi99L+t+oyXHUwMDFkZlx1MDAxY4VcYoFcIm1cdTAwMTV6tVO7VMSYz0vF5qjwfktLXjOYXHUwMDFiXGbRXHUwMDA2bHmSU1ZcdFx1MDAxNEDTuYBYl1x1MDAxMYKts9dIRPVrQDTJ6TpXIFwivC1cdTAwMTKT95urXHUwMDEzaLJcdTAwMGbIOFx1MDAxZsLl3PRcdTAwMTIxXHUwMDE3bp9cdTAwMWPkZFx1MDAxMahwXchv7Wzkblx1MDAxYufZxqJcdTAwMDZWPDVIdNJcdTAwMTj56G1cdTAwMTaslmou12wlKqA55n9cdTAwMTBcdTAwMTT4uDBCls2WVeCpJFwiXHUwMDAyMlxmLLxG7pdfXHUwMDAzok1O1rlcdTAwMDJRvDFcdTAwMTDFXHUwMDFiXHUwMDAxMVx1MDAxMVx1MDAxOJxcdTAwMDKiI6tYMVx1MDAxNdP7YtePb0/XmseFwpfhSmGjc1i+aIdZ99QgXHUwMDA1XHUwMDE2WPBrL1x1MDAxN106b6s0XHUwMDEwWGslSLYjNc/5+a2KsHDWjERcdTAwMWay7V1DrJ1OXHUwMDA3RUk+ssO8QrKFX4OiS07XuUIx98baae6N1FM7UT1lXHUwMDBiRCltptdO7WVup3h4WsW74bY4pv2z9vJO5vY3pF7wRDZwXHUwMDAyXHUwMDEwJTDgbDI53D1cdTAwMTKRTUhWX1x1MDAxZJD/mSNcdTAwMTBt4NdFrDPSXHUwMDFh0lJMXHUwMDA1RMlcdTAwMDaifp0kqb+Gw7dbnsy9tUzMvbZQrPZ48Fx1MDAxZd5cdTAwMDX30NZRWPFENErpl+ZmiCPco7P8/kHutrl5elnNfzd761dHmUtq/PilR5r1QnBghY+QXHUwMDE4R6NygTcjgVUw0IrmXHUwMDE4LVx1MDAwMFx1MDAwMUDCXHUwMDAzmnjF2lj5aFx1MDAxYlx1MDAxMVm0qN5TXHUwMDFl3sf+/JSz5pUjbZI9XHUwMDE0l8Tn/ZY6f5ooonpr0OTH3e1xJ1xyen7ihL1B4lx0fpTf99FcdTAwMWPQ54PWhIZcdTAwMTmSgVxcn7ZxvbKTP96s79xcdTAwMTaqw6W1u/5RxtHntH95nXSCSEVB/OPwQ1x1MDAxM3jPiVx1MDAwMMeKotRzTVx1MDAxYjxcdTAwMGL8JFx1MDAxYlxyrC3PP0Bggb73QZ/vY2PdLKl78Xj/urhV3143a1x1MDAwN1C4ajVcdTAwMGaqpWHG4Sd1QCQtW4beQ5PO2i1RXHUwMDA3rGiBj7HVwsH8XHUwMDFjpbOhj1x1MDAxMFx1MDAxNZhXXHSHXaAvi+hD0NpcdTAwMDLN8j6Nu6Prw5a9qF10w9aOy1x1MDAxN+xN/ng92+jTQlx1MDAwNMqgYt1S+lx1MDAxNFep1ULUKtDSXG5i4chcdTAwMTaPwXlmyp5J90TrrUaF77hQeI+/n1qfWODvRfz5XHUwMDE3XHUwMDBlS4MzRMws1cP9jd2cOKRz3KnqL9tL1bOrbMOPtevAJ5JCtnKdtImHvUdcdTAwMWZcdTAwMDZIrHlaYbVcdTAwMTHJpHzviz5uLmvMQr274bdcdTAwMDDfS+CbtF9LmolhMkJcdFJOqlx1MDAxOXK8NE6v1qunsLpx0KuttC+7vb2Vfi7j0Fx1MDAwM1YsXHUwMDEx2fBTykgrUy+RY2CyMGSV1EjjWO2c3/Ysze3QjH5cdTAwMDa6YjVYiCfWXHUwMDA1hZRshFpcdTAwMDeGRVx1MDAxZSTTKj+8TpJNdWKRmNVcdTAwMWNcdTAwMGU/XHUwMDA11P/y3VlI3q/ngz8sXHUwMDBmvlx1MDAwMT32mmlcdTAwMDFcdTAwMTT47UEofVZSoJeuNnlcdTAwMWFFV0tPoMf89FM0XCLc5HdTWu2jPOX0XHUwMDAy/MvWYSuvzr5+a3TKg1plrb3eb2XujdVp1y1cdTAwMDaKrFFK2Si2dYxFpLKBVWwkau2j0+f4nlx1MDAxOSP81nJ0yllwjDl6kkTQXHUwMDA3qEvLc0qaZFtHSrVR2u9cYlxckMjHIVx1MDAxMVZcdTAwMTGl397JWlwigDaAydNzKFx1MDAwMsHjrrVm+83nXHUwMDFmUS9dcPJMii74aFx1MDAxMs1IJJNjIybnnPO56YncXGZcdTAwMTGD8uRWn+zVsFx1MDAwMXvXXHUwMDFkyKtBr+Eoa0yiXHUwMDAziDZ/ONY/lFUx/d8zi/KvsfVDS0TKuvFFIVx1MDAxZkCouc/8rjZcdTAwMDU8XHUwMDFh89NPXGJcdTAwMDPHTVx1MDAxMJbnlpaUuNNz8YNcdTAwMDJY5Fxi1E8rJDE7XHUwMDE0hrazcpBcdTAwMWZ+vfnSdZRfbZVObotcdTAwMGbbyN5uKTeRXHUwMDBmfd5LubW/XHUwMDBm//Ev+Fx1MDAxZN94P9pcdTAwMTO3nW+s00TLXqPfmEY0vXkxyHVrJ0dcdTAwMWI9mb/o18RdfjU8qKx+MDiTXHUwMDBllN9ccs6WvmJcXLjUa6jIXHUwMDA2fC6x5ch2vks4XHUwMDAy5rBcdTAwMTdVXHUwMDEyXHUwMDAyslHjND29XHUwMDFiNX64h1x1MDAxN9D5XHUwMDFkXHUwMDAzhiZsXGL/70OzMGOlz1x1MDAwNVxyv3HM8KzovZf3fjdu1Gefi93uQcg9NtLReCTr5Vx1MDAxZo9cdTAwMWTf+vN1vXKz/Hhq/a1cdTAwMWF9/JBGjOCxXHUwMDE3uSH+/Ou3v/5cdTAwMWZXeOFjIn0= yxO552010-5-10h(x)=0,2x2

    x0551010
    h(x)0552020

f(x)=x2+c

Parabolės viršūnė y ašyje, taške V(0;c)

  1. f(x)=x26

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da1NcIkvS/n5+xcTsl30j1j6VWfdcdTAwMTOxsSGo411cdTAwMWPvbmxcdTAwMTiIrbRcdTAwMDKN0CB64vz3zcKRblx1MDAxYVx1MDAxOS5cdTAwMDPa7Fx1MDAwYnOOM1Y13XV7nsysysz+87cvX75Gz3X/61x1MDAxZl+++p1SsVx1MDAxMtw0ik9f/+HK236jXHUwMDE5hDWqwu7vzbDVKHWvLEdRvfnH779Xi41cdTAwMDc/qleKJd9rXHUwMDA3zVax0oxaN0HolcLq70HkV5v/cj/3i1X/n/Wwelx1MDAxMzW8+CEr/k1cdTAwMTCFjddn+Vx1MDAxNb/q16Im3f3f9PuXL392fyZaV2w0wteGdYvjxmkt06X7Ya3bUFCWS4tMiN5cdTAwMTVBc42eXHUwMDE1+TdUfUvt9eNcdTAwMWFX9LWQP345LV/t+3m7ea4rO621NWzFj71cciqVo+i50m1SM6SexHXNqFx1MDAxMT74Z8FNVH5cdTAwMWKzRPmwbzXC1l255jdd16FXXHUwMDFh1oulIHp2ZYz1Sou1u+494pJcdTAwMGX9xlF5VkhcdTAwMDOgjGZWx51130fLPamM0kZcbiG0slwi1bB8WKFZoIb9XHJ89ydu2nWx9HBH7avd9K6JXHUwMDFhxVqzXmzQXFzF1z29dVlqT1x1MDAwM3KOYJWwYOJHlf3grlx1MDAxY7mmeyjQXGKBWmojgCtcdTAwMWQ3x+/OXG5cdTAwMTgw3EprTK/GNaK+ddNdXHUwMDFk/4nnokHrast9pdaqVJJcdTAwMDNau/kxoG+rKF5H+KPkr7iX7vr1xPqLn9Cq31x1MDAxNF+XXG5oXHUwMDFhR85cdTAwMDVTIOJ2VYLaQ/rxlbD08M7qakbFRpRcdTAwMGJqN0HtLv1cdTAwMTW/dlx1MDAxM9ckmvxcdTAwMDNcdTAwMTTdLn5VdvPisbhVOPDvnpqN9e39/XwnXkZuOMJSq9lcdTAwMWRhS3PNueZMKzSam8RFd8W6683AIFSKzShcdTAwMWZWq0FE/S2EQS1KN7LbgVVcdTAwMDfCsl9cdTAwMWNcdTAwMTh06kKyLo3WurtjXGZu94n/9SVez91fev/+zz/evXr4MnOflcFcdTAwMTVcdTAwMTbf8Lfk3z96Pz7TSGuHMlxyU1x1MDAwMrTSicUximnu7lx1MDAwZr897a9WXHUwMDFmXHUwMDFlRaV2Ulx0yrz5lMs201xiIT1lNUeDXHUwMDAwzMpcdTAwMTTVXGLDqFpIQZRcZo6N+Nyohlx1MDAxNjk3THBcdTAwMDOIoEDFXCKgxzSo0Vx1MDAxM0wyazVcYoU2wUY/mIao0t1CxZ3MXHUwMDE20cSrbVx1MDAxZUTTf7NcdTAwMDXC/9C5d5+VwWmfXHUwMDEw/jTW/rt6XHUwMDA2XHUwMDBl1zNcdTAwMDRnxlx1MDAxOJq78fWMw5x9fFx1MDAwMX8nXHUwMDFmdlZf/OZcdTAwMTFTz5nTM8CTmmmrSMPQVlx1MDAxOFx1MDAwMnyKXHUwMDBllCeRylx1MDAxOSdcdTAwMTRcdTAwMTFcdTAwMTPHeO9qXHUwMDFlinluXHUwMDFlSFxmKUSLQqaaOks64Iwjt9RUXHUwMDA2xEBJjS8mXHUwMDA09Fx1MDAwMKRWzDpsUeNcdTAwMDc0XHUwMDBmpoi+UIqsalx1MDAxZYtLXGJ9dTNmg6FT7z5cdTAwMDOTPis2kDxd+sZcdTAwMDZcYpxkXHUwMDFmqFx0rI7cpTRcdTAwMDet/T2//PSwc39cdTAwMTFcdTAwMWWpterJXHUwMDAyslx1MDAwMVx1MDAxN2RtKZBE0DperF0y4MrTSlxumitNXFxcdTAwMDGQamjWuMBcdTAwMTjFtc2uXHUwMDExsqSCd67+XHUwMDFjKjBcdTAwMTbTpT3FwFxupTRjXHRcdTAwMTVzXHUwMDE0XHUwMDE1tE439tr5mik2bp+letkpnpT9nVx1MDAwNaRcdTAwMDKrNCiS/Ewq0U9cdTAwMDVcXEsyUZFcdTAwMTiBXHUwMDE0cFx0yVx1MDAxZIBMUlx1MDAwMcGO+sBcdTAwMTWLv7zkgiVcdTAwMTe8y1x1MDAwNST+hnNcdTAwMDGQeqkmMVx1MDAxMtavZem2+tJaZZWDx/O7Tie/XHUwMDFi6Vx1MDAwNeRcdTAwMDJtQVx1MDAxOC5cZtCcqFx1MDAxOF9dMpDoIWrNUVpmSEFQqaZmjVxyUFx1MDAxOWGYxiVcdTAwMTksyWBcdTAwMTRcdTAwMTlcdTAwMTidLu2RgXbt4JaPT1x1MDAwNreH+Sdo2dbaQalyVXpcdTAwMTJHJ2UoLFx1MDAxY1x1MDAxOWhPcVx1MDAwMVx1MDAwNCBjuDRxU7pcXMCZx8hw4oK+ToMj57l/OFx1MDAxMyOBoVx1MDAwNTCYUSNBxvOz5ILeXHUwMDA1n8NcdTAwMDXA5NDDXHUwMDAzmiypNUzAXHUwMDA1pbXo4m796vLJr+fD0Lb3V9nJxcJxXHUwMDAxmVx1MDAwMVx1MDAwMtG6WsZYgiy7ZMCsR1x1MDAxNoJE+lx1MDAxZWdJjGWTXHUwMDBiSLmTSP3AjJ4mLMngvas/acdAXHI/SmDc0qqnKVx1MDAxYptcZrbO8DGMqrmz9fPzKspyeLHbKWeNXGa4XHUwMDA3XHUwMDAypHVyXVx1MDAxYauTZ1x1MDAwNV0y0OCRWmBRgEX6K1x1MDAxZZ/u5qEhI4HmyFx1MDAxZC5KYbTNumJcdTAwMDBcZqi7hLx4SJdksCSD98nAXGb3KkAjgFx0zsYng6ugVI1cdTAwMWVb8qiTPz26Pn+5a8l8c9HIwFxuz1x1MDAxYVx1MDAwNPdcdTAwMWaxXHUwMDAxg5RHk1x1MDAwMVx1MDAwZsEy0pqQKdRZ11xmhGDdXHUwMDEz0qVisOSCUTtcdTAwMDYwdMdcdTAwMDBcdTAwMTmz2lhQ458qXtpyq7B/ubpd3MxcdTAwMDfcOYVcdTAwMWRcdTAwMTZ3XHUwMDE3jFx1MDAwYiRcdTAwMTjPSGmZ0oC0WFMuXHUwMDA2zuPIKOqZoLnChH9WNqmAM0Xly/2CJVx1MDAxM4xkXHUwMDAyMdxEMJKR3Fx1MDAwMzO+r2HztHzVsFx1MDAxYte181x1MDAwM3HCV79t4H6hsWhMIGioXHUwMDE1/SSo01xipJ2NyERgwkpDPKdIa8q8r1x1MDAxMTXVcp388pJcdTAwMGKWXFzwPlx1MDAxNyR89lx1MDAwN3yNXHUwMDE4KDBKjc9cdTAwMDVh8O2AP27vvmxcdTAwMTTOLlx1MDAxYvfPt/fN5saCcVx1MDAwMZfgaWnJSFx1MDAxMI5cdTAwMGKwf+tcdTAwMTBccvck56RcdTAwMTRIKbhAm/UzRUAhuFx1MDAxNkYtXHUwMDE1gyVcdTAwMTmMPEjAoe5GVnLQQvF4gY1cIoNqw7d1rETYyFx1MDAxZO/mc+trW/XDRdsucP5EoCyNslOtXHUwMDEx+lx1MDAxZFxmXHUwMDFjXHUwMDE5OOdcdTAwMWSyIegjRLqhmeNcdTAwMDKmwVx1MDAxMuKySlx1MDAwNfGkLamgd8FnUcHwrUNa7WQkiFx0fJBPt7d32Nlx+1x1MDAxNs9cdTAwMWbzsPW9fXdcdTAwMTDYRaNcdTAwMDKrPW01N5KsXHUwMDA0XHUwMDA1Or7tXHUwMDFiXHUwMDE1WE5cdTAwMTSgpLJKXHUwMDFhlnW9wEhqqLQyrlhywZJcdTAwMGLe51x1MDAwMlx1MDAxOL51XGJCaWmMmMBcdTAwMGL5pn1cZpfh2flqU71cXOnt8kk7X8qcs9GoY1x1MDAwNCQjQblgXHUwMDAzqzRDNWAlXGJcdTAwMGaZRKuZYW5bYX6B0bNhXHUwMDAzi8xcdTAwMDW8yayeKS7Z4J2r58tcdTAwMDaR34neY4Pk/leaXGZAkmTkXHUwMDE4z9YoLrjP29zpgVxujlx1MDAwZsqn4mBrc1tvrIRZ44JUoLIynjLWuVx1MDAwYtDAJlx1MDAwM/q6yFx1MDAwN/S0i9ZUmlx1MDAwM7HH/Fx1MDAwZVx1MDAxMK3XXHJcIrJcblx1MDAwNUMu4lD8XHUwMDA07Fx1MDAxMzuVrzjXZFx1MDAwMGinv/w6zvsqJlx1MDAwMLRUxJZcdENqXHUwMDAyQN+GtegoeHk9suor3ShWg8pz35x21+9cdTAwMWZuVvqKVivBXa0r7fzb/vVcdTAwMWRcdTAwMDWlYqVXXHUwMDFkhfW4tkSPKJJ0bFxmXHUwMDBlSdhcYu6CWrFyPPg4J0833+ZcdTAwMDK8xGxcXFx1MDAxN5t+V9q6XHUwMDFk96lQyK1Jl8Z7+IC0/Fx1MDAxMlwiaVx1MDAxNFxuf57/IZMolFx1MDAwNjxcdTAwMTc8w4whboNUXHUwMDE4kEtMwlx1MDAxNFOa/nBm5fzO7oDmlSjYdiGo30tcdTAwMTUwgEFcdTAwMDBiaklKw1xmXHUwMDBl7X9cdTAwMGXCXHUwMDFl48cyuTfnP09G07dcdTAwMDZfXHUwMDAz7ns1f72Jj1x1MDAxMVx1MDAxMNdJIMxcdTAwMTXinY+FeOdjIFx1MDAwZXw4xJFcdTAwMTa9YDqhlY7C+NrKd9tmO/XCqlxcXWHVQlgoh+vZxriQ7tyNS6ssWatcdTAwMDZlynOPQO5wRNq5on9bOT8lXHUwMDFihCfBXHRb5nK+gFx1MDAxOVx1MDAxM+jCXHUwMDE4tGzuMFx1MDAxZlx1MDAwNcSpklxuTVx1MDAwNcSDj1x1MDAwNeLBXHUwMDA3XHUwMDAxMaGtpICoXUCJZFx0lXhcdTAwMTRcdTAwMGVcdTAwMGaL9abZfSntXHUwMDFmtc+vw7ut/N5h7THjOHRcdTAwMWEvOmd5bciSYP1cdTAwMWEvZ9KzqC1cdTAwMWHJrHE7ZHODofTI3iZcdTAwMThcdTAwMDLp30KSfj1cdTAwMTZcZi1ypkhCz2DX+5dwiFOFz02FQ/hYXHUwMDFjwkdcdMShOLRcdTAwMTKRWW7Gx2HlOL/XYtubdseHznFt47ZcdTAwMTSoesZxiIQ0d/ZMMGSGJYfjLSdcdTAwMGUpXHUwMDA2RmtcdTAwMGIkePT8lN7pcEg0iiQ59SxcdTAwMWPXl0B8XT2fXHUwMDAzxMSZfVoxlWR0MdKVxt9cdTAwMDL6dvJccuqF8+fK97P9XHUwMDFkuZs7bp1tZi5cdTAwMTA9XHUwMDA1RGM9cFx1MDAxOcKMkoqrQXmoJZmkZINcdTAwMGJBivr85CGppZNcdTAwMWGfyIRzeeXw2TtAfCq/j6lAiFx1MDAxZlx1MDAwYkL8XHUwMDE4XHUwMDEwiuEg5LRcdTAwMThcXOTj+NKwuve8v7e6eni6XHUwMDFh5G9cdTAwMGaVvS/x7cydyaRAXGLSQzRgXeInIVx1MDAwNaZjPIVnlXCpabXLXHUwMDBlMUdcdTAwMTRyT1x1MDAxMVxuXT5QZlxiWmNcdTAwMWGHWlx1MDAwMcFW/n9cdTAwMDLiylx1MDAwN4vDlVx1MDAwZpKHP1x0uVRCuYTDenwovmw3otx161x1MDAxMk52XHUwMDFiu75df2znOpBtKJLe7Vx0q4Vy8Vx1MDAxMtRhmcrDQlBcdTAwMTTS0EqTXGL9h6UzT1x1MDAxM430JGtcdFuWlE3LVDxcYj/VTJFEKIpZZGH6NSxOdc45XHUwMDFkXHUwMDE2P1gqrnyQWFQ/iXiUqIVWXHTHplFYlJdnKroryPbO08ue/9xZuz06M9nGXCJZhlx1MDAxZSmEklx1MDAxOZJ64PinXHUwMDFmi0iqq0OGlWCAsJoxKGolJF09i4DGX0NcIiZX61x1MDAxMolfplx0M1x1MDAxYbpdXHUwMDAz3FxiYVxc3t6xobhuOo2j522zvlx1MDAwZVx1MDAxN6LB7rfquecga1BcdTAwMWMjX5mRXHUwMDA2UFx1MDAxYs7pqlSKc1erSVxu0f+CLMush1x1MDAxOVx1MDAxMb+Q+Sszm4dgKlx1MDAwNC99huZcdTAwMTJlpIdHXHUwMDE5KVx1MDAxN62GOH6QUWtNXHUwMDFm545zW+v37e+nYCtcdTAwMDZusbKATKCMXHUwMDBizVFknybDLrpMgJyEtCYxbshIXHUwMDA0gVl3XHUwMDFmJK2fWaMyXHUwMDFicFx1MDAxOGs5SyroXfBZgVx1MDAwNVx1MDAwMtLFvWRllis7UcDhXsDy9uKQ7128yFx1MDAwN/OQW6s2tlZcdTAwMTaOXHUwMDBitCdRgnBD7Tbu+qOPXHUwMDA1Y541YFx1MDAxOGnTypi5vvhkNimNuUFcdTAwMDYys5FcdTAwMDVLMnjn6k/yJVx1MDAxZWohcEvKpXvp2NhUcPBwJsPG+dHh5dXLdo2RWlx1MDAxMNx8z1x1MDAxYVx1MDAxNaS3sLnHOSNKcNQgRX9IXHUwMDExzYbn0jFQLXOuR3N8x1x0MqIo91ZcdTAwMWJcdTAwMGVcXGjS6sfcNlx1MDAxM1IxMPrTt7A/0FiXXHUwMDFmbKzL2Vx1MDAxYevDkGiGnyZcdTAwMDEyhtbw8X1ccn1onp2cbdRcdTAwMGVWorOdjjwylfWHjPtcdTAwMTNcdTAwMGJAT1xih0THc6hcdTAwMDZcdTAwMTVyrVx1MDAwMMh41yTG7fy8+lx1MDAxMTxcImCrOdGBMWhgPCRcboVM40xs8V9D4lTCdTokqlx1MDAwZkaimi1cdTAwMTJvXHUwMDFiNHdvL0R9a2pPSVx1MDAxZYZGbSUqWo7jh+Hv6Z2jUv1UrG2vXHUwMDE0+KVcdTAwMGaFY5/fZVx1MDAxY4xkXHUwMDFkXHUwMDBi6ZLzuXdcdTAwMWRcdTAwMTmm+lx1MDAxZH9cdTAwMDVcdTAwMTdcdTAwMWVcdTAwMWFuLN3JomJmnrG2jLG4XHUwMDEziVeN9pX34uu5XHUwMDEy1lx1MDAxZEh/XHUwMDFlXGZ/QcedsUaZXHUwMDFjobhkUHOcRFtcdTAwMGWqrVxudbfQoEFqNdzKiVx1MDAxYa1EXHUwMDBmfpS/jtFcdTAwMWPgp4QmISEm2K1aXHTOt/fIfDNcdTAwMWSzurJcdTAwMTW+XFzt8XXMOPzQpbXgpJ260FZp+tVSXHUwMDAxpCxcIrrMOE4rNXNNmDtcdTAwMTH6LFpNjZqF4blE3+ehj1x1MDAwZvWmXHUwMDEw6M4tk8f0I/eKXHUwMDFmXG7lW3HxeG+vrFlcdTAwMGY28npcdTAwMTMyLvy4NZ7lXHUwMDEyuSHRZrVOuTVcdFI3XHUwMDE0XHUwMDE56JzRQJDOl1x1MDAxNdnnXHUwMDAy5flstoB/XHJ8Ylx0vrmIPrBcXDHESTJA2eeg07rZ2M3vtSvsXHUwMDE5dp7KXHUwMDE3J9fZRp9LXHUwMDE2L5nRLm2DXCJzL+VjL1x1MDAwMMhM5C6dXHUwMDFhJ710jobgZOhz5+nuyHOJvoVGXHUwMDFmXHUwMDBlffGrVpYpJifIy5o/WrtnUX6tkVx1MDAwZirtp81OtL+BKuPgc8nZXHUwMDE5uFe8XHUwMDBiWkrC9p+E0FxuI81Ta5DGXHUwMDA1uJt5OkhMpHiSmqxJYH++2bdE3yj0XHI7lkQzVOtExml2VfJVrKOw17aF71x1MDAxYmVx8VxcLZhcdTAwMWGvb7SL36vfMo690XsuVOMkIy13m3BUnTX2NHpcZrvuiYp0YIHvwFx1MDAxMEhIXHUwMDAzmdRcXFxirahriU3S2Fx1MDAxNlx1MDAwNM5Edt+YNFx1MDAxNVL/x1x1MDAwZiFXkHvcZdpcdTAwMTfS0lrTcWqdt1r3KjNcdTAwMGI0rVx1MDAxMiyR7shcdTAwMWJcdTAwMGVdS93awWU0yFJTkVx0qOGZXHUwMDFiqNlWIcjxtejnqlx1MDAxNkcn9+F9ScL94W6YO7pcdTAwMTGdrJOJ9DRcdTAwMDKidpYqkWe/XHUwMDExKzh6XHUwMDA2XHUwMDE4dynXlWJzjM1RktZcZlx1MDAwMY6T5oTSiLhcdTAwMWQxmUjjSetcInGk4Fx1MDAxMkBcdTAwMGWcrlx1MDAxOKndKWxmX7Ky5JLBq1F5mlx1MDAxOck1uIMpXHUwMDE1S1xi91lx/lxmjCtQlluiXHUwMDA2MmpH3W/oQureb3Bcck3IJMOOZTGRZnRALZEus1x1MDAwMVx1MDAxN+Ofy56sXXTyqn3T2fXLfqFSO4/yRZ41JpFcdTAwMWVTyjlcdTAwMTZcYuM2+1x1MDAxMnrZay5cbnDZJuiLZPGiXHUwMDEwqd0xxT1D6pqwjOxcYsP0/HbHLPNcdTAwMTRY54/FaIGJRL7Xn53TSpcuUpj3zfSYXHUwMDFiXHUwMDFlTi9E7vJcdTAwMDSFf1x1MDAwZtvVytPT/s5l6y1cdTAwMDPTXHUwMDA3nuZOxSxTnebe/r3zf//sfPnoQ913XHUwMDFlO08vXHUwMDBitENcdTAwMTOpSk7SkrSa8Vx1MDAxZJ5aqybfeTKVcihcdTAwMWXqzdxxuXWNa1x1MDAwYoZmaz3WXHUwMDA1XHUwMDA0J2BInrb33btcdTAwMTZcdTAwMTQ3UllkYp75ncApnlxmjVx1MDAxOVx1MDAxZcFcdTAwMWL37S3+gVxin/h3yHHT/1x1MDAxZZhcdTAwMTORylx1MDAwYlx1MDAxZXAvXsH724/h/1qs149cIlx1MDAxYbGegkYzXHUwMDE53Pzodvzor+3Af8pcci6tv912P25Ku4TgoNfdi/jzr9/++i9fap73In0= yxO112-1-2-2-5-6f(x)=x -62

    x01122
    f(x)65522
  2. g(x)=72x2

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1d+2/iSrL+/fxcdTAwMTWj7C/3SotPV7+qe6XVVWBcdTAwMTJC3lx0ScjkajVcIuBcdTAwMDRcdTAwMTJeXHUwMDAzJoFcdTAwMWOd//1WO1x1MDAwZlx1MDAxYidcZmRcdTAwMGWwZq+JlJnYxu5HfV9VdVeV//jty5eNYNzzN/7xZcNcdTAwMWbVqq1mvV993Pi7O/7g91x1MDAwN81uh07x8O9Bd9ivhVc2gqA3+Mfvv7er/Xs/6LWqNd97aFx1MDAwZYbV1iBcdTAwMTjWm12v1m3/3lxm/Pbgf9zvw2rb/2ev265cdTAwMDd9L3pIzq83g27/+Vl+y2/7nWBAd/9f+vvLlz/C37HWVfv97nPDwsNR41xm08mjh91O2FCLSlhtIbqgOfhKj1xu/DqdvaHm+tFcdTAwMTl3aMN0XHUwMDFm967uy1x1MDAwNTUsNr5WS/nR18dOLXrqTbPVKlx1MDAwN+NW2KJBlzpcdTAwMTKdXHUwMDFiXHUwMDA0/e69X2nWg8brkMWOT/tWvzu8bXT8ges5vFx1MDAxZO32qrVmMHbHXHUwMDE4ezta7dyG94iOjOgvwaSnOLdGIWqUgOLttLuBZMxDjspoo1xmMky0q9Bt0Vx1MDAxY1C7/lx1MDAwNr77iVp2Xa3d31LzOvW3a4J+tTPoVfs0U9F1j689XHUwMDE20pNguNRaoEBt3q5o+M3bRuA642lrjJBcZpSmpliMtcZcdTAwMGbnRCNnWjGMZsw1oVeqh5Lxr2hcIvokUyX3jc6w1YqPZqf+MpqvXHUwMDEyXHUwMDE0yVx1MDAxMH858mfUR3f9Vkz2oidcZnv16rOcXHUwMDAwciuEkNzQ77fzrWbnPvn4Vrd2/4FoXHKCaj/INzv1Zuc2+Vx1MDAxNb9Tj87EmvxcdTAwMDKIsItcdTAwMWJfd0pcdTAwMTfX/VHj7Fx1MDAxMEequXVUKNyKSIbccHRrw1CCPG6t4ForVFpcdTAwMWJrY9fcVntOWjxUgFLTLyG0RHg/KK3qICh02+1mQP0/7jY7QbLRYYc2XHUwMDFkIFx1MDAxYn713SRQl+LnksjtuTtGQHef6H9fXCLhXHUwMDBl/3j7/7/+/uHVU4XOfXLv5S2632/xf186Pz/pKMWTR19JXHUwMDA3hNJgXHUwMDE1cjk36+TP+JaP21x1MDAxNm+bpcejSq56UOzm0806kitcdTAwMGaU4cgsXHUwMDAzpO4mWEcrj1x1MDAxOcVcYjlotFCQaNjiaId5VrrBRkMzbWnsI05541x1MDAxZEKuR1pcdTAwMDCkouYoXHUwMDAzsWF6plx1MDAxZOAgkCubTtrhxkbgXFxcdTAwMDLtTN5sjdCfmz754el38/5J+NNg+1x1MDAxZqGfzIpp6FdcXDrGiWm/WeBcdTAwMWZzuDhcdTAwMWadb53meludLuh9k1x1MDAxMztpXHUwMDAzP3jKXHUwMDExqCbdglZcdTAwMWHCe4JccqRcdTAwMDeMVLd04kpcdTAwMTMxQVx1MDAwNkKjR9rIgLKoyVRRiYYuklxmXHUwMDA0XHUwMDEzXFxYaihcdTAwMDNcdTAwMTJcciYjXHUwMDEyjtiAe1x1MDAwMFxuNbMkXHUwMDE5VspcYvQvbIB0XFzbjFxmXHUwMDE2Tlx1MDAwNlx1MDAxM+dcdTAwMTbKXHUwMDA0P5l493k35YtcIlx1MDAwMlx1MDAwM8mjb2ZcdTAwMDDJXHUwMDEwV1Li/M7Hwc71eNhriLvTxvVJgze2ZG7QXzsmIMrlWlx1MDAxOMalpSnhUfdDKpDutFx1MDAxNDRcdTAwMWKWXHUwMDFihJhrlk4uXHUwMDAwXHUwMDEwjLwnxVwiQs/YIGODXHUwMDBm2cAwlTz6xlx1MDAwNmSeWFx1MDAwMssnllwiTv3uzfbZzvnm96Bogotqeat8mFs7NuBcdTAwMWWBnVxiXHUwMDAxOeFImlxigiFcdTAwMWJw5tGXjeXKWFx1MDAwMzbR0NRxXHUwMDAxSoaS/OuMXG4yKphBXHUwMDA1YqqHQO2xXHUwMDFjP0FcdTAwMDTD6tnu+dnp5rVcdTAwMGXahf2bzl5wqE7WkFxiuNJcXJJJJMhcdJCTRMAtekxxYVxm+Vx1MDAxMKAxtpqQUipQZMnQXHUwMDFkdDRcdTAwMTJcdTAwMTlcdTAwMTdkXFzwMVx1MDAxN+jpToIg35iEP0LmLDJo7e5cXO1eXlx1MDAwZnPdXbZXrHSKXHUwMDA34/vG2pGB8Fx1MDAxNFx1MDAwM64lWmYgNjwhXHUwMDE3oPCkXCJVK8FcbkVfTztcdTAwMTXQ9EnqaLZcXJAxwSwmiE1Gglx0ODLSfuZcdTAwMTOrXHUwMDA1uv7V717VTi/Kw7Px6Lr1oLHRWkMmXHUwMDEwXFwpQ1pcdTAwMWaUkiY6XHUwMDFkUoG0XHUwMDFlXHUwMDAyibA1zFopVOpXXHUwMDBilDDAUGHmXCJkZDCDXGasmlx1MDAxYbcgXHUwMDE1KUFSkPPvIFx1MDAwZds9dZj3S5ub24P6tsn/qPZcdTAwMWXWj1xmpFx1MDAwN9pwRFx1MDAwYoaGO+FcInD03J42XHUwMDAzJZVcdTAwMDbEtO9cIlx1MDAxMHlJZbnKqCCjgllUXHUwMDEwW1x1MDAxN0uuXHUwMDE2SEHK0czPXHUwMDA01dJdoFx1MDAwN+18uXax12bN2vDH3WF17ZhAeJagY1x1MDAwNVxuK6SJmlx1MDAxMjJcdTAwMDFcdTAwMTOe4ZzcJnJcdTAwMWSs1mknXHUwMDAyZFx1MDAxNnjcj8l4IOOBXHUwMDBmeVx1MDAwMEi5TSNcdTAwMDLQjFx1MDAxYsEtmz+y4KZxUFx1MDAwYlx1MDAwMnXRq53kXHUwMDFli/y6e779rbh2VKA8XHUwMDBlIJxvYFx1MDAxOONq0kOQXHUwMDAyPS6ZXCJcdTAwMDdcXDLUNvVcdTAwMGWCYNr1XHUwMDEystWCjFxyZrJBzFx1MDAxZE6ygTVcdTAwMDRcdTAwMTeLav71XHUwMDAyUd6/LHR/XGae+uh3q6ySP3yqqrVjXHUwMDAz4SmaXHUwMDAyZMZcYi3VpGEgQXuKXHUwMDFi4lx1MDAwNGNQXHUwMDAwN6lnXHUwMDAzMmKUVppnu1xiXHUwMDE5XHUwMDFizFo7tFN3XHUwMDE0pVx1MDAxNNKSXHUwMDEwze8kXHUwMDFjVZ6GWyfl3ZvSTe2uXrysjMan47RxgfBAujAhrYQyXHUwMDE2LURcdTAwMDNcdTAwMTBygTTkJNA4k5xyJXQkq2FogbGeVIojklWAkPZNXHUwMDA0y4UwwmTbiVx1MDAxOVx1MDAxMcxcXCyAqVaBZEKStH/CRZBcdTAwMTc9/diuq1I991x1MDAwMEGh/FSGo8G6XHUwMDExXHUwMDAxck8pXHUwMDE3/c3RWC5cdTAwMTPBx8Z4XHUwMDAynTFhhDRcblNcdTAwMWZkJFx1MDAxY+i4zqggo4KZVCCnLlx1MDAxN0jyloHThM1NXHUwMDA19dxhRZ1cdTAwMTR1/uz8tnWnTe/++2N93ajAak9cbsFcZv3wiXyeZypAz0iaXHUwMDA3QCXTXHUwMDFmeWzIyVx1MDAwM2NiZl1GXHUwMDA0XHUwMDE5XHUwMDExTFkq4FPzXHUwMDExpYs7NtbMz1x1MDAwNMHpLd9ccop+7eCr8HdOXHUwMDBinbHmqUuCnsFcdTAwMDSCW09cYlx1MDAwNHKvjVx1MDAwMYmTMUbCMk+TqUByrMkmXHUwMDEwMYylk1xmODBjtNA620XIyGAmXHUwMDE5KJY8XHUwMDFjZSWBZmRe2vkjXHUwMDBlj/auTmv3g72SeIKSblx1MDAxZcPR0bZZNzZQ3EOpXHUwMDA1J1x1MDAwZolL/c4wIDpQloxcdTAwMDcp6DYoeeptXHUwMDAzYjTuqjpk21xiXHUwMDE5XHUwMDFkzKJcdTAwMDOYvmBAXHUwMDFlgnZJeJ+gg1xuP7/qXHUwMDFkdLtyfPywf3tp77ZcdTAwMDaD1MVcdTAwMTfMolx1MDAwM1SeQOlcdTAwMTZccpyrXHIySVx1MDAwN+CxUJSNcUGZkP5sXHUwMDA0tzOqwWRrXHUwMDA2XHUwMDE5XHUwMDFkzKSD6YtcdTAwMDZgyVx1MDAxYSajOYaoWXRcdTAwMDCV24e9wfZ+c/e60WycXHUwMDA2u0fGrNuqXHUwMDAxzYEnpDJkXHUwMDFhKa2RvWdcdTAwMDOhJWdKWImY+upcdTAwMDXAuXTmQVx1MDAxNniYkcErXHUwMDE5XHUwMDA0/ij4iFxmJJuemkQz5eJqYrU8ZnJB6fqrL26K9cvvzIyKw/3zb7ydNi5IlDGS0kMrlFRgjCTcTEBcdTAwMWbIL3Ar8YZcdTAwMGJcdTAwMDHaWVxmS8M+MVx1MDAxMLpcZnFNLlxud0GfXHUwMDFmID/29JfIQlx1MDAxMlxupjUsXHUwMDAw6Vx1MDAxMyc+XHUwMDAxaVwiTFda7lcgfdPtXHUwMDA05eZTyCps4uh2td1sjScmNZRgVy1nY+LQZqt521x01Z1/MynhQbNWbb2dXHUwMDBlur3obI1cdTAwMWVRJfXYfz8k3X7zttmpts7eP84p1J2okl1sNq6rXHUwMDAzP1S3XHUwMDBlNb+GQ/GTSFx1MDAxZsadXHSq58fhz8vFpVx1MDAxMoekWz3OgVx0TVx1MDAxY0h6OFx1MDAxMqjnXHUwMDFhhuS+XHUwMDFiJq1cdTAwMTWaXHTye5dcdTAwMDZDoImlXHUwMDE22Fx1MDAxMIOxXHUwMDE0g5+A0ErNLaBewDL9z0H4xvmRVn6b8p/XrZyQweeCXFxvZ/58VSAzIP5LWvuXID5aLcRHq4E46KnpPmBItyNqXHUwMDE1jfHM0N52rV/YvJLav+k8yPJgU7Fx6pbok1x1MDAxNVx1MDAwM62nOUN0XHRynCfidVxcmVIybzjTnK5YZiAvSFx1MDAxN0JIqpZcdTAwMTGpXCKY+VBcdTAwMGWoiFx1MDAxNNKga1dcdTAwMDfEo9VcdTAwMDLxaEVAlFOTbThjZGSb+ILZLCBeVVx1MDAxZUT/4PRGnlx1MDAxNuDAju6x3dJHKVx1MDAwN6LUnpZoXHUwMDA0I+m3yFx1MDAxMkBcdTAwMDTuSUN6XHUwMDE2XfVkUMvbXHUwMDE5U54kXHUwMDFjWnK7XHJ5PFx1MDAwMvhcXEA04Jq8iOJ8f1x0hsjiwrpUXHUwMDE4wmphXGKr0odTYVxiILhiLpxrblx1MDAxOPavc+bbKH861He+uvfPKoOnMqRcdTAwMWOGzMWyXHUwMDEzXHUwMDA2wVxucvdcdTAwMTOJLa5mJtn9aDT5nkwtL37111BcYsxYsFx1MDAxY1x1MDAxNpHHkuHwWXb+PTiMrTQkYGiEXHUwMDEyiGS2zY1C/67fYZ3mk/jeeKpeXHUwMDFk3DTre5dpV4baeEB631x1MDAxNa2VXCK+uvusXGaZXHUwMDA3QOqQaWnlMjeCyCr9rONcdK5AjjRqXHUwMDEx9ejWXHUwMDA1g3y1XHUwMDE45KvBoJq+XG7LmZCgUUeSN3P1p184LjGLZ727g/JFdVx1MDAwN2qHha/pXHUwMDA2obBkc2qNXHUwMDE2tGJMmkR1OFx04Cnh0sI4uWBGLG9cdTAwMTVcdTAwMTaE51x1MDAxNqCMXHUwMDA0wUxYNHxcdTAwMWUgXG63NFx1MDAwZsosIDZrXXCYW7EyzK1IXHUwMDFiyqlcdTAwMDWatFxyi8zj/EBsXHUwMDFm1EqlRqNQaVx1MDAwNZW70f7ekdnrpNwmXHUwMDE1mnsuXHUwMDExSXLNgOzOyZ1Qh0OJXFwyRKFcdTAwMTSpnuWpQ1c3VlmLrsBcdTAwMDM3luloXGZ+XHUwMDAyRE5cdTAwMTeahbzF4a/hXHUwMDEw4rK6XFxcdTAwMWOuWCHmVqRcdTAwMTH5VFx1MDAxY5LNo7W2bH7fMG+741x1MDAwMpRcbjtVllx1MDAxZn1jQWUkLlKvXHUwMDEwXfaiJW0o3GsrbKIsXHUwMDFhXG63gKM1mafc1U9eokIkPiBcdTAwMWOSkamAXHUwMDFj8vnsUutKv5v4XHUwMDBicP7jcahWXHUwMDBiQ7VcdTAwMWFcdTAwMTTCVN/QJVx1MDAxNUjD1PzasPDjZveoOt5tXHUwMDFm5Vx1MDAwZlx1MDAwNsPT9vZWoZS6KsZJXHUwMDE0oke2IJcmNEshUaeUo3PZXFylUrLSIV7EdeEoZFx1MDAxZVx1MDAxMlxuXVxciDN/7XzRXHUwMDAxUkrgiov/R+pcdTAwMTBXXHUwMDBiQ1xcLFxmb/o0ca+vX3xt6StcdTAwMTR/8r4x5FxujJo/hLd42VelkTzO1fIl9t1cdTAwMWbwb+w6dW9cdTAwMWN6/7oxITWXwmpBjuKkYcqF8Vx1MDAxMKVcdTAwMTLccDa5O7D4XHUwMDE4PcZiQVNv8EtcdTAwMWN/fZ0hTYtbw11AXFzur0LwL8TcLTjCLT5A0ZHoe78lvj9P9F6zPWxRd4/7NEjDvpOboD+M9eDl+PNcdTAwMTgtXHUwMDAzfGCVxc9k3DfHo0L3/KR/U5ONcueoYk5ON1NXqTNcdTAwMDE+5bLltOBoXHUwMDE0gk3sVLiXrLlcdTAwMTQ6K9C9bnW5r/T5XGb4QHMkK1x1MDAxOf+d6zJcdTAwMTn6lok+zjQqIMdk/so3P7ZcdTAwMWY28zVTKXTESedwK3i6XHUwMDE5XHUwMDFlpFx1MDAxY37OXHUwMDE5XHUwMDA0XHUwMDBiZGoqxiGZrOLg59YryUhcdTAwMTUg2Vx1MDAxMq3Qz6HPkGfKXHUwMDA0LFwiQy1cdTAwMDNfXHUwMDFhwVx1MDAwN8apXHUwMDAzZj6RO8bQPO1cdTAwMGYqp7WCf7t50bt63NrSfsrBh8pzO1x1MDAxMspITWzDJivOXHQ0nlx1MDAxMm7XnHxhhmKZZaY+pfo4NVx1MDAxNVx1MDAwNCyiXHUwMDBlfYa+VKLPMiVcZsnj/KlaVX1cdTAwMDDFs4dcdTAwMWXnKFx1MDAxZa52XHUwMDA3x+NCO3UvlEtYnsjJ8nRvkSR4KVx1MDAxMFqvXHUwMDA3/Jhzylx1MDAxN/N2qFxmfsuF39Q8STE9Pi3M0kLxieKrp+NWbuuyUs7Lk51RvoL7ueCymXLscUXgQulqXHJQd1lcIjTGrbk4m9RcYlx1MDAxZWZN2uVcdTAwMTme2kVsa0HGhjVcdTAwMWGY+uhccu+MpFxutXtcdTAwMTU9XHUwMDE5xDhBXHUwMDA1r1XYXHUwMDE1XHUwMDE3sFxiXzBLilxcUVJkjqNcdTAwMDcuPJKDVlbxxOvdpfasezuCccmuJKFm5v2mXG6S+7xcdTAwMTeh91x1MDAxNPVrTGKnJ3eR0kLC0CdcdTAwMTZvr4Y9tVuUT+Ph3dBuXbaa27mhTD+TcHJPUTEtmVaT0T1cXKDnzlx1MDAwMSN7XHUwMDA20S6xarNcdTAwMDZPubdvMnKnXHR0gn2wn1x0VnqGUZNcdJhMkW1cdTAwMTFLNnthXHUwMDEy1ODiZLP86vWhXHUwMDEykkCXXFwoyV2VkqY/imxxXHUwMDFml1x1MDAxMGE5XCJnRFx1MDAwZcZVUp51v+mS5D7vZeiTVDJ1Q9ZOjVx1MDAxNKRcdTAwMGVcYiWZnH9HdlSEg8qPoFxcLFx1MDAxNo5bO5uypUv57bQxifQsgqRpXHUwMDAxNOTwxF6E81xc5c0lhlxuZpXSgtS7nrRRhEvndFFbhnidzJQlpm9cdTAwMGLSVNYyslx0ZVx1MDAxOEX/gYnyQU6ZVtpKNSWIPuKGw7tcXEVg7Vx1MDAxMVx1MDAxZotcdTAwMTWw/ITfXHUwMDFk7lZeUzhXuJFcdTAwMWL1atlcdTAwMWK5t/81+u9/Yo6vOFx1MDAxN/SDxy41yolP9zGkq1roXG6OzI3nbvfy6fy+3io/bd1Wji9cdTAwMGW+n9w9pC7OaVx1MDAwNp61i7hw+aFhxUomXHUwMDEzW02ae6BcdTAwMTlJJFxyXHUwMDBm8TRfYjw+eI7eiT2mXHUwMDA3XHUwMDAyR717XHUwMDAxtOLMcq3lx4FP/3l4jlx1MDAxMdeax+0/K3yXXHUwMDBiXHUwMDFmjtlGtdcrXHUwMDA3NGJvNlx1MDAxYc1ks/7S7ejRXHUwMDFiXHUwMDBmTf8x/160/nZcdTAwMTN+3JSGnODAXHUwMDE3Lkb88edvf/5cdTAwMWb9TruyIn0= yxO112-1-257g(x)=7-2x2

    x01122
    g(x)75511

f(x)=ax2+bx+c

Grafikas nebraižomas su lentele

  1. Askaičiuojame parabolės viršūnės koordinates:

    V(x0;y0)

    x0=b2a

    y0 randame, įsistatę x0 reikšmę į funkciją

  2. Apskaičiuojame taškų koordinates, kuriose parabolė kerta Ox ašį

  3. Apskaičiuojame taškų koordinates kuriose parabolė kerta Oy ašį

  4. Nustatome parabolės šakų kryptį

  5. Brėžiame grafiką


  1. f(x)=x22x+3

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daVPjSFx1MDAxMv3ev6KD+bJcdTAwMWI7rqkj65qIiVxyzuZowOZoMFx1MDAxYlx1MDAxM4TwhUC+ZTBM9H/fLNFYQrZcdTAwMWKbsUHetSeagVJZqiPfy6OySn99+vx5JXxoVVZ+/7xS6Ze8wC93vPuVX135XaXT9ZtccrzEo7+7zV6nXHUwMDE01bxcdTAwMGXDVvf3336re53bSthcbrxShdz53Z5cdTAwMTd0w17Zb5JSs/6bXHUwMDFmVurdf7ufXHUwMDA3Xr3yR6tZL4dcdTAwMWRcdTAwMTI/JFcp+2Gz8/SsSlCpV1x1MDAxYWFcdTAwMTfv/lx1MDAxZvz78+e/op+J1nmdTvOpYVFx3DhcdTAwMGJcIl160GxEXHJlnFx1MDAxYpDcMjOo4Xc38FlhpYyXq9jeSnzFXHUwMDE1rZxcdTAwMDXtta3rw8vCVnB827s7XHUwMDAytaN4/NiqXHUwMDFmXHUwMDA0x+FDXHUwMDEwNanbxJ7E17php3lbOfPL4fXzmCXKx32r0+zVrlx1MDAxYpWu6zpcdTAwMWKUNlteyVx1MDAwZlx1MDAxZlxcXHUwMDE5pYNSr1GL7lx1MDAxMZf08S9gkmAvOVxiZi3H3lx1MDAwZa6671x1MDAwYkGJlNJcdTAwMWFqXHKA1DLVrvVmgJOA7fqFVdx/ccuuvNJtXHKb1yhcdTAwMGbqhFx1MDAxZK/RbXlcdTAwMWScqrje/XOPuSBGWktcdTAwMDVcdTAwMTOuNVx1MDAxYVx1MDAwNlWuK37tOnQtJ8pcYqNcdTAwMTVl0lgmITFKlWhOXHUwMDE4dkJrqtTggmtCa6dcdTAwMWOJxp/xRHRQqHbcN1x1MDAxYb0gSI5mo/xjNJ9FKFx1MDAxNlwi/qPke9xHV38zIXzxXHUwMDEzeq2y9yQnTHMrhFx1MDAwMEktxINcdTAwMWL4jdv044Nm6XaEaHVDr1x1MDAxM675jbLfqKW/UmmU4yuJJv9ARNTFXHUwMDE1Jfa/XFxB+Uyc3Z82dopcdTAwMGZf9+p3N4NcdTAwMTlww9Es9VwiXHRcIoJcdTAwMDIwbbU1UnFlVaJSzWs5gSBGKFx1MDAwMCGUUVx1MDAxNow0emhUXHUwMDAyr1x1MDAxYq4363U/xFx1MDAwMcg3/UaYbnXUo1VcdTAwMDfJ64o3NFx1MDAwYtin5LU0dlvujjHU3Sf+7XMs3dFcdTAwMWaD3//8dWTt8VLnPrkhgYvv9yn5/1x1MDAxZp2fnHY0NenSXHUwMDAx7Vx1MDAwMJX4TySk+zXaaVx1MDAxZdxUv7Q7XHUwMDA38puxdVq+euzY1Zts046kmlx1MDAwMGPKMOCCaaliZnE3XHUwMDAwMMRcdTAwMWEmKEpcdTAwMTnXXCJcdTAwMTbEmfNcdTAwMGVcdTAwMTCmmdFcdTAwMDBKM8Ulh7ghXHUwMDAz3uFcXFx1MDAxM6pBg8LWail0PHnPxGPAXGIuZUxa2Vwinnhi50E8L2+2QPDPjZ/96PLwxE9JXHUwMDAwONqVUfg3XHUwMDE00qXP+OdUoVx1MDAxNtaCTo7/i1V6o3b3PCaafnH1qFbInVx1MDAxY+Wzhn9GpKbaKsGVRs1hpU5cdTAwMTFcdTAwMDJcdTAwMTChJVhNXHUwMDE5XCJcdTAwMWVcdTAwMTL6392RW0U0WKRccipxunhcdTAwMDJps2ZcdTAwMDSKWlBwYbGplFmEXHUwMDBmjDBFOCeMSdRcZlx1MDAxNkXDovxcZjFcdTAwMDLSuGWUy3gklpQwXHUwMDFiSnhxbaZ88JOpd5+hSZ9cdTAwMTVcdTAwMWJcYp4uXHUwMDFkWFx1MDAwM84uQcskIe+vscGh2XlcYjc9f+e+3c5X7n3wgquvXHUwMDBiyFx1MDAwNuiPXHUwMDE4xlxyiqtm8dWIXGa0IJRKSvHLQluWbmjWuIArXHUwMDEwXHUwMDFjTb64ndmigthcdTAwMDVeUsGgwlx1MDAwN1GBVOnS2DFA71biM+NcdTAwMWGvUcFx7eJ8I7i7Llx1MDAxNez549eg3LovyauFo1x1MDAwMk5Q6Vx1MDAwYmlcdTAwMDWaYiohrFx1MDAxMVx1MDAxNYAlRmuJXineRNiMM4FkXFxIXHUwMDEwWXVcdTAwMTOWRDCi9sdcdTAwMTCB1SxdOvBcdTAwMTBcdTAwMTQ+XHUwMDBlpJ08LvntZOvsOF9cdTAwMGLWdr6Zwm31rPCwc7iIXHUwMDBlgmFaa0BhVZKmXHUwMDAyXHUwMDA2jFx1MDAxM85cdTAwMTjSgFBWKWVSXHLNXHUwMDFhXHUwMDExXHUwMDE4Q1x1MDAxNeXAsupcdTAwMWQsmWBE7Vx1MDAwZmJcdTAwMDJr06XPTIBNcOFcdTAwMDI1eajg7HyvfXblnVx1MDAwN0dna1x1MDAxN7dHW6s7+Vx1MDAxY11AJlDYcUuZlMJoeElcdTAwMDXCXHUwMDE4XHUwMDAy6Fx1MDAxOKC1ZFxc5FbOb9FiNlxcXHUwMDAwXFxcdTAwMDPaLlwi5qwlXHUwMDE3LLlgJFx1MDAxN7Dk2lbaP1BcdTAwMDBcdTAwMWE1yuRk8LBxv3ZCXHUwMDBi243TRr/Vve7e5M9ccls4MpBcdTAwMDRcZmikXHUwMDAxxVx1MDAwMVx1MDAxMiCKuEApXCI4XHUwMDFh3UJzpsxcdTAwMWPXXHUwMDExZlx1MDAxNDVk1HBLOcsqXHUwMDE3xJ1acsGgwlx1MDAwN3FcdTAwMDFcdTAwMTPjXHUwMDE3XHUwMDEx0cvkWlx1MDAwMZ08Vlx1MDAwMF3RqlU2t4/zh6fF3f1cdTAwMWO7/3J7vnBkIIi2XGIg9Fx1MDAxMFxmNalFRZRggrPAOPKA4YJnPViAbVx1MDAxNFx1MDAxNG2YJVx1MDAxNSyp4Fx1MDAxNVx1MDAxN1x1MDAwMX6ynIhcdTAwMWFcdTAwMDVcdTAwMTRcdTAwMTOTLyD0O7WqrdzKzSBHT1ubnm7qm9OsMYEgXGaYtFxcSSGN1ZbFVmrEXHUwMDA03Fx1MDAxMq6sdFx1MDAxOVx1MDAwNMpq9TJqKJghLqKojJFUiaxcdTAwMDdcdTAwMGI0V0pJLpdGwZJcdF5jXHUwMDAyNdYmkJxyy+VcdTAwMTRE8HiQvyjudtjX89LxujXFZj/3XHUwMDAwi0ZcdTAwMDSSXHUwMDEzI7g2xighlHy5kiiYJiDxirU4XHUwMDFiWmfdJECTXHUwMDA3XHUwMDFiaSGrNkFscC2ZYFDho8KGYyNcdTAwMDVCXHUwMDAzY1xcyylcdTAwMTKbW9ubcH19tVdtt06+tE/E+uXaxqIxgVZEUyWZXHUwMDEwRmlKY6w/MYFcIvhVkNxcYkmzblx1MDAxMXBmsalcIrP5hktcdTAwMWVcdTAwMThR+6NChnysc8BQK1x1MDAxYYqYicH0XHUwMDFhXHUwMDEziJN2od6//1Iut0WgLvb9xvpmYcGYQFFKKFNUMKrRqpapPVx1MDAwZuhcdTAwMWNwY5nBX1x1MDAxONpcdTAwMDVZj1x1MDAxOSqq8LtcIrNxgiVcdTAwMTeMqP1RIUM6NqtcdTAwMDBQjJhbQp+YXG4uXHUwMDBmg3zvSyFfbLdvquCtN2woc1x1MDAwYkZcdTAwMDUgXHUwMDA0UoHVUimmLE0o1CcqsES5zVx0UtiXK2HZpFx1MDAwMq0l9lx1MDAxMGhWXHUwMDEzXHKXVDCi9kdRwfhIXHUwMDAxU4pcdTAwMGIjpzFcdTAwMGLuc/R+Y/+6WDrYtV53vcRcboel3UXjXHUwMDAyKYlcdTAwMDJ0r5llethB4JQwjdiSaHpcdTAwMWJqWNbTXG5whi1QIXRWc4yWbDCi9kexwfhogVx1MDAwMoYyz6fYgVBoXHUwMDE1dc3I2la5tNdcdTAwMTW5zb27crW9aGSgUfUzy8Fg/9FuSqykPrNcdTAwMDFcdTAwMDBcdTAwMTjkXHUwMDAytFx1MDAwZlxcWDXjbMDRLDBcXGieVdsgbvGSXHJcdTAwMDZcdTAwMTXmy1x1MDAwNmGlXHUwMDFmjmJcdTAwMDO81zgykOg2M560XHUwMDFkXiNcdTAwMDP2eLl+tHfeLeSC0mZfljc9/yHMXHUwMDFhXHUwMDE5pDYnc3RcbrRglFuj3NLbXHUwMDBi6HPBXHS4uICWgnKcmPlcdTAwMDVcdTAwMGItXHUwMDExaI4gyXC0O0QyuSlcdTAwMDZ+wlxmeUK6cNKApDRcdTAwMDOgv7gwXHUwMDA1otGb0klKnFx1MDAwMtHVZiM89lx1MDAxZp+Wrl+Ubnl1P3h4MamRXHUwMDAwu0S2lVx1MDAxN0WrgV9rROquUn0p4KFf8oLB5bDZiq+W8Fx1MDAxMVx1MDAxZarHzvCQNDt+zW94wcnw45xC3X6eXHUwMDBiRlx1MDAxMrNx5XUrkbp1Yba3wdCMTfxlllx1MDAxYcRhMrT3XHUwMDFhXHUwMDBlf35cbkQmcYisR1xmXHUwMDE1Rlx1MDAwYlx1MDAwYtxQm1rER9ddUyPBuOw+NceYPcOJRVx1MDAxMrZcdTAwMTFcdTAwMDb1qFx1MDAwM1x1MDAwMoZAXGKaMmFmkt//c1x1MDAxMFx1MDAwZSg/VsqDKf/5cTQvZPBpl/3gyvdn/ZFcdTAwMTmI999cdTAwMTfi/feBOE/sbE0v0imrmUSYT4xwf69WOuydXHUwMDE0i53N3t6J3ttbrzeOso1wNPyIQXBTodCtVoalrWw0wlxyKkCNNjp1xvb8MFx1MDAwZUS6XHUwMDFkx1x1MDAxNnGr3JlcdTAwMTCTwVx1MDAxY/1cdTAwMDCgbFx1MDAxNi7239O1b0rBeVx1MDAxM1x1MDAxMFx1MDAwZt9cdTAwMTeIh+9cdTAwMDNENl7XWq4lY4ZOXHUwMDBlRODlx5vTitxr3j9u3V3lTrud3kHGgcg10ahp0ZpcdTAwMDVcdTAwMDE2nUZcdTAwMGaMgGJcdTAwMTJwLMBcdTAwMWFcdTAwMDHzw6EkgDC0xmXrg1x1MDAxNIxPhEN0SYSmlvNcdTAwMTksgi1cblx1MDAxMNn7XHUwMDAykb2XRpTp0vgsXGYjKFx1MDAwNW4nT2ovVo9PZXNccs4k3zqhq99cdTAwMWVcdTAwMGZ2IMg2XHUwMDEy0ZwlXHUwMDFhLUdcdTAwMDDJwFx1MDAxOJlSie4gXHUwMDFjNFxyQKN/Kqyen9H7NiBaKoXCTn6487nE4d/DoVx1MDAxOZ804nacXHUwMDFhw2HyXHUwMDE40P7jXHUwMDFhL15t7jfCo+atv5W7u+w97mdcdTAwMWOGmlx1MDAxMVx1MDAxNH1tpWXaXHUwMDFkePhcdTAwMDKFbru54lxcaqyiUPfM71x1MDAwNFx1MDAxYc7c+jRcdTAwMWHAXHUwMDFhXHUwMDFkXcNN4rCbn+lDK7BZ7+F/vobDNy3yvFx0hzl4XyAmnzdPJKqxJ9RcdTAwMWGOLlx1MDAwYojJN3xeVFe/9HbzhdWT+uHpnWnvn1x1MDAxNqo24zhUllx1MDAwMFx1MDAwNyYlIFx1MDAxNmlcIqr5bJhcdTAwMWHQSqOnyNE6XHUwMDEwc3RcdTAwMTBcdTAwMDVxaeKIKUGNtFx1MDAxM8aBXHUwMDE41e5cYmHGZpCpuTBAfGeNmHsnlajGh2ONolx1MDAwNn9MXHUwMDExrLlcZrnuXHUwMDFm7K+fbd/m+2elx41v+uY221CUmlx1MDAxM0bRR1RWWSlZKlx1MDAxY4tQlFxiXHUwMDBmgeZcIkgp5njsgoOi04nWSCOiR05mmiprXHUwMDE51/9HSFx1MDAxNO9cdTAwMGJE8T44XHUwMDA0mi58xqHbXHUwMDFiI7Uwk6+K5Py9/nlv7Vv1wb9UW1x1MDAxNyeHXHUwMDFiwc5DtmFcYppGp9ZKI7k7iDuNQ2OIpkJcdTAwMGKq0UrX1OpUy2Zqm1x1MDAxYbc4LVxyp1x1MDAxM0dqXHUwMDEwtsJtXpjBZsa/XHUwMDA3wzclXHUwMDFjvE0hvjNcdTAwMGVzM1x1MDAwNmK1g3P3/GaH56ZcdTAwMGW2XHUwMDE3jFWKONI8SqSfXHUwMDE4jWJt7bTY2apcdTAwMDeNjndRX1x1MDAxN+f2+ihziUPpwKkhXGJDUFxmZcqItJ/IOSpFqyj6iCCZlvNcdTAwMDMjJZQmsrtcdTAwMTMvTXhRPnhTglx1MDAwNatcdTAwMDTYXHUwMDBmhOFT3o9JiuqkMJxxlk1yhOKS+HufUt+fJIPIr/dcdTAwMDLsbr6Dg9TrOMFcdDu9RFx1MDAwZn6UP43RPOCH8sY5ZXJcbpu0p3ZcdTAwMWbtcZte5Hdso638gvQzd3JwWlx1MDAxOVx1MDAxYWKcX0i1y3uH1FZcdTAwMWXBXGK6a1x1MDAxMiWduVx1MDAxN1x0zDNld1x1MDAxYfQhXHUwMDFiXHUwMDE4paicxZ6dJfoyiT6jXHUwMDA0qoVpsmZcdTAwMWZtcLFlKd/29er5poDrY3Ztso0+t6VWolwi4dLtXHUwMDE3XHUwMDEwMmWJckuMXHUwMDAx4O7FQe7U26zAz6KxqtAy+cDg6Fx1MDAxMn3zRJ9cdTAwMTKKK8Xt5ODbXHUwMDBmyl8uw5PN3uXhQUF4XHUwMDA12t4/ztz+lXTujCCGXHUwMDE5sIgtpql8maWKflx1MDAxOVx1MDAwMU5cctVcdTAwMWFcdTAwMDD/0flFRqe0PJ3b6uLWS92XefSN3S7Cx+5cdTAwMTbhNEqe0lNcdTAwMWNDmbuQnVwiXHUwMDA01fDwKiheXckqXHUwMDA128k49tDrQ7WnXCLPjrH0YdRcdTAwMWOIXHUwMDAxrlx1MDAxOY6TpdTM71RcdTAwMTllXGJcdTAwMDXq3nmnrXTHXVxyo1x1MDAxME1NQrU0PFrGl8JcdTAwMGW9vIpTQLLUalx1MDAxNskzc9lcdTAwMWHyJqD+j29ccsmhjCmNXGZPQVug6a0hOS7xMmNCXHUwMDFizSVjivNX7zhWmKKrw3I0zFJvXCJcdTAwMTNBx2b8gGJWMmBTbD1T/Vx1MDAxM7ne3zus9rcrXsX7tttYzTyXKGLdXHUwMDFiNrVcdTAwMDHtXHUwMDBlrlx1MDAxY+JcdTAwMTIt0I9Hf9G47Lz5cVx02vIgkbmtsZZcdTAwMWEzQqMz4Fx1MDAwNG1n91pcdTAwMWVsjmKJ1djBeqdkNNqssuSSheGSXHUwMDE0lYhYXHUwMDA03SdNJVa9dr+xklx1MDAxNN1uWIimJJJx60LJI1DS7ji2XHUwMDFkrVxuqydPXHUwMDFktPT8oSBcdTAwMWLt843Sbu3mqlBfrbQylzoo3SGXQDV1r5OwLH3iXHUwMDE11Vx1MDAwNMnc7WK1yshcdTAwMTSzXGLrYtPuvTmIXG538PTcmIVx65JcdFxyyoRBgoA4XGL+s4VcIilQxyDljfbSY27wq5vVVr96uWVbV+X9872tbX5x+LyV5X9yPan6j/4//+gjMPv/eueVpdFPnutiL1x1MDAxZrtDXHUwMDA20NFwK1x1MDAxOJNbXHUwMDA3jZLOnzRcdTAwMWHN/Vxce6eYPz9iXHUwMDBmJ7fXXHUwMDBihmnFXGJ6XHUwMDE06ERz4077T1x1MDAxZFhjKbE4JlxiZ5ezm1x1MDAxY7w5bIpDXHUwMDA2oVx1MDAxYyE6Nlx1MDAxZCru3OCtmCCwX1x1MDAxNEbnXHUwMDA3Z1x1MDAwZtQ6KeRvXHUwMDAwdVwie/tcdTAwMTVQ8/dFMp9cdTAwMTa+8Fx1MDAwNN9PP4Z/xWu1jkNcdTAwMWOxgaGGM+mXf3Q7fvTKnV+5X1x1MDAxYpatX6rRx01pRFx0XHUwMDBlfFFI4q/vn77/XHUwMDE3t1x1MDAwMSDxIn0= yxO11-4-13-3f(x)=x -2x+32

    V(x0;y0)

    x0=b2a=221=1

    y0=1223=4

    V(1;4)

    Kerta Ox, kai y=0

    x22x3=0

    D=b24ac=441(3)=4+12=16

    x1=b+D2a=2+42=3

    x2=bD2a=242=1

    (3;0); (1;0)

    Kerta Oy, kai x=0

    f(0)=02203=3

    (0;3)

  2. g(x)=6xx2

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da09cdTAwMWLJXHUwMDEy/Z5fXHUwMDExsV/ulZberu7q10qrK1ggXHUwMDA2wivAJuFqtVx1MDAxYezBdjx+YI/BJsp/v9VcdTAwMDN4xmNcdTAwMWNcZtc4w66NxKN7XHUwMDFlPd11Tj26avj65u3blXjYXHRXfn27XHUwMDEyXHUwMDBlykFUr3SD65WffftV2O3V2y3qXHUwMDEyyd+9dr9bTo6sxXGn9+svvzSDbiOMO1FQXHUwMDBl2VW911x1MDAwZqJe3K/U26zcbv5Sj8Nm7z/++37QXGZ/67SblbjL0pushpV63O7e3iuMwmbYint09f/S32/ffk2+Z0ZcdTAwMTd0u+3bgSXN6eCAXHUwMDFizDfvt1vJSK1SqKSWcnRAvbdB94rDXG71XtB4w7THN61cdTAwMWNvXFysr7dv8LxWOlxidsKaMV+qZ+ltL+pRdFx1MDAxY1x1MDAwZqNkSL02PUna14u77Ub4sV6Ja/dzlmmfdla33a/WWmHPPzqMWtudoFxcj4fJ4/FRa9CqJtdIW1x1MDAwNv5OXHUwMDE2mXJcdTAwMWOdVVx1MDAwMpR06cP68yVwXHUwMDA2zignnJTc2vy4fm9HtFxiNK6fIPRf6cjOg3KjSsNrVUbHxN2g1etcdTAwMDRdWqr0uOu7J1x1MDAwNqeZQ6GcVGAlWm5Hh9TCerVcdTAwMTb7Y5jkzjlrXGaXQlgtVTqcMFlcdTAwMTQ6VUgnpDajXHUwMDFlP4jOdiVcdTAwMTGOP9Ol6JJYbftTWv0oys5nq3I3n/dClIqRuGv5lj6lP34zI37pXHUwMDFk+p1KcCspYPzs0TMhcDfqj+qtRv72UbvceEC4enHQjdfrrUq9Vc2fXHUwMDEytippT2bId5hIXHUwMDFlcWV3Z+Os1NtcdTAwMWVcdTAwMWWG7f3W9kk4qJ1cdTAwMWPK0Vx1MDAxYfjpaJf7fvycOVx1MDAwZTT3wFx1MDAxMSw6hypzUDXoJIsgXHUwMDAwrDbgXHUwMDEwpFDS4MSsREEv/r3dbNZjmoDDdr1cdTAwMTXnR5080ZpcdTAwMDdlLVxmJlaBninbl0dvx18xXHUwMDA1u/+kv71N5Tv5Y/T7nz8/ePR0uUt6JyQuvd6b7M+7h5+deExGeHO8I6ShKVZqdt657q2rjbhlao1cdTAwMGJcdJ/e2TJcdTAwMGawVWzekZozqbizWklBPzBHPFx1MDAxNlx1MDAxOKKxnCOni1x0yFxybI7Ew7jmRiNcbsGJ7l26LCPeXHUwMDExnDMrlVx1MDAwNFpcdTAwMTWjpcnS4Fx1MDAxZO9cdTAwMThChETjUnxcdTAwMTeKdyCd/EXyTvzhxrnzs2pt2F4/XHUwMDE1XHUwMDE3q9A/Pq88xDuSaadcZk0saSFuXHUwMDE0x8wxd7QjmFVIcyyMJY5S+nWzzjSh85/VSXl7XCLr0Fx1MDAxYYdcdTAwMGaRjlUm33pPOjRcdTAwMTJDayDTXHUwMDAzXHUwMDFlI53KTXdQ2Yl0uFx1MDAwM7VO5erj+o3YOilcdTAwMWHpXHUwMDAwU4ZcdTAwMWKnpdDGoXWZXHS4ZSE6QHHF6Vx1MDAxN+PNnDFcdTAwMTJcIlFj0qtBaVx1MDAxY7G/MTI30vmxXHUwMDEwkSH3plx1MDAwYo2Uk2YlXHUwMDA0pGZpykOCJVx1MDAxMsGdXHUwMDA2dIg6T0NKc1x1MDAxMlx1MDAxN1FQ41x1MDAwN9JFe1x0XHUwMDEyXHUwMDFhv9h8yWCsb65M8J2F95+JJZ9cdTAwMTdcdTAwMTPY6eZcdTAwMDenL22tm51cbq731PtoN6ipzUj28fiyN+iVSq+QXG7ImLW0XGJcdTAwMWXzXHUwMDFhUnQlXFygkGnkdFx1MDAxZXKyXHUwMDAzdYYoi8lcdTAwMDWJle6MkOn8LNlgyVx1MDAwNlx1MDAwZrKBy/ilebvAgFx1MDAwMu3c7M6IMHiEbT04rFxyOL/gW+GXvY83r41cZpRj1pJVoFx1MDAxY1xitDZcdTAwMTMkSshA0vkguSHvRCmLL1x1MDAxN1x1MDAxNplcdTAwMGZcdTAwMTdcdTAwMDCd651YVVT3ZMlcdTAwMDVcdTAwMGZcdTAwMWP9g7hATvVcdTAwMTGAXGZlXHUwMDBiVj7BSbDn1Vx1MDAwM1eRpYaB/d5geNzt7ZfEKyRcdTAwMDNCurZgpFx1MDAxNCS0OTLghlx1MDAxOW2V1lxcgJPCYW6ohWNcdTAwMDOlXHUwMDE110RcdTAwMDZLNliywSNsQIsx1TTwXHUwMDAxXHUwMDFi7uBcdHHKrd2To1L4Jeqfq/3y4Cr+2Fx1MDAxYaJ8bWygXHUwMDA1I7OAulxiQ0Rcbrm4JVx1MDAxYeaUNj6so1x1MDAxNYlzwbmAbFx1MDAxYjB+wEsqWFLBY1TgIN88ilx1MDAxOWiyltE+Yas0Olx1MDAxYu73V5t2fzfa+2NcdTAwMTW7n9f6pYtXR1x1MDAwNZw56qFTjVx1MDAwNOBu3DCQwjBB80+LwclXsLzwIVx1MDAwM3Jm0Fx1MDAxYXJ3XG7KXHUwMDA26Vov2WB0wFx1MDAwZnJcdTAwMTPcVDeBXHUwMDE2y6dNZFwijI/aXHUwMDA151x1MDAxZlx1MDAwNmdcdTAwMWLdXHUwMDBmO+W94cfP1b0/jpv1atHIQDJAUE6QWleW9D+kZJeQgdVcZlx1MDAxMf2GOGl/nslfSLiAc1x1MDAwNlx1MDAwNlApZVx0Y7LoXHUwMDExXHUwMDAzSX6eXHUwMDEzqrBbXHRLJnjg6Fx1MDAxZmRcdTAwMTdkd+cn9lx1MDAxMshMJlx1MDAwNYqpXHUwMDEz8Vx1MDAxOFx1MDAxN5ydXHUwMDAwXHUwMDBljlx1MDAwZS6GN1x1MDAxYmvvXHUwMDAysy1758e7r4xcdTAwMGJcdTAwMTA4I5uAXGZr7yA4nttWdI7RvIDQ3lx1MDAwZs9cdTAwMDboi8lcdTAwMDWARlx1MDAwYjJyRPqQSzJYksFcdTAwMTQywOlbXHRCXHUwMDAxt/xcdPuKLVxcXHUwMDFidq4r6qzLr6pNvVErb57UX1x1MDAxYlx1MDAxN0jJyMlW4JwjoVXj8Vx1MDAwMuEsU1x1MDAxYZwkXHUwMDFm3HmFW3QuXHUwMDEwWtI6Kihq7HDJXHUwMDA1XHUwMDBmXHUwMDFj/YO4QEw3XGa8OuFGPcFHcMPokl9fx7XjXHUwMDEzXHUwMDEzx439QVx1MDAxNevNV8ZcdTAwMDXSZ7FcdNL/Vlx04blgPMeAVodcdTAwMTE/Klx1MDAwMlx1MDAxOa2VkrLwO1x0YLV2UuPSTViywaNsMN0yXHUwMDAwhc5cdTAwMDDPwuUxOuhU8X2lYi+Ptlx1MDAxYafVg9juxaXBq6NcdTAwMDOpmfHJ50qgXHUwMDA2mSbb37GBYGQuSStcdTAwMDVwJU3Ro4fEWkJaXHUwMDAwvnRcdTAwMTOWZHBHXHUwMDA2cTiIXHUwMDFmXCJcdTAwMDM1vepKXHUwMDE5g6RcdTAwMWSfsKv4/SzzglBBrvrBICP3XHUwMDFmyVx1MDAwZZCSo1x1MDAxZXdcbsD3Klx1MDAwMz5UyI1V8uV2XHUwMDExXHUwMDFkk4bMXHUwMDExp1x1MDAwNZJ/j/KBqisxUWWlXHUwMDE155ZMlDlkXHUwMDE2jnVMIHokbV8zMjlTzcuYXHUwMDE03mbyj3q+3YvuVL5Q2lx1MDAxOHDpXFw8gS8u2q34uH5zXHUwMDFi/Fx1MDAxYWvdXG6a9Wg4JjJcdDx+9Ys+1rRcdTAwMTbVq61El4ZcdTAwMTfj8Inr5SBcdTAwMWF1x+1O2lumW1x1MDAwNKR7u5NcdTAwMTPe7tar9VZcdTAwMTCdTN7Oa+tSWl+XWevzoFx1MDAxNya63FfVPVx1MDAwZuTC5lvTuCA3KFxymHQuXHUwMDFlQ/n3a9hcbolytIJcdTAwMTlER1x1MDAxNoAkeOW3XHUwMDA0wFdAOdJNwDV5/y+n34FcdTAwMTaWKN4lXGI3XHUwMDBmXHUwMDE1OE1cdTAwMTZSXCLSoURMc/Dzn4/x79fTjlx0YeExPlgsxlx1MDAwN4vBuDA83zpy8Vx1MDAxNVlcdTAwMTb6XHS5gpFtuE+8r/Y7cng5vPgweO+qn4uNcKlccuPakYEuNNJPnS+fXHUwMDA25mtkLXJfQf2C2UCAzEdcdTAwMTh9aVx1MDAxY41cdOxsKNfkeZDRrl5cXJE/XHUwMDA2w2eVRT9cdTAwMGKGXHUwMDA3i4XhwYJgmFx0XHUwMDFj51Wt82lo6GbfgWth9/NZtdqpXrW/7K7B6vtqu/uu4DgkTUvyXHUwMDA0kmsynlxyZlJtbjNxkHEnnfFq2MlMXHUwMDFh/NxxKJkmcTbOKit9VfNMXHUwMDA2NaIgmoB5ZOG9XHUwMDE2XHUwMDFjysXiUC5cYoduql9cdTAwMGLGeFx1MDAxMbR89pD3ZrBcdTAwMWKFpc3eXHUwMDA33rjYXHUwMDE1/Vx1MDAwM/Hl6PS84ECUyIywwlx0XHUwMDA04UtOxnAojGFGKVx1MDAxMjjDuUL9cvHt5+HQKbBKQ9q+hOG9KL8qXHUwMDE44lRtXGKKXHUwMDFjIFx1MDAxMDC7Njz664s4XHUwMDFk8K2j8rBcXGqs7a1h+Xi16CBUjFx1MDAwNNlaMkiFL1fNV69cdIaKMFx1MDAwMUJKQlx0f7lNZ/BqmTxPoY0yXHUwMDE2xGy+pzNkTVsw/yBcdTAwMWO6xeLQLVx1MDAwNod66o6PXHUwMDAwzdHq2cM/nZv37/Y3ukct3b+unW73dfvgpOjOoVDMXHUwMDAwkvbhwlx1MDAxMFx1MDAxOO1kejhcblx1MDAxZmXxsVx1MDAxNtCZzeB5w1BcdTAwMDCzPsavrOByVlx1MDAxNFx1MDAxMlxiXGbX0s5hO+f/QaHIzPNLo3B1wepwdUH68DslnVJZbTRXsyOxUXXm7PAq2ls7jm8qN83Vzlplr9hIRC6ZT7eQikurJJg8XHUwMDEyXHUwMDE1Q8kxQVxicLAvaJdcbmZuXyjmhNMzhmms0Vx1MDAxYWAuZVx1MDAxOa9cdTAwMDWJerFA1PPF4UWXXHUwMDE27v5VmPcjXHUwMDFkZUhOw6KUTjtfkDczXHUwMDE0SzfHh+urmyVxvLnbr1x1MDAxZnyqXjYxKjZcdTAwMTSlNUxcdTAwMThcIlx1MDAxZHKEXHUwMDA1maephZCYplxihESrXHUwMDA0XG5LXHUwMDEzkXXF5p/0wDlPn2FcdTAwMDS/XFz7/ZuVyDO0oH5kpPQ2iVx1MDAwMbOCOitcdTAwMDTnnDKQnaC0JT3vTe78WdIh6s1+RI972KVJ6ne93MTdfuZcdO7ab+foXHUwMDA1wOdcdTAwMGKdXHR7Qs2+X1x1MDAxMehSKLZal+e1gdixv19dXp9u/lVw9GlgwLXQgFaCs/k4KXdMSE7eXHUwMDFhXHUwMDE3PPuy0lx1MDAxZlx1MDAwYj6QRtLiXGKzRN/fXHUwMDE1fcq/2NG5J1x1MDAwNEfPXHUwMDA353urXHKz2VxiXFx0s3dY3zxYhcNio1x1MDAwZlx0Xi7J9jeokDRKLv1cdTAwMTc4Q6NJ/1x1MDAxOZ9tJfnLOYRPxJ+2OolcdTAwMTP9QFdwib/Z8Dct/VbwqS/8Q7I6OTd69phobW89aLW2j0/xTFx1MDAwNl+u69t8q1R0zWc1U4JMSpWkXHUwMDFl5apwkJCH4K1Sp1xmt+blNuolKWCFflx1MDAxM1Ki5j7rblx1MDAxMoWkeVx1MDAxOdm+XHUwMDAwSiehoWz+3/1GhSZ/VpuiVuGo5+D0b55qu1xumvmIvOEolVx1MDAwNVx1MDAwN2lxtf9cYv/Ca1x1MDAwYtw4Xz4vpXn0etNFyX8mhWiSop7HJHp6NElcdTAwMWKtyYDks1PJRnlccpqN3cswutr5XHUwMDEw79RO61Fsik4lhmmjXHUwMDE0969cdTAwMDNcdTAwMDOTf2kwubDCU4hSXHTVvGDevlx1MDAwZiAroSRoJEKw2fePjHGJI6FcdTAwMTKcK2tcXKZcdTAwMDbjvtJcdTAwMWaRXHUwMDA2OpdcdTAwMWOgJZUsiEpcdTAwMDBcdTAwMTk3tOpImlxmXHUwMDE04Jg9XCJIlzmvxiT4+L1T+rHLTZej5GZ5XHR6XCKPTFxySmeS5fI1XHUwMDAw5HyicfxcdJGwU7j8bOPdjd76dlAtXHUwMDA3n87X1z5cdTAwMTWNRsBcdTAwMTdTOGWtL3dcdTAwMWH7p1x1MDAwNre+Ofq3XHRxclx1MDAxMKSnllx1MDAxY6tYRva3fzmxtkBcdTAwMTT8giVcdTAwMDFIakpcdTAwMWL/zz20leohUlx1MDAxMZJcdTAwMTHNKUHfnDGaT9gnSnKhstmQWU5JWeL6uLK3h1dcdTAwMWZcdTAwMDdHUWXrvHndele7XHUwMDEy90m8XHUwMDBijGs/6y1jmbg2WKZcXKJcdTAwMGKk32LLbrg/XHUwMDEy567+a/Dv3/RgdfB2sVx1MDAwMe+H7jtb5Fs/XHUwMDBm7HZ6Ylx1MDAxNFxi4Xdl3Oy+/3U7+lx1MDAxNFx1MDAwZja2bLSNQt70t9yhK1xcYtT30Y5SMOHfXHUwMDEzpI0kXHUwMDAy53q8+M//WybCn0MrraXz7ctcdTAwMDXCgTNl/LtcdTAwMDeU9DWYXHUwMDBmXHUwMDE2XGJ8R8BH71x1MDAwZUMyNMHgP1x1MDAwNvNEk1x1MDAwNlx1MDAxNT0wWq10xnt+XHUwMDA08mKxSFx1MDAxN09cdTAwMDW4vFx1MDAwNfibu9VYXHQ6neOYJnBk4NHC1it3s5DeeuWqXHUwMDFlXq9Pyt5PXHUwMDE3ycevcEJcdTAwMWFcdTAwMWWdSSDj67c33/5cdTAwMDdcdTAwMTV7wVx1MDAwYiJ9 yxO339-36g(x)=6x-x 2

    V(x0;y0)

    x0=b2a=62=3

    y0=6332=189=9

    Kerta Ox, kai y=0

    6xx2=0

    x(6x)=0

    x1=0

    6x=0

    x2=6

    (0;0); (6;0)

    Kerta Oy, kai x=0

    6002=0

    (0;0)

Teigiamų ir neigiamų funkcijos reikšmių intervalai

  1. f(x)>0, kai

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO2da1NcIsuyhr/Pr5iY/XXTq7LuuVwiTpxcdTAwMTBcdTAwMTS84lx1MDAwNZXRXHUwMDEzO4xcdTAwMTZaYOQmNKLuWP99Z+Eo2NhcbrN0LPdpV8zMsmmgu6ueNzOrsrL+/eXr12/xbT/69ufXb9FNLWy36oNw/O2f7vh1NFx1MDAxOLZ6XXqJT35cdTAwMWb2RoPa5MxmXHUwMDFj94d//vFHJ1x1MDAxY1xcRnG/XHUwMDFk1qLgujVcdTAwMWOF7WE8qrd6Qa3X+aNcdTAwMTVHneH/ur/LYSf6n36vU49cdTAwMDfB9EtyUb1cdTAwMTX3XHUwMDA2999cdTAwMTW1o07UjYf06f9Hv3/9+u/J3zNXXHUwMDE3XHUwMDBlXHUwMDA2vftcdTAwMGKbXHUwMDFjnl5cdTAwMWOAkcnD5V53cqWAjIOxXFzrxzNaw1X6sjiq08tcdTAwMTd0wdH0XHUwMDE1d+hbIco39ovlXHUwMDE4t1x1MDAxYVF4xja2mpXN3en3XrTa7Up8255cXNOwR7cyfW1cdTAwMThcdTAwMGZ6l1G1VY+bXHUwMDBmXHUwMDBmbeZ42rtcdTAwMDa9UaPZjYbu3uHxaK9cdTAwMWbWWvGtO8bY49Gw25h8xvTIXHL9JoVcdDRcdTAwMWEwTFx1MDAxOFx0loF4fNl9gFx1MDAxMCxcdTAwMDCFIIB+mNWJ6yr02tRcbnRd/4DI/Te9svOwdtmgy+vWXHUwMDFmz4lcdTAwMDdhd9hcdTAwMGZcdTAwMDfUVtPzxlx1MDAwZndseCC4RktfZazi0yfQjFqNZuwuPECpXHUwMDE4s9yiZVxiik8vdVx1MDAxOE3aRDJcdFxcKjW9RXdcdP2N+qRv/GvaXHUwMDEwXHUwMDAz6lVcdTAwMWLuXHUwMDFk3VG7Pfs0u/WfT/OhXHUwMDBmTXtcdTAwMTH/eeSv6T2689dmet/0XHUwMDFiRv16eN9PwHBcdTAwMTRCKCY1mz6+dqt7mfz6dq92+UzXXHUwMDFhxuEgzre69Va3kXxL1K1PX5m55J9ITG7x2263PFb5xsmwunFcdTAwMTZcdTAwMWWXwp1yp3/22Fx1MDAwMu5x9Gqj4eRcdTAwMDErrVFp6lxyhp5cIs6c0lxi++5e5lx1MDAxZUE7XHUwMDFjxoVep9OK6W73eq1unLzEyeWvOFx1MDAwMJtROPfI6Vx1MDAwNmZfS5Lad584XHUwMDA12/1M/+/rtCtPfnn8/3/989mzU7vY5N1znWv6cV9m//1574trjOUmVWJcdTAwMTTQ9UhcdTAwMTR2YYnpRjtHjfZ+9fR8d7/aNLXLjYuzod9cdTAwMTKjlFxujETJlTGWWZjerHu/XHUwMDA0XGasdDrLXHUwMDA1J8lNXtdcdTAwMWJKXGa1PiomJGdcXCGXYqpcdTAwMWaPXHUwMDFhQ7RcdTAwMDaSkYbQbSFcbupcdTAwMTBJjbHWSPb/VWKefthnYj+17d1Pbr7Zl6SfXHUwMDFldvRcdTAwMWP8XGI6efRcdTAwMTF+ajIgyZHTXHUwMDFl/1x1MDAxYfxcdTAwMTifVtZPKyulXHUwMDEy66xerO5+L1x1MDAxY+pD3+CHQFx1MDAxOWZQk9RcdTAwMWGUXHUwMDE21VT+7tVAXHUwMDA3ZGOkVpyYt/KpXHUwMDFhcLRcdTAwMDG1XHUwMDBmXHUwMDFkXHUwMDE3Wlx1MDAwMDeYuNC3U1x1MDAwM1x1MDAxNlxiJrhAulBcdTAwMDZO++XUXHUwMDEzfJRcdTAwMDPOXHUwMDAzXHUwMDAwZTRDXHKkYHLG/7lXXHUwMDAzpaxQTrY8lYPps/9scvDktTfVglx1MDAxN1re/cy1+VtJgUxcdTAwMGY1XHUwMDE4aK1BiSlNr0nB0VX9enRcdTAwMTCXxzm1abqrzTOi4fJcdTAwMTNKXHUwMDAxeVx1MDAwNMZSaEHKnHBcZriR5Fx1MDAxOFgwiPRmo5XnUoDItFx1MDAwNVx00/dmUpBJwbNS4ILpNC0w5Fx1MDAxN1x1MDAxOC7M4iFBc6/bLjfWbuDwqjdYb/P1k3x1+9NJgVx0OFx1MDAxN0xZXG5cdTAwMTPoXHUwMDAxTGGfjEIgNVx1MDAxNDDFkCNcdTAwMThy0XyXXHUwMDAyakBkSmRSkEnBq1IwQ/rcXGKkZUJcdDXtRq9Jwd5KXrKj6t763c3d6dH3enXj5lx1MDAwND+dXHUwMDE02IBpZUhcdTAwMTJcXHuIKexcdTAwMTMp0DZcdTAwMDAtJblcZtxcYiPRJK7UNy3gaIzmRk1bOdOCTFx1MDAwYp7XXHUwMDAyPjOslNRcdTAwMDK6XG7yLsXiWnDdtFF3o832xqWWre6cXHUwMDFlr1x1MDAxZZ6pT6dcdTAwMDU6XHUwMDEwRlhcdTAwMDP0XHUwMDE3XHUwMDEzOuFcdTAwMTZIXHUwMDEzSEVeXHUwMDAz8SVcdTAwMTDs+1xyXHUwMDFkvpFbXHUwMDAw0tJcdTAwMWTNzKJkUpBJwfNSwFT6wCFXmjNJ4CysXHUwMDA1opGv7cdy/zRcXKvErNzey9fGx75pgVxiKHp2g3/k8liK+WemXCInWmAhsPT8kV7QdNaUwIlcdTAwMTZwail6j9SgSE1mdNJPLeCWyJMy04JMXHUwMDBiXtdcdTAwMDKb7lx1MDAxNnBJrUWdaXEtuOa3o+bJKYzXW/tsf5ftsos+fDIt0ExcdTAwMDVcdTAwMTKEUeZ+XHUwMDE25enIoVx1MDAwMKSWXHUwMDAyR1x1MDAxOCdBXHUwMDEw3HcxcKkmXG4o0MumXHUwMDExMjV4dcCApVx1MDAwZVx1MDAxOFxiK1x1MDAwNUi2hFx1MDAxOFx1MDAxY1x1MDAwZi/DoVndz511jpBfmV3eLHU+m1x1MDAxOHBcZrg10oJWWiuWXHUwMDE4MFx1MDAwMFx1MDAxYlx1MDAxOD1pJMmMVt57XHUwMDA2KIyUXHUwMDE0XHUwMDBmZVKQScFrUiBSg1x1MDAwNFxupzljmi2eXFxw9KOSY/1CaeNur32ui+dcdTAwMDM12Fx1MDAxOH02KVA8UKhcdTAwMTFRuHlcdTAwMDQ1/diHXHUwMDE4XHUwMDAxqJ00k9ZoXHUwMDEyXHUwMDA1z5WAXHUwMDAyPWO54t5cdTAwMDZcdFNDlGnB41x0XHUwMDFmpVx1MDAwNTo1vUArXHTasCVcdTAwMTKZq1x1MDAxN0ejy8OTjZWoXFwqbqmtanhQ6n02LTA6IFx1MDAwNVx1MDAwNK2N1VbNXHUwMDBmXHUwMDE3MCGtXHUwMDA16szc+J9nhJK5ZNFMXGIyIXhNXGKsSlx1MDAxZX5cdTAwMTBcdTAwMDK6XG7rcu9cdTAwMTZ3XG56d4NcdTAwMWI+Kq9EhfrlmSzsn2wqefbJhEBqetRcYkqRX01OwYxcZt4rXHUwMDAxXHUwMDA0JFx1MDAxMlx1MDAwMsjaKjDW9/BAo7XWZY1nUpBJwWvziTMkzFxyXHUwMDFjXHUwMDFha5mRavGxgouS2I67t63w6ry8ObL7+ZPt9e+fTVx1MDAwYqxcbjRjhpPpJ6dAyXkxUGAtuVx1MDAwNHSSwfdb7/RGXHUwMDExgvNtUM56N5lcdTAwMWFkapCiXHUwMDA2L0wjXHUwMDE4yUAwZIuHXGLj/NnN97VcdTAwMTDX6kf5sH64Oqp2w9InU1x1MDAwM8VswLlFzcBcdTAwMWE3cphUXHUwMDAzXHUwMDFlMOrNzMmBROF7XHUwMDA2Mqe3Scms8DXXKFODZ87+IDVcdTAwMTA2fVlcIpJjYLXExX1cdTAwMDO8uOR2u7ryo1x1MDAxY7KLUnGtsKf56mdTXHUwMDAzXHUwMDAxXHUwMDAx+URSXGLQllE8kFx1MDAxMFx1MDAwM1x1MDAxNpBcYihrlGVMWJG4UN/EgOJAoZTSmWuQicGDXHUwMDE4xNFN/JxcdTAwMTio9CFcdTAwMDOXZmvBXGJY3DPY71x1MDAxNVr2fKuyWd5e02vHXHUwMDA3pVZXr/mmXHUwMDA1iSXKxlx1MDAwNFx1MDAwMoluRr40s/xpniFXPDDSaEmyaEhcdTAwMWTeMSxAl8SE5JFwybiQM5Z8Sv6MXHUwMDFico+6MSA1/XmD7IEnLyyBtHKKOTOhslx1MDAwNNJcdTAwMTe9blxcad1NVIU9OVpcZjut9u2TRp304D9dszw5tNJuNbpcdTAwMTNzXHUwMDE3XTzt4XGrXHUwMDE2tlx1MDAxZl+Oe/3pqzX6ipDM42D+kfRcdTAwMDatRqtcdTAwMWK2XHUwMDBm57/OXHUwMDE51PXH5eLBTGuch8NoYm7puP01XHUwMDBlMdVDl4qAZ1x1MDAxNlx1MDAxN1x1MDAxZrp7ueyDl1x1MDAxOFx1MDAxYWBcdTAwMDFHJoRcdTAwMTZCWsFcdTAwMTLpvlxcXHUwMDA1hnMyv0iSJMiKv1x1MDAxYoZAXHJLKoxcdTAwMTNcdTAwMDZnXHUwMDE2I71cdTAwMDAhN0owzt5iru5lXGJcdTAwMWY1f2qVXHUwMDFm2/zlXHUwMDAyNE/64P1q+8dX/nowIC8jbmBcdTAwMTaEd0X85vdcIn7ze1x1MDAxMFx1MDAxN1x1MDAxY5NHXHUwMDFmXHUwMDEw59ZcdTAwMDXh3C6e4r/Jatenh62C2D6pNC65XHUwMDFh7Kim9Fx1MDAxYnGleSCNoo6EnLxcdTAwMTibcLLJXHUwMDA1V0KQndVaXHUwMDE4835cdTAwMDE3yECBM7T0xMl02sVcdTAwMThcdTAwMDdGl841wlx1MDAxYlx1MDAwNNh/y9JcdTAwMWE+21nfXHUwMDE1w93fi+Hu78GQY/psOTlfgjhcXJjCxlEnL1g1ap1CZ22tMb6pVm4rnlNoMCDEKFx1MDAwMpZkRikqfkqh5K5Eh2ZcXLlQhEPiut5cdTAwMGVDl8VLZtZSwE3Rjlx1MDAwML5cdTAwMTiGlqRDUVxi/lx1MDAwNkV4/lx1MDAxZYZitrO+K4bwezGE32VcclNcdTAwMDehOFx1MDAwMFlcdTAwMDBXi2dhXHUwMDEwx6drW03RKlxmc8dXcChcdTAwMGY298+Gbc9BXHUwMDE0OiBPXHUwMDE23HScdKVknoDoquFw4FpJTUGnc4o9I1GjXHUwMDE15IxnIH52XHUwMDEwXHUwMDAxUkeArGKMc2tcdTAwMTZcdTAwMWZcdTAwMDA6XHUwMDFltNZcdTAwMGZOvo9cdTAwMWGmvlx1MDAxOVx1MDAxN1x1MDAwN4WDrbvo2nNcdTAwMGW5XHUwMDBlyONcdTAwMDS8l5xkjog2gWFkdIyh56BcdTAwMDV7v1x1MDAwMSBO7rFCNFx1MDAwZXhO7ql+plx1MDAxMOYzXHUwMDE2kS6JMGBvkVx1MDAxNfL3QJSz3fVdQczx30vi7Pe9K4osfTBWXHUwMDBi0NpcdTAwMWG2eHGYa9tcdTAwMWY1qrWu3tnYtmebx4XhqFx1MDAxYvrOolxiXHUwMDE0QeBGvFx1MDAwNFx1MDAxOchERVopXHUwMDAy8kolc+u+iFx1MDAxM/N+XHUwMDA1IECQJpBNlISXVbjgQJBcdTAwMWK3d4mlb1H95e+xqGb76/uy+JutYu53+aepgzVcdTAwMDBcdTAwMWGR/DO+uHtcdTAwMWGVXHUwMDBlRO4u0oNTu3ZQ3t7dPOtcdTAwMWU0PEdcdTAwMTExIK+TbJ+bsVx1MDAxM1wiiVwiXHUwMDBmKFx1MDAwZeOu6LK1erZQzTuM1yw7IFx1MDAwYuSXXHUwMDFhZPBcdTAwMTalWj9cdTAwMGKHv9kkvrFFvFx1MDAxOFDLPZSQf7jSR6uYSqJcdTAwMTScoVx1MDAwMLm4g1re37k1Y309OFx1MDAxN/lm6Vwi2slcdTAwMWbBwHNcdTAwMTJcclx1MDAxOSMyLMyySWT8XHUwMDE0RCtcdTAwMDLOjFwiv9WQj6DeXHUwMDExRFx1MDAxNjDGprcwU5z9yfGH+FCT8bTyLVx1MDAxMpJ+XHUwMDE1wUmywUzvWVx1MDAwMsE3ntqffUDTI9P3fUm8f5G0hVZn1Kbb3Vx1MDAxYtBDXHUwMDFhXHJcXLeJXHUwMDA3o5k7+Hn8/lx1MDAxOb1cdTAwMDd81s2aS71EXHUwMDFhsTrcXHUwMDAyU6jVVn5cXO3l2lwif4w67HtcdTAwMGWfoKjMzVx1MDAxNqAhQ4cyQZ9cdTAwMDBXPJrYdLW+zEw9t4+FXHUwMDBmmFx1MDAxYsqG2dygjL7Ekc9NXHUwMDFmZ+RhML7MXHUwMDE2JdAk6lZcdTAwMGWa2yjLNu7aXHUwMDFhX1s3ftPnin1cdTAwMDCRxyQ1XHUwMDE48rlcdTAwMWRKIEAyeUBeXHUwMDAwt8q+Zz3ApegjP1UywzPb5z99aUmyXFynT09YXG57XGYsUaY3PO+1mrw4NutcdTAwMTdXnVLndCM8Xb3xmzzndDJXk5cp6kpcdTAwMDJcdTAwMTOT9ZZcdTAwMDeudje3XHUwMDE0ISrD3lx1MDAxMT1F10GeJHPzlW5cdTAwMWSsfSYjXHUwMDE2XHUwMDE4xapak0qAS1x1MDAxMrLPleJU5IxcdTAwMDJ6mlx1MDAxZVx1MDAwZr+UW/Nfnlx1MDAxMZsjeVx1MDAxN8JaV1vdXHUwMDFhcsSUmn1/XHUwMDBlMDBu4opcdTAwMWMzg0idkb/6iemd6f5cdTAwMTPn+tG8TP2SmlxiTFx1MDAxZE1cdTAwMTKunp2wS1TrwIvOXnRVXHUwMDFhmHq0t9U9avfi4o9z39WEmtK1ILksmp5wYo7FQkBWXHUwMDFjXHUwMDA1Kj5p5vdTXHUwMDEz6Vx1MDAwNpPcVkTkO3Dgz1xyJyU7wdzoXHUwMDEyMSvdvKOn2fWZljxzNtdcdTAwMDGA5qglQY3U1czs2+ekRLz2ean96P7jkl3ojWREpo9JIzI2ydhZWEZsNNy6XHUwMDE1lf3KXHUwMDE2XHUwMDFin5Ti7tHK+o8tv2VEulFnXHUwMDBlzPn7zJUzSGZcdEtSXHUwMDE5YOR4cyOVfmGuNmJcdTAwMDJcdTAwMDT8XHKvJLBGMFx0iimjXFxR8md0hM6xXHUwMDAymXHukbBPUlx1MDAxYVx1MDAxZoaptTKGLtXT2n+Zkjxzdi616d3PfKO/XHUwMDEx+jZ9q1x1MDAwMOvmRJVYYlx1MDAwMe9u4TjS29t7hzUs841Q5Y/W0PfNSiVJqiXPwS02kdomRlx1MDAwMoh8JZXLhVx1MDAxMGDxhZ1cdTAwMDS9XHUwMDAw31lcZpSG+bphUFx1MDAwNv4zZ39cdTAwMTT46cXAlaOB6SWGXHUwMDAwt7Gx0zlbP4jXKoNqs9u7ulx1MDAxNf1cdTAwMWTPwVcmkKiFXHUwMDE02jlwZm6hvlxmXHUwMDAwpVZo0a3V95x8YVx1MDAwMCjSySx+XHUwMDA2/lx1MDAwMluCpJEvXHUwMDA0clx1MDAwYtYu7uyvsVx1MDAxMey3YCu3dXzbvt7/YTjveFfhM1x1MDAwMb6mXHUwMDE4S4MjXHUwMDFlwFx1MDAxYZZMXHUwMDA2c86+dTmZXHUwMDFh6dnr9HlvL8BHt12o4DxcdTAwMDM/XHUwMDAz/zXwZarJly73USlYfJ3g+V5xNzqwe6ZcdTAwMWPC3dm4dL65ry78XHUwMDA2X4PLLeNIyFxi+tckptw5XHUwMDBmrCSvwDJOz13Y9JWCXoBPMb7kWpjM1c/Af1xy/PRaXHUwMDFjnLmtcCm4XZz8XHUwMDFlw9pazHZErHBvO77UMtfzPNONrH0gwdJtKpfYZ5PDe1wiYMK6jcOFXHUwMDAwcvU9N/lgLFJMwnytyZWh/8zZXHUwMDFmhn5quU5ppKQvXVwix7VYhJP1XHUwMDFm27li+8jEpdNm/+i4cOU5+dxcdTAwMDSKW8FcZnFLwU2yXHUwMDAwXHUwMDE3eVx1MDAwNFx1MDAxNO6AZJNcdTAwMTVcdTAwMTaQXv7DXHUwMDBm8t2uhfAmVXneXHUwMDA1/F8qIZCB/1x1MDAxZeDPRoRzc3pKabIhYvFEI/vj6LpxXHUwMDEyRY32j6ItdavNzbP8vufkXHUwMDBiXG7zUaBcdTAwMTRuXHUwMDFhlbHEfl7O27dcXLjpPvpP+lx1MDAwZT6A24jJvkXebUb+fzn5LL1cbieZOlfofYltPm+2N+trx2f10kruuH51udpcdTAwMWSc9zxfeK0lXHUwMDA0ypInr9xyOj5fgFcqRiFcdTAwMTFw0KjSd+nwXHUwMDAzfCElMWZ0XHUwMDA2flx1MDAwNv5r4KeP7ym31FJbvrivb05cdTAwMGZcdTAwMWI921b7enNDbPZud1x1MDAwYs11z1x1MDAxN3lraYPJ/juA1kq08+N71Fx1MDAxMlx1MDAxYylcZtBAv6UnXHUwMDAz+kE+Ksknu1x1MDAwNmTkZ+S/Rn5q6TFjNChcXGZkf1x1MDAwM0v7otHo79R2ezvl71s7erzqea1drTRcdTAwMTl1K10hbfuk3OFcdTAwMDP51G3J93Hp3sDA9/Q9bbSlRsvC/Iz8V8l/ocw2ulx1MDAxNVx1MDAwMEtcdTAwMTTcj6+6XHUwMDA3ldr3fmXljvPvq5tcdTAwMWLnP9Sl5+BrXHUwMDExXGJXvVx1MDAxY1xmTlxuuMybfDe4pykmQju70ayX4CNqMMbbvTkz7p85+8PG9VNX8CqGqPgy2XtcdTAwMDfN7avzVZZcdTAwMWLFXHUwMDE367d331x1MDAwN0bflE58XHUwMDA3XHUwMDFmXHUwMDAzqzRcdTAwMDX5UlsmZ+qJPoBPTo+xTFx0qZ1A+Fxyvks0lOxt6ju9XHUwMDBi+b9UXHUwMDBiMSP/XSw+pC/WsfRjXFw9o4XRz8m169ON2+5p2G9etHd2XHUwMDA3h+G18Fx1MDAxY32jnVXHXHTaXHUwMDFhYFx1MDAxZX1j0bpcdTAwMTRcdTAwMWV6+lx1MDAxYzxP43HbbChtXHUwMDAwfFxy8zP058/+MPRTR/aFmFTeXoL8XSnD690zWbs6K3BY281XqvW85+RbXHUwMDE5uG2DODIt3K50c+RLgVx1MDAxMrRmTCr64zn5dKmWc258TePJyJ8/+8NcdTAwMDb4Uo2+skSC4rB4nL9cdTAwMTNvXHUwMDE2y9FVu3idg72DymH5Koex3+TTs1x1MDAwZYxcdTAwMDGtwCgu7Vxc6q5cYqyQllx1MDAxYiGRS/nCXHUwMDFlXHUwMDFmaKDGP1x1MDAxOHyupFt1kFn8jPtXuVx1MDAxN6lcdTAwMDP7XHUwMDFhlZvOWpj64qFcdTAwMWGNmie82OWHsTjonO9cdTAwMGZcdTAwMGbHnlNvRcA0c/VSwCDIpL1cdTAwMTeuRlx1MDAxZfk9ylA0oF/YUsRcdTAwMDfqpdtWXHUwMDFijPV1UD+jfv7sj6LepCbtamHc4N5cdTAwMTJVfTpcdTAwMDPe3MfebuXgqFlU5aNqrlTxfM8+ZTGwXFwrzqhbkrVPTueJQKE2aIXRXHUwMDAyuefW3mGvSaWyob2M+1e5h+TR6dCeXHUwMDEy2lx1MDAxYbVEcUBROlx1MDAxYW90cmFt/TQnokqOXHJcdTAwMGKm5Tn4aFx1MDAwMlx1MDAxNJN9SsAtxUlcdTAwMGXtiYBLLbhxXHUwMDFi+ZlcdTAwMTfiey/AXHUwMDA3KznjXFx6m8CTkT9/9lx1MDAwN5EvXiiH7UqLuVVri1x1MDAwN/iHhd3q3kZ/VL7unVx1MDAxZlx1MDAxN7bbao9drvtNvmYyMFxmrOCc/H2Lz7j6kkkhKeIhr+ClYvReoK9cdTAwMDDpvd4uyv+lXHUwMDFklTLy32dRfvpEvkZLl7L4kD42R+tQuDmx19f6VobbrHAhI7+5l4a7nF3jSspcdTAwMGLLWHJ9nlxmuGH0qnErd32fxjeKboH8XHUwMDEyX/N3Muznz/4o7E3qgL7kaKSSuLinf1UtXVxyROumtVFcdTAwMDcsXHUwMDE26vWyuGG+c49cdTAwMDGAdP1SkcePfL5cYo8kx4c7S2p8r8FcdTAwMDNoXHUwMDE5127fklxm/Fxm/NfAf2l7YkPfKezimXv57uFxLX9SqG2Ob+SFXHUwMDBlq9WT0obn5FtcdTAwMTNQVEzAMIVEzlRcdTAwMDdcdTAwMWbL7k10wW1cdTAwMDMg4YVcclx1MDAwMPxA3zDm9pTmmc3P0H81fSe95KaRXHUwMDE2ULEl8neOcsXr3dXTXHUwMDFmdytcIlx1MDAxYW9Vu9d75bHne39IXHUwMDE0XHUwMDAxXHUwMDAxrzVnSlx1MDAxYXLpk1x1MDAwM/syXHUwMDEwzEpqXHUwMDEzq9RcdTAwMGJ7XvlBvlx1MDAwNEFcdTAwMTE+97bWbkb+/NlcdTAwMWa2JD91YFx1MDAxZiUwZZdZkX+6c7q6qllvPM5cdTAwMWZs506iXGI7vabf4CtcdTAwMDZcdTAwMTTHu23ukFx1MDAxZVx1MDAwNdrkknxBraJcdTAwMDVcdTAwMDfLLLfoe8aucbuJWKYy8DPwX83bS1x1MDAxZtdcdTAwMDdJMSPRv8Sa/CNpi2H+pFpYr1xclCs34/pcbvN8Tb5iNmDS7Vwi4NJ0zGzt4Vx1MDAwN5PvRsy41cBccve/XHUwMDFhh0IhjbfO/i/tXG6dkf8+mXupXHUwMDFia1Dgy8jSqcVcdTAwMDf47uLceVxih1x1MDAxMoeb4Vx1MDAxMVx1MDAxN51Kb1Tf81x1MDAxY3zQXHUwMDAxOfhuslx1MDAwZZRmLFx1MDAxOeaLycZI5OVcdTAwMWKSQOG7ry/cPrzob+G9XGb8+bM/LIkndWSfXHUwMDAzWTqh1Vx1MDAxMiZ/pzDcrFx1MDAxMPmbrbs9pTbiYf4wRs/Jd+V0lVx1MDAxMJxcdTAwMTky6XPL88jgS+NK2yBcdTAwMDX66Dn4nIRaWmHA1zU6XHUwMDE5+PNnf9jIfmquPlxijspSuy2etltaa1x1MDAxZFx1MDAxNY/6xVx1MDAxOL/X610zvi10Tn3fjJNjoFx1MDAxNGdCXHUwMDBiVGJ2t4FH8jmge1xuwDl6P6dcdTAwMDfWuHm9zORn5L+6p3d6XHUwMDExXHUwMDFlXG5+XHUwMDA1sNlcdTAwMWP2V1x1MDAxN+qo4/WT6l5cdTAwMGLvztd3dta3xsLue06+RlxijEvdk27Sjs9l8UCgiWlppOZaS8+DfPJNXHUwMDEwrfK2XHUwMDE2R1x1MDAwNv782Vx1MDAxZpW2mz6uXHUwMDBmmmxcdTAwMWP9WWKlzt1gc6U/rJxhzlx1MDAxNpurJ9WVYjcs+Fxyvlx1MDAxMlx1MDAxOJA9N9q4TahcdTAwMTibT9iXKFx1MDAwNUOuUUnwfIVcdTAwMWXJl9tcdTAwMWWIKMvIz8h/re7eXHUwMDBic/nIXHUwMDE4V0tk8UBJ53KH4d2e3lbt/G35YHXr3PO9tJQ0XHUwMDAxXHUwMDAzXCKeabSa4vw58JnmMFmPz1x1MDAxNU+P8r1cdTAwMDBcdTAwMWYoyEcjZjf5zMDPwH/e5Kfvnkl+o1x1MDAxNUwtkbC/NShcdTAwMGWui5cnt6tcdTAwMDe1lZ1cdTAwMWbbdWlXe56Dr0RgjNFCa5SAzyzU4UpziptRa4uQnr7nXHUwMDA3+W5jIOCYkZ+R/zr5qavyKcAnXHUwMDFhuF2iXGJPPFx1MDAxMN9ztTbbb+9tNTeqN9Hdzrrna3WUhsDV1ZuM3lx1MDAxMeDJqXxcdTAwMWUgU5a5XHUwMDFkaZk2LH2xjlx1MDAxZugrXHUwMDAwkNYyXyfzp9eVof/w81Ho6/TNtCRXqFx1MDAxMZfYRm/F2P04v2H1qiiOjjvx7epdtOU7+nayda50+XmazZXbJXdcdTAwMWZcdTAwMTGBvFx1MDAwMq6YSF6XZ+RLVJaifG93zs3Anz/7rcD/8vNcdTAwMWK+hf1+JaaH/9iI1Fx0WvVK6y56clx1MDAxZt+uW9E4P99L/3Ex+fn25WdLO2qjSY/468tf/1x1MDAwMfOIufAifQ== yxO11-2-12

    x(;1)(2;+)

    f(x)<0, kai

    x(1;2)

  2. f(x)>0, kai

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daVMjO7L93r+io+fruK5SSm034sVcdTAwMGKDMZvBgMFgXkxcdTAwMTDGXHUwMDFihVe8sdy4/31S7lx1MDAwNlx1MDAxNzaF7Vx1MDAxZVx1MDAxNvGmqiNcdTAwMWGoKrtUks7JTCmXv759//5jeN+r/fjz+4/aXaXcXG6r/fLtj3+68+Naf1x1MDAxMHY7dIlP/lx1MDAxZXRH/crkzqvhsDf4848/2uV+szbstcqVWjBcdTAwMGVcdTAwMDejcmswXHUwMDFjVcNuUOm2/1xih7X24H/d//vldu1/et12ddhcdTAwMGamXHUwMDBmSdWq4bDb//msWqvWrnWGXHUwMDAz+vb/o7+/f/9r8n+kdeV+v/uzYZPT08aBYGb29H63M2mpUsBcZjPcPt1cdTAwMTBcdTAwMGUy9KxhrUpX69Te2vSKO/Vj9LCBzcGmLO3c4e7hqMJcdTAwMWG3XHUwMDFia9PH1sNWqzC8b02aNOjSm0yvXHKG/W6zdlx1MDAxYVaHV499XHUwMDE2OVx1MDAxZvepfnfUuOrUXHUwMDA27tXh6Wy3V66Ew3t3jrGns+VOY/JcdTAwMWTTM3f0l2BcdTAwMThcdTAwMTiJjCEzQmou1NNl91x1MDAwNVxc2oBbxoRcdTAwMTVorJ1t13q3RYNA7fpcdTAwMDfU3L9pyy7LlWaDmtepPt0z7Jc7g165T0M1ve/28Y0lXHUwMDA0UnGL0lx1MDAxYaFcdTAwMTHMdFiuamHjauhaXHUwMDFl4OSaXHUwMDAwwZlQbDowg9pkTOh1hWDKimlfuDb0tquTufGv6Uj0aVZtu490Rq1WtDs71V/d+TiHprOI/zrz9/Ql3f1cdTAwMWKR2Td9wqhXLf+cKKC5XHUwMDE1QkjJOOqn662w05x9fKtbab4wt1x1MDAwNsNyf7hcdTAwMTZ2qmGnMfuRWqc6vVx1MDAxMmnyL0hMXvFHp9K7usms3aX307ugXG7jzMPJzs7TXHUwMDEwuO7oVkaTKVx1MDAxNHDFOGOcUzdqaWzknka5R3fIXHUwMDAwXHUwMDE0XHUwMDFkTGnBwEpt5vqkVVx1MDAxZVxm17vtdjik1z/ohp3hbJsn75N2iLyqlefGgN4oem1cdTAwMTa6PfeNU6S7Y/rb9+nknvzx9Pu//vni3fGTzlx1MDAxZKm5+Tb9vm/Rn79efnnW0VbGkVx1MDAwZVx1MDAwN660llwiMlVcdTAwMTaxzlllL6V7J+Jwu7BbOz4oZce2Zz1nXHUwMDFkzVx1MDAwMkEzzVhF0DCo8Fx1MDAxOetcYm1cdTAwMDMjrERD/FxmxEHi3XiHXHUwMDA1XHUwMDA2QFxuxrTQyjIlpp3wxDucY1x1MDAwMFx1MDAwNpBcdTAwMTO3oKY753hHXHUwMDE5o1Hw6Vx1MDAwNa9oh0/f6T1o5/mXfSH4x4+9O1Jzw75cIvypr2svod/qWPRbI2nIiJaWXHUwMDA2P1Pjk0anXFx56NSO+Y05uSllTc838Fx1MDAxM8tS/1x1MDAxMdaJ2yzpXHUwMDExckpuP9lcdTAwMDBcdTAwMDKS3CBcZs1VtCxcdTAwMDL3+1/ws0Ja677DiChZvD1cdTAwMWJcYkYwttRUXHUwMDEybyhcdTAwMTlOn1x1MDAxNaGDgKaNJnmgXHUwMDAwLeJUY/pFXHUwMDA3yLmSQpmEXHUwMDBl3ppcdTAwMGWeXXtjLohcdTAwMWR5d8yN+Vx1MDAxYnGB01hjVVx1MDAwMcXBklx1MDAwNFxcnlxmVHdnrZ0+vbLyul9cdTAwMTmUtu4ue93jL0dcdTAwMDZEy1xcoyS1QHCup0r+hFx1MDAwYlx1MDAxOFx1MDAwNGBpXGK4opEwguuZlvrGXHUwMDA1wDVcdTAwMDNcdTAwMTSQ6Fx1MDAwNlx0XHUwMDE5LCaDyHSeJVx1MDAwMzLUwepcdTAwMTXI4KB/tqfYel9cdTAwMTRGrJdcdTAwMTlmbpo1c/DVyEDZgCYqc9qB5pxFrKLJN2pcdTAwMTOQbkaqmbP5XHUwMDA1wExLvSNcdTAwMDOjtFJ0afpcdTAwMWFcdFx1MDAxOSRk8DJcdTAwMTmQ4Vx1MDAxMUtcdTAwMDaMg7OPxfJLk1l2V1x1MDAxYafV0WY4snkorN+fXpQyX41ccshOQJRINlx1MDAxYlwiMvWcXGZcdTAwMDTSSJF9wJWwnEVcdTAwMTavfCVcdTAwMDOURmr3qlx0XHUwMDE5JGSwiFxmNJs9/UhcdTAwMDagOHPLlHJ5Msh1XHUwMDFlLrcv8lsn2cHmRmtUyZ+n0uxcdTAwMGKSXHUwMDAxXHUwMDE5XHUwMDAxpFx1MDAxMYGSpGHPLiGCXG7IXGI3pDQwQ1x1MDAxYYL3i1x1MDAwNsa4RWbExE5I2GBcdTAwMTFcdTAwMWJwXHUwMDExbyeA41xuetzyhsLOVri5u3E0PC7uXFzXLvn67qhzXv5ybOD6miM3qCNTdbJkYDGQTGvqNFJcdTAwMWFcZvi+YkA2grSKSU/3MFx1MDAxM1wieOnuT1wiXHUwMDAyXHUwMDEx2Vx1MDAwM59VXHUwMDBiOLc0ZquoXHUwMDA1/VFv0C3bPbhcdTAwMWJfmnapxMb1s8svR1x1MDAwNCxAUv/JQNDaIJ8xXHUwMDEyuFx1MDAxNoG2UoGxlikuZ1x1MDAxYepcdTAwMWJcdTAwMTeAMMRcdTAwMDX0XHUwMDEy04YmZJCQQYyNXHUwMDAwsfuKgIqDXHUwMDEwLKJdLtRcbja7XHUwMDFih5fjjCpcdTAwMTbOXHUwMDBiKVx1MDAwZe0rld3wjVxmRFx1MDAwMFxi0rrtNjL4tYXp+03IwMqAToNcdTAwMDajXHUwMDE1mdrT/plwXHUwMDAxqoCUXHUwMDA1MsONplx1MDAxMWPwft5Nb8NcdTAwMDacrlx1MDAxOCtkspeQsMFiNlx1MDAxMPGqgbGca2bY8myQyVxc7Gy0Sp1Ke2hcdTAwMGZcdTAwMDbj41Fu0E5/MTZAsFx1MDAwMSqG3Fx1MDAxMt6B02DM0IFcZlx1MDAxNEpwapP/Vlx1MDAwMlx1MDAxOXnScEFvkXBBwlx1MDAwNYu4QMWuXHUwMDE3XHUwMDAwKZgwcTpcXJpcdTAwMGLarf1GvbZ/X+Y7/XBvc1/S9DJfjVx1MDAwYlBcdTAwMDRkXHUwMDFjgURhXHT0XHUwMDA0pjkuXHUwMDAwYlx1MDAwMuRGatTc941FicZtjyZbXHRcdFx1MDAxOSwmg3jnY9JcdTAwMTk4XHUwMDEyXHUwMDE2VnA+3i51d2rHva7s39xe5TPbrDt6SH01MlCKJL9QmjNcdTAwMTKpXGIv2Fx0qKUzIMiAMkL5rlx1MDAxYnBg1FJcdTAwMTldXHUwMDAzTuggoYOYvVx1MDAwNFx1MDAxZeuAKLUkXHUwMDFkc1x1MDAxNVx1MDAwN8Qw26msZbpC1CGdteXbsMf45ldjXHUwMDAzy1x1MDAwMia586/gLtRcdTAwMDVmzVx1MDAwNFx1MDAxNVxibWiIXHUwMDE0WmuIOzxnXHUwMDAzKZBcdKtVsmiQkMFCMrCxblx1MDAwNmQjXHUwMDE4OmBcdTAwMDXdoFM5N5Vi+0711nqFs8zDxV3YXHUwMDFmfTE2kMBcdTAwMDNlgGmcOCXLmfBIXCJcdTAwMDOjlVSSXGZxZelXz8mAXGZcdTAwMWVSXHKQJ1x1MDAxYlxuXHRcdTAwMWIs3l2MX0JcdTAwMTSSXHRlI1x1MDAxYlx1MDAwZYu4oHl/VVG5vNw/a/Wu62tyWLtcdTAwMWR8NTtBUE9cdTAwMTNylODWcYGefu1PLjCBcPv2knjAXHUwMDA10fruceTiWk2yufjzy1x1MDAxMi5YwFx1MDAwNa8sIVwiKcJCr7K5eFM7PO/mylx1MDAxYlx1MDAwZrf9cJNs7qNMfehdoNJcIjYg2U/y31x1MDAxOKskM0rNrVx1MDAxYZhATVx1MDAxMIbWMLJcdTAwMTN83120nNOV6OpQwlx1MDAwNv/lbDCs3VxyX2JcdTAwMDNSd2PJXHUwMDAwtJFWa7a821EzXHUwMDE1rttjnUfcK97vXHUwMDFjap7ZzeR8I4OZ/Fx1MDAwNdbFXHUwMDFhWIFaWKlcdTAwMTSK52tcdTAwMDTgsqbQYHAmlWPO99s+sIHQ1lx1MDAxMlx1MDAwNXFkXFygeCFrStTJ6SfS3TqmZW+SruDZhVx1MDAxNSAtlWE2kmtmXHUwMDA1SNe7nWEhfPhcdTAwMTlcdTAwMDfz7Gy23Fx1MDAwZVv3z1x1MDAwNnUyg/90o/LsVLpcdTAwMTU2Olx1MDAxM3lXqz+f4cOwUm49XVx1MDAxZXYjsfRcdTAwMTV6RJnkY3++S7r9sFx1MDAxMXbKreP5xzmJuvU4XHUwMDE2XHUwMDEwREbjsjyoTeSt24X7PVx1MDAxY6rYtTsrhVx1MDAwYlx1MDAwYuDLy+TXs8R4XHRDQlcgjVDOPGcukchzXHSseEDquEunYrWD47uhXHUwMDEwaFxciVx1MDAwZexcdTAwMDSCXHUwMDExdfpcdTAwMTVcZoJ18cvavMVcdTAwMWH96yB84vypVH5cdTAwMWHz11x1MDAxM1Y9m4M/XHUwMDEzcTxd+ftRgCyAuIlcdTAwMDLhXSF+97FcdTAwMTC/+1x1MDAxOIhcdTAwMGJcdTAwMTObn0zQZFx1MDAwM41meSN8c12ivmlcXO7W7+9NcXArcpmDot9cdTAwMTBcdTAwMTdaXHUwMDA1koMh5UVZ5ChmtGyp3Vx1MDAwMpwwWlx1MDAxOIZcdTAwMDb0+2Vcblx1MDAwMlxmJDhZyyZcIt0sh3PlYpNccr6FN/9/JmttdLq+K1x1MDAxMPNcdTAwMWZcdTAwMGLE/Fx1MDAwN1x1MDAwMVHi7NlpXHUwMDA0XHUwMDFluvkg1PLCtplX3VZb3Vxm9sbNXlxy08ctaHhcdTAwMTeOO6vzYiBI43A+MXOutC6Dz8RcZlx1MDAwNiOBw/uhUFx1MDAwNmSiXHUwMDEyXG5BXHUwMDE5sndEdK/+XHUwMDE1XHUwMDE0uuU44PSRN/CW+yowhI+FIXyUPFSzZ1x1MDAxZmFIhlx1MDAxMFxiXHUwMDFlXHUwMDE1XHUwMDAxi1BY376/rGSr+d1Rd31zu7LdyD7oXHUwMDEzz1EoXHUwMDE5IcBcdTAwMTnZkqNCmJWHnKSUlJbEXHUwMDBl0ZFm72d5/lx1MDAxZVx1MDAxMEGCZoor+Gx5iCw6XVx1MDAxMyCuXGZEXHUwMDE5q5eCYdqQXHUwMDE5xJbfKU5fpDZcdTAwMDa13St+unVw0iqqo+EmeOc38lx1MDAxY4hoMLCMbD5cdTAwMDZSXCLDmc0gZVx1MDAwMsWYMkZQT6B8x0gz4IFLjkdCWYJUS8JcdTAwMTBcZreA+Fx1MDAxNt7jX1x1MDAwNYbyY2EoP0otjYOh1UZcdTAwMWLG1fJcdTAwMGKx99dC1m/Y2WY3e9+5fiheXHUwMDFj8nbLb1x1MDAxNJJcclx1MDAxY2hQzlx1MDAwNcNyrZA9989wWSBIXHUwMDFhaodcdTAwMGKr4f1SwnBwXHRrrZKGs6VlIVx1MDAxN1x1MDAxNlxmiek32HH5KiBMiY9FYfR57ypccuNcdTAwMTMykLpcdTAwMDPMRE2PRTgsb++vdXQ2ez44T+nqXHUwMDE2ZmA/47taioRDxVx1MDAwNNKruvxLMKOWMlx1MDAxNlhEUlx0XHUwMDE0/Vx1MDAwMP6ea7G4+lqsXHUwMDA2kt/iTfyl/zMgQnSyvitcdTAwMTD5x+KQvy1cZut9XHUwMDFhucdaXHUwMDEzjy19lIix6zQuXHUwMDE5XHUwMDEw2Yhy+Vx1MDAwNdOj0j1cXOWxslPPNnr3m62mXHUwMDFl33kuXHUwMDExXHRegVLSXCLJPuRcdTAwMTb1TDJlwoc1XHUwMDFjuVx1MDAwNknC813zpzJcdTAwMTaxPyNVXHUwMDFjnp1/XFwntVx1MDAwND9cdTAwMDHsXHJcIph+XHUwMDE3gv+Bm8FcdTAwMWJv6kc7aHpm+rlvM59fxmEhbI9a9LpcdTAwMDd96qRR382bYX9cdTAwMTR5g1/nf/bR78lAiFx1MDAwM55zOWVWglk+kiB/NJa7Wye9W4P5W4XFxnpz5F36gVx1MDAxOeRcdFx1MDAxYjhHICBNlCRg1Mf20SR0XGbkvIiRScbez1dcdTAwMThEQK2wmoxC0krNkm5cdTAwMDGgrNLI+SdC8KOl4Fx1MDAwN2ujb6yMxjnrYfxcdTAwMWEpuCpcdTAwMDegVvHiv1xix+qujO1cdTAwMWRzdjpOKdY439jKeo5EkoHCWGCAhmTdTNZgJ1x1MDAwMpnLjqTpXHUwMDFmU8q8n2eeXHUwMDExXHUwMDAxWk6CRVx1MDAxOM2lnrbjXHSGQE3VRkhSS5TCZ1x1MDAxYitP0XwkyV2diiTS/+s45qWEXHSkdDnqScdcdTAwMDI53aN3XHUwMDA3N4R3qVx1MDAwNNBFVDQtxMKvi5tI7pifQvOawm/xiFTxqrThRnG5Qlx1MDAwMMCtkmbz1ITp3Fx1MDAwMatcclx1MDAxYd3CYe407z+NoMvYrVx1MDAxOFx0UZLZ86q0kK5Wk1x1MDAxNYxZ4GamZW/IIyxQ2jnrXHUwMDFiLom+I1x1MDAwNVJcIkTCXHUwMDAyXHUwMDAxKFxcbmQmbDRIebr1QjMnyVx1MDAxZfSVeIRoRIBmXHUwMDFjXHUwMDE5SCvtNL7MXHUwMDFkXFxcdTAwMDbcRZqQ1kbCXHUwMDBlOMdFX1x1MDAxNzuP3DE3g1akkdeMcojVSKxlmshwhfwj95vp3f203e/e7HZKvY1LlrFcdTAwMTD6zSQuXHUwMDExmeVE0EZcdTAwMGJkSs44KkpcdTAwMWFl6VagnCOjq7z3bkSymlFcdTAwMGWK4EmDwz7RUzixypezyn9cdTAwMGZ92pCJiGqFbMGmszvOb6dcdTAwMDd87WIrXHUwMDFjtXr2crfU9lx1MDAxYn0uolx1MDAxZslcdTAwMTBW1lx1MDAxYUGC+ougz3BLlP4miYBcdTAwMTPwvS/44jToqCfcbHJccjbJYGuWl3tXV1x1MDAxZLk9qq+dnqtUbpxcdTAwMWFcdTAwMWU/7DV9X4zmKlDWJd8m28SVWZ2xxCVcdTAwMGJcXKprS+pcYlx1MDAxMVx1MDAxMcZcdTAwMWLiNVdcdTAwMWVcdTAwMTB+XHUwMDFmeTJwOT5cdTAwMTEkI4VcdTAwMWTUS1x1MDAwMXJA91x1MDAxMElQY5nzJtb6XHUwMDA1r1x0p+ebJETuK2nQqdihd8f8oK+o9MZcIj8+RE6iRbBshcTcZ/Vedy08O9wz6dJxOZc6lLLsu3uUXHUwMDEwXHUwMDAxSuVcdTAwMTLuu3qmalbmQlx1MDAwMNKlXHUwMDFhc+uRlol4metcdTAwMDfypVx1MDAwNOfFlSTYS5C/XHUwMDE4+fGleqyS0qmaK1Tx61RuXHUwMDFixYeTanWYOz6676qiVdueQ1x1MDAxZl1VdeWKXHUwMDEySe7K9c7kzCGhb1x1MDAxODr3XGaOSlx1MDAxOYzfgvZcdTAwMDL7SIqJfrZAkUA/gf7L0MdXMvCTILRMrZAkXHUwMDAzXHUwMDFi2/V2V15cZk9vL8x55/b06H5P+1x1MDAwZX1LdpnUXHUwMDAyrbXUXHUwMDFielx1MDAxNvqu0DcgSkN3oHglTshcdTAwMGLok8xHJd26QYL9XHUwMDA0+1x1MDAwYrBvYjfLaFx1MDAxNllcdTAwMTcks7zCX8zdXHUwMDAx1HfPdjJr61ub1bXTw47wXepLXHUwMDE5aFxyQjNrievwXHUwMDA1hd+S8uOqc1xubX1cdTAwMDc+gEsowL1cdTAwMDX+tP9cdTAwMTLgP1x1MDAxZZ9cdTAwMDb8WEtfXHUwMDE4w6VYJS64et4529o4k0Wt1kY4hJuHrO57XHUwMDBlfCWoZ4E5SUnKfrSC5ZO6j5JcdTAwMTmwjGmp4z2/vUC+tIYpqcHXJb5cdTAwMDT483d/XHUwMDFh8GO31Vx1MDAwNGglgfFcdTAwMTXy6PNTUyhs9Vx1MDAwZe9MrTGyqnrbXHUwMDE4nnlcdTAwMGV8zVx1MDAwM6ndrjZHSzbyrMRngVx1MDAxNVx1MDAxMlx1MDAwNNfaTILv/Vx1MDAwNj5cdTAwMDLSZ0EnXHUwMDEyP1x1MDAwMf5cdTAwMDLgR5005ypoaJdcdTAwMDeDrVx1MDAxMO11+nA9zt3kruBh3OhcdTAwMWTtndZzOe67ma9tIISRXHUwMDEyyMZcdTAwMDdQZlbkk7LPLVx1MDAxN1ZcdTAwMWGu0Fx1MDAxOM9lPn3a1fVcdTAwMTDo61x1MDAxMl+C/fm7P1xy+7E7+oK5tFx1MDAxYtG8UFx1MDAwYtPgpnda3IaFcn58MK5u9I5vh+foOfSNXHUwMDBlXHUwMDEwXHIneY5I+v5sOi5cdTAwMTaQuNfKOH9Zrmx8jItcdTAwMWbIRy1I7itvq+glyJ+/+7PUfftKxlx1MDAxM0VQcDmil4b+oJVcdTAwMGL3Kr2ivlx1MDAxYvfzV7vitq7rvse3MVx1MDAxMSiljCSic2lNpi/7KPSVXHUwMDBi4OJKXHUwMDAzk/xcdTAwMTVveC+g71x1MDAxMvc6qkpcZv1cdTAwMDT5i2S+eCW7g4vhISwsL/RcdTAwMWJcdTAwMTfHt1dbtbZo7GNr52pv46HauPZcdTAwMWP5wFx1MDAwMrdbb6zLYMeUnZX6XHUwMDEwXHUwMDE4brWxqKVT933X97kku4Xexdf6eFx09ufv/jTsx9v6XHUwMDA2mFgplFZt39XZ7uCyWMs117g+uVxmUXV9h75cdCRy6m9lhVx1MDAxNmp+Q1x1MDAxZrVcdTAwMTWT7KdGKem5vq9cdTAwMTmnMfM3lDZcdTAwMDH+/N2fpe7z+Hy/Rlx1MDAwMzIyXHUwMDFil9/XU2K9OTza6KtK6bzZt6csXy76XHUwMDFls8Z1IC1cdTAwMThu3FwiPn9cdPnCgFx1MDAxMdKVyVbilYxOVkOFfzLyuURrVNT9KkF+gvyXkVx1MDAxZl9Vg4xbRmqwWVx1MDAxZfjpjVGqPkqVLq+3Spf1rK6JgS17XHUwMDBlfDGJa0fldu21jezYT+187pz2hYskfiVazlx1MDAwN9yTeeai+jCx81x1MDAxM+AvXHUwMDA2fmxcdTAwMDYrMnu1QLFC6rhcdTAwMTNcdTAwMWNs7aXy++vN02amL9I36fX8pefAR+7yXZBu47I4cs3mRT4niVx1MDAwZlZaMqBfy+HoXHUwMDA18lx1MDAxMa1kliXIT5C/OGYn1pVHWmZcdTAwMDDMXG5cdTAwMTHy5f5gs1m8XHUwMDFhb2TXeOpivFvItbOeR+tcdLSBZcrVuPzpoztcdTAwMWKnOzHzyYJcdTAwMDfmXCLhmOdCnzODXHUwMDAy6KZcdTAwMDT6XHT0XHUwMDE3buvFL/ApXHUwMDEyhpzxXHUwMDE1dvTDh1I1e3i8iYWT3Ha53erd5jNcdTAwMTeeY1+qQGmXXHUwMDExVkhgVr6g7mtcdTAwMDFCu2JcdTAwMDdcdTAwMTJeyZXnXHUwMDAz8lx1MDAxNaPz4G+Oq1x1MDAwNPjzd39cdTAwMWHw4z15yLBcdTAwMTUr1fPqtLk8xO5ZqVdtXTJzXlx1MDAwZi/vrzzHvcLAeeYy7tTkZ/UxXHUwMDFmgT9Z9tOgQbhcdTAwMTnsN/LFpFxuskhcdTAwMWP3XHUwMDEz5C9Gfux+vtBGKilXyMpzWD3aLzJ1VjzVumxKl+dcIpPZ8lx1MDAxY/laXHUwMDA0rnK1XHUwMDA2xaSJXHUwMDA2Lj4p+8A1uIKa2uBr6XF9XHUwMDAwvismplx1MDAxZEklwE+Av2gzPz4xtqZHartK0TLdrDRgZE7ud3Ln5bXmsFx1MDAwMEeaeY58w1xcdVx1MDAxNNKSXHUwMDE1XHUwMDAzXCJcdTAwMDB8QdlnynB0JT55NIrBS+hcdTAwMWLghoySXHUwMDA0+lx09Fx1MDAxN0M/fjufXHUwMDBiXHUwMDE37I0rROuZg9S5upblY8g29lqbXHUwMDE3+1x1MDAxYufrynfom0Cg5UZwXHUwMDA2nEcw87S2L5XLg1x0KG1ktdNL4CO4LYpkeS/B/WLcx3rtc5rpXHUwMDA25Sq4P6qHXHUwMDA1e3OmhueDu1xcpXrerFx1MDAxNy7OPcc9kFx1MDAxZE/zkl5UMjB2VuIzXHUwMDFhXHUwMDE2VHRBoEBcdTAwMDTfN/UkatLS5FvUiUqg//9cdTAwMWT68do+XHJcdTAwMTRYXFwhXHUwMDE5V+Gs0MqXuqXOaIc9jI/rzZ3Uie9cdTAwMGJ8YFx1MDAwM3pFzsFVm4LZcFx1MDAxZFx1MDAxNkiOLi1cdTAwMTkp0JzzV6pR+Vx1MDAwMHzOJlx1MDAwMVxizCQr+1x08Fx1MDAxN1x1MDAwMFx1MDAxZuJTcYGri6bEKtv5mFx1MDAxYrRZ+aacrcvr7nG4b7dccj/wXHUwMDFi+Vx1MDAwNPeA5KSyXG5dTVY+XHUwMDFmpLtcXNZtL5BcdTAwMGboXHUwMDFjeTRLXFx3XHUwMDEz5C922o/d09NuI2ul4q+XorRxu94+yFW2U43jUvvkrnj/4DvwdcCRJiZHKS3MVmFePuu2XHUwMDFmyFx1MDAwN1ecz5gkOj9B/mLkv1J9llBvzVxu6TdcdTAwMGJKbZykLq/vr683052Nk/D6XGJPPUc+9ayQgjHDpNRcdTAwMTjx03kp57bwXFzbXHUwMDA34cpkWZtcdTAwMDTqJchfXFxjJ766lTLKIF/BzM9cdTAwMGZto7Oe6l41w/RFerRTXHUwMDFk7WU9T8YlOVx1MDAwZrTlSlrBuEI2L/OjKbc9xz1cdTAwMDfCPCZhelx07pfw2Y913DVcdTAwMDaltnZcdTAwMDVdv3vcvj1cXCtW6tvZzI7FtaIq5qXvuLeBlIZb+sVw9kJOjmjCbYivsuFcdTAwMDXyNb2FRpE47ibAX1xm/FgjXHUwMDFmOCm31thcdTAwMTU8d8OzW9XJ7cvdtDk7yFfExfH64MZz5Fx1MDAwYlx1MDAxZCilLXWsNUzY2a3851x0tz1cdTAwMTf5Vlx1MDAxYYVcdTAwMTJcdTAwMTJN/79cdTAwMTD433494Ue51ytcZqnzn1x1MDAwNpEmQVgthFx1MDAwZrVn7/FjXHUwMDFj1m7X5mfpP+qT48e3XyPtUDsp2/nX39/+/je4o+zfIn0= yxO115-323

    x(1;5)

    f(x)<0, kai

    x(;1)(5;+)

  3. f(x)>0, kai

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daW/jONL+Pr+i0ft1rSleRXKAXHUwMDE3L5x07tvuJJ1eLFx1MDAwMsd3fMaWc1xy5r9vUelYslx1MDAxZMV2Nlx1MDAwNzMrN9BJKMqiSD5PXHUwMDFkLFx1MDAxNv/87cuXr+Fdv/r1jy9fq7flUrtZXHUwMDE5lG6+/tOVX1dcdTAwMDfDZq9Ll3j097A3XHUwMDFhlKOajTDsXHUwMDBm//j9905p0KqG/XapXFxccq6bw1GpPVxmR5VmLyj3Or83w2pn+P/u//1Sp/p//V6nXHUwMDEyXHUwMDBlgvghuWqlXHUwMDE59lx1MDAwNlx1MDAwZs+qtqudajdcdTAwMWPSt/+L/v7y5c/o/0TrSoNB76FhUXHcOCaYmi7e73WjljIpLZecXHUwMDE5O67RXHUwMDFjfqOHhdVcbl2uUYOr8Vx1MDAxNVf09epuZ2V1u1pXW+31/NqP1mlcdTAwMWTrlfi5tWa7XVxm79pRm4Y9epX42jBcdTAwMWP0WtXTZiVsPHZaojztrkFvVG90q0P37mxcXNrrl8rN8M6VXHUwMDAxjEtL3Xr0XHUwMDFkcckt/SWYXGaEXHUwMDE0XHUwMDFhtTaomYy/xd0vgFx1MDAwN1aDRo7cXHUwMDE4LVx1MDAxNE41bLXXpmGghv2DVd2/uGlcdTAwMTelcqtO7etWxnXCQak77JdcdTAwMDY0WHG9m8dXpkcxZrjhSmhlhDLjKo1qs95cYieaPqxGg8CkXHUwMDA1VKDiIXKP7G9Vosnw77jnXHUwMDA3NI223Fx1MDAxZN1Ru53svm7lV/c9Tpp42vBfJX/F7+TqryWmW/yEUb9SephcdTAwMThMcyuEUJp+kePr7Wa3Nf34dq/cemIuXHLD0iBcXGl2K81uffqWardcdTAwMTJfSTT5XHUwMDE3XHUwMDA2olf8Wtv8mTvubjZqJ6WVXHUwMDFmtVJrdFx1MDAxMFx1MDAwZXDc4647euVRNGVcdTAwMDJcdTAwMDCORiljqPstZ1wiUale6rsqM53QLlxyw9Vep9NcZul9XHUwMDBme81uON3I6Fx1MDAwNfJcdTAwMGVzjWppptPpXHUwMDE1ktemwdl331x1MDAxOGPZfeLfvsRTIPpj/Pu///lk7fRJNXX7b8mfv951cVx1MDAxYTHAp0vHLFx1MDAwMppcdTAwMGKIUTWPQpi1u+VccslcdTAwMDZcdTAwMWJFdltbvV6rh2uXflOIXHUwMDE0PJBcdTAwMDDSoOBcdTAwMWGElnqSQzRcdTAwMGZQIVxi5IKDXHUwMDAxNdWw16OQuFljxiDeXG6IxIC4y1x1MDAxOGQ88fBcdTAwMDdcdTAwMDahS9ZohsxXXG6JW/yeXHUwMDE0cnKeK+PQdOpXa3uQa//Il1x1MDAwZlq1pyhEXHUwMDA2XGatJnBpRCFVPPYxg8jAIILimnpaSZztk8/EKFx1MDAxM7VzM9NrSUahIa0+qZdcdTAwMDDgdPEjo1x1MDAxOKYkI5k35uq5nNJcdTAwMTit7m1ccuuF6m27tW/4dn612FnxjVNYoEjRsMQhqK00VsUs8kAyXCKwnFx1MDAxYolSXHUwMDE4qjLJMVx1MDAxY21gXHUwMDE5cSfTXHUwMDEy0VjQUy19RZKhXHUwMDAxXHUwMDE3XFxYaikwK1x1MDAxNchYyMe048RcdTAwMGVBXHUwMDAyLJKKXCJlQm36RTucSSHhf5R1Jr/sddE/ce11oZ8+8u4zM+avxlx1MDAwNUJOXHUwMDE3j7VcdTAwMGLBkNggKVTnkcFJwZyY1sZG7aYzujve2lx1MDAwMzxcXM19QjIgNYMh58qS5oHx60dsIJGkkpbEyjRUQvtOXHUwMDA2zDCridu8ZYO4xVx1MDAxOVx1MDAxYowrfFx1MDAxNFx1MDAxYiRcZuNpzcBcdTAwMTjFaPIvbm1cZvmgVN5cdTAwMWZudjfPKuXKTeFY9I7spyNcdTAwMDNcdTAwMWVw0i6dXHUwMDEyxi1cdTAwMDEpVoxcIjLgXCJcdTAwMDAyT5CsP0tcbmhCb/KTXHJcdTAwMDSNMKmTNu6ejFxmMjJIIVx1MDAwM5NqJpCabFGbJcyEn/nc/sVu73BcdTAwMDX2L24x/63V71dWPyFcdTAwMTmA1sAlXHUwMDAxncxSM0lcdTAwMDZkIVx1MDAwNNwqhcJqXHUwMDE0QnIz1VTfyIBZZ8xAktQyNsjY4Gk2YCzVUDAkT1xmLOOIrLbXS91ccti73+qJ2vpg01x1MDAxNOB479OxgVxiXHUwMDA052QgXHUwMDE4XHUwMDAwTdrRJFx1MDAxOWhcdTAwMTVoXHUwMDAwpd1AaWTi7Vx1MDAxNjdei1xmkLhNJPyrXHUwMDE5XHUwMDE3ZFxckMJcdTAwMDUydUmCTGbni5eLr2u27+FsXHLvrnAowtuaPr3arV21PyFcdTAwMTcwicItZTLF7eRCJ1MssIrgpZRcdTAwMDHGXHUwMDEyPOknXHUwMDE1cGCScUCZ6Vx1MDAwNVx1MDAxOVx1MDAxN8zjXHUwMDAyXHUwMDBldrr4kVx1MDAwYrhChobj4lxcUN4/v+xcdTAwMWVcdTAwMWNcdTAwMWR1XHUwMDBmdkuHV53GtyN7OfqEXFzgXHUwMDE0a2UtN8qw2FxuiL6Q28CAtSRqaTiM9N1hwFx1MDAxZOysvyuYcd9nVDCu8FFUgKneQ6EtXHUwMDAw1zZcdTAwMWWueVSQv65cdTAwMTRPvm/dt1x1MDAwYuc7g5pShze1wsWno1x1MDAwMlx1MDAxNdBIkPJvXGa9O05SgVx1MDAxMDaQRmhmJFx1MDAwMyuQvWHwwutwgdGIWifamXFBxlx1MDAwNU9zgZAwXTxeVzRImrBcdTAwMTJycX/Bj9vC7VFvTVTPczut/D6KijkvfjoyXHUwMDEwXHUwMDAx9VxuV9w4sNtcdTAwMDRcdTAwMDQjNmAm0C5WSKDSkr7AczKQXHUwMDAyXGYjOsjIICOD+f6C1JVcdTAwMDRcdTAwMTckjVxcwVx1MDAxMkZCkf3cqVx1MDAwZW5cdTAwMGWPwu1cdTAwMTI/ysv7rXptzTcycP5cdTAwMDCmLEcllLHaxtGvXHUwMDBmZKBMQPAxxkXGKrB8KuTIslx1MDAwMK2RdLOwhn76rlx1MDAxYTC0jteIXHUwMDBmMjrI6GBcdTAwMWVcdTAwMWToVN2Ac+vgXHUwMDAyi7NcdTAwMDHfvFjrWW0uh63+943W3bHqXHI7n41cclxmXHUwMDBmhFx1MDAwMSZcZjfGhVxmT5FcdTAwMDFcdTAwMDTImVx1MDAwYr5cdTAwMDBcdTAwMDVcXPquXHUwMDE50FUyXHUwMDA1NXjrPsy44InaXHUwMDFm5TPQqXukuFx1MDAwYrdcdTAwMDFcdTAwMTSL+1xm7nX+anQ86lxifb1XOFx1MDAxMLWrcHtcdTAwMWI/XHUwMDE5XHUwMDE3OK9cdTAwMDD1tFx1MDAxNUZZw5idij60PLBCIdlQwmhhvV9VdLqNuz3zXHUwMDFmZlxcMNdnXHUwMDAwYro49lx1MDAxOWitjdtLuDBcdTAwMTncVC+PN8LvUDo9KPSPN3Plze2c+WxkgDxQqFx1MDAxOSBILoVcdTAwMTGzbGCEYVx1MDAxMsC4iH/fXHUwMDAzjrhhhiMxXFxGXHUwMDA2XHUwMDE5XHUwMDE5zCODdCOBIGNIXHUwMDE5XkYzKO+f4912uVPsbtR1L786ONs9/XSagVFcdTAwMDHpXHUwMDAzQjLiQS6EmSZcdTAwMDNcdTAwMTFcYoGKyEJJSGyW85RcZqJSzf2NMsjY4InaXHUwMDFmxVx1MDAwNjZ1aVx1MDAxMVxyXHUwMDE4RYbx4i5cdTAwMDNxUVu5Os6F4uKUs+088rvyxdEnI1x1MDAwM1x0ZCYgko1cdTAwMDCISVxmPVJcdTAwMDGCJs2AobTCgu9mglKcXHUwMDAzgPB1MSGefFx1MDAxOVx1MDAxNYwrvC1cdTAwMTWE1dvwKSoguKdcdTAwMWJcdFx1MDAxNsky5lx0zWHuhsVnt6J7Qlx1MDAwNVNcdTAwMTlcdTAwMTGkXHUwMDBlOCFfWEK3sSx+8sP9dFx1MDAxNSSZSiRZjTTs7aBvXHUwMDAzoa2lPudcdTAwMTI4qSRP5FR5XCIlglRMg32NMOOJXHUwMDBiM5BcdTAwMWVPtz9cdTAwMTOTcqE8XHUwMDE4XHUwMDEz0/Bhu//4yl+PczeVMFx1MDAxNJJuyl6kO9R63bDYvI84XHUwMDBiJkrXS51m+25iykT4+MNccvpEUb7drHcjUVqtTeInbJZL7fHlsNePr5bpXHUwMDExJVx1MDAxMr2D2Vx1MDAwZe9ccpr1ZrfU/j77OCesN1x1MDAxZkeaXHUwMDA1ibG+KFxyq5Eod5h8XHUwMDE5ynVqVCFZXHUwMDA2yIl0YjkzXHUwMDBm5M+nrPFcdTAwMTLkipH8t2jBJYAg9pyKXHUwMDFjXHUwMDAyXHUwMDExXHUwMDAwSCE4XHUwMDAxXFy+ZUAxo3ElirdcdTAwMTHAXHUwMDEzrtrnXHUwMDEwXHUwMDBlyoBcdTAwMDZ8jT2GL4f489myJubgXHUwMDBiIf5cIp3gRVx1MDAxML99X4jfvlx1MDAwZsQle1x1MDAwNuJKkMqv1OKCvLOq67x0cbzSvvi2XHUwMDBl7c3iZlxy+n5jXFy6+D/S8ZUgXHUwMDAzhlx1MDAwM5vNjkbFwpA012TXv6EgZzJQzElyYFx1MDAwMjUzi+FcXFx1MDAwM1lcdTAwMTjqVVb5noe5P0A8eF8gXHUwMDFlvFx1MDAwZlx1MDAxMMUzslx1MDAxNo1cdTAwMDSUTCxcdTAwMGVEs4f9b03k1aNmoV3fqzZH1+fehfBPXHUwMDAxUZHObFx1MDAxMNyyNUk61DHUXHUwMDFlI/NcdTAwMThcdTAwMTOCkT5cclxm3nCPv1xuiFx1MDAxNFx0iE6vl0SBfCEgMlx1MDAxNiVPZOLNXHUwMDA1rj9IZO+LRPZeXCJRT5eOvVxcRM2gTcLImlx1MDAwN8T9jVx1MDAwNt/o3X07VsWNfP6w+V1cdTAwMWP3fDdtmXNhM+eykkDTaVJcIro8XFxcdTAwMDRcbrI3XHUwMDAxXHUwMDA0J0PSM1x1MDAxY0rDOVx1MDAxOFx1MDAwZmBok5M1g+HSMGTpiS9cYoVWamlMXGaKeTjs3e5UavnC2UbhXtZcdTAwMGLfLi9cdTAwMDbhwLvMXHUwMDE3UzhcdTAwMDTrsmqi1Fx1MDAwNoxUk+KQaVxmXGa3keUpNM22t1toYjx4yKsjVFx1MDAxNCW8XGJcbjlxpFHmNVx1MDAwMk4+XHUwMDBiXG7V+6JQvVx1MDAwZlxuMTXfhEv06pxAXHSYzt1NtrV2Wtip39fu61x1MDAwN4fVXHUwMDAxu+1cdTAwMWNAy29cdTAwMTBcdTAwMTK2XHUwMDAykjxcdTAwMDI5Q7fXgk9rpVwioNkmhbTcasnfLiqU80BcdTAwMTJcbjU60UtGXCLGffCcVqqUsoJcdTAwMGL1XG5rOp9cdTAwMDWIOf6+SEw+7zWgWFx1MDAxYtDYPabZf2zqOFx1MDAxZFSqasqdcmqXWIDttuRA3t+vW1x1MDAxYtqdm97uvjJ15jdcdTAwMWGjrZwkVYBwSCYg2imhaDBQRjCyXHUwMDFkkSZcdTAwMWVcdM43gyNcdTAwMDRcdTAwMDBcdI9vnL9+svxcdTAwMTGGpL2C4W/vjJ23hPpcIlx1MDAxNL7ygmWyg+KS+L7fpu5fZDG22Vx1MDAxObXpdVx1MDAwZlx1MDAwN9RJo4GbOOFglHiDX+VcdTAwMGZ99Cz6UoNcdTAwMWZ0qlXImHVLr5iwheZh7/a+q1x1MDAwZVx1MDAwYvXO1mBfbWz1t/dcdTAwMWFw881v7Fx0o1x1MDAwM5eSXHUwMDA0mVHa6lx1MDAwNKFHZqGBXHUwMDAw3aZJUlVcckd8O0GIXHUwMDEwSGpcdTAwMDeSuDVuXHUwMDE5M1x1MDAxMccwRqHL70BcdTAwMTTASVxyXHUwMDA1y5Q0M4JRoTWaXHUwMDBi4+tOqVx1MDAxN1x1MDAwMfVvXHUwMDFl65Djjv3BglZMXG7DJo96cFel28cnpHJcdTAwMWVcdTAwMDCVTNWe8oXpcym6PDuNZlnqZWTC00+TcLnKqC1LJGm4XimW8z/z3/OwXtxaxbNcdTAwMTLfNzufgEzcwipnUoJcdTAwMTaTu7C5NoE1XHUwMDAyNVx1MDAxMJNcYlKv387JRDNAoVwixcFcdTAwMWFJ+oJmT1x1MDAwNE4xblx1MDAwMoYuc1x1MDAwNjF9dI7KjHxcdTAwMDdcdTAwMTdQzZX2NaY6o5PZ2mRRcWE5gZ9mmfOjTERO5VxcUmFtXHUwMDExwTpfk1x1MDAwMqvnfWH6XFyKvnB2XHUwMDFhLckmLzNcZkhcdTAwMWLWoPQy2sn2ysHPy/W9bXlyf7TfX9fyXGL7V75cdTAwMTNcblx1MDAwNuhcIiTAotuFMVx1MDAxNZVNhKJcdTAwMDRcdTAwMTDJWySLOHHe18faXHUwMDA1zrmnlczsXHUwMDAy/+2CNFx1MDAwN5lJ3y3FXHUwMDE59a7QSyzbbpe/XHUwMDE3O612pc2lXbm4Lf9YXHUwMDE5NHw/XY7rgMxcdTAwMDGtrERup7MxO/+YkkiI4y4xI3s74HFG1omNzilyXHUwMDBiXHUwMDAzhi3mXHUwMDFmI2q0XHUwMDA29WvYXHUwMDAx/5V/LOHeenP/mHxn/1jieVx1MDAxZudcdTAwMWYj8U5y0C5x1OPOIdRcdTAwMGWuL3+uyv1w5bBysnJbq4HnYFx1MDAxNDpcdTAwMTCgpNuG6HKETaYwYKR0XHUwMDBiq4xcIqxcdTAwMTLxo3y7iMUl3WOGgbSKwVx1MDAwN6IwkoPiRSj8n5KDaSatSM9MzrQynIzaJU4tOSxUXHUwMDFhLHfRwJ2wW631XHUwMDFhrdu1Pe9OLZlcdTAwMTaEJuBcdTAwMWNBc22VO6VsUlx1MDAwM7WS9FNFnaAlXHUwMDE5v1akr9dWgaQmezn2VGBoXCJHXHUwMDA3yGnF8KmtQIzqXHUwMDE4Yd0xXG7uIFx1MDAxMq1nwyg4XGJlvc0y+DKg/s1cctpcXOrIu8/smM9SysuQn557mDlrTFnkSyRcdTAwMWZcdTAwMWVcdTAwMWS0YGe0227VT9dLV99veb+w5TnyhVxuXHUwMDEwleZcdTAwMTIkKZ44nThIXHUwMDA2JkpCzN2pjumOcS9wz1xcilSXOzFcdTAwMDN+XHUwMDA2/HnAl6nbgZnkJD5cdTAwMThb3IltTK2cu76/uzvDUq4xqlx1MDAxNCqHpYbnuJc8kMKFhIIwwqhp3LvVXG607vByt2Q93S7PgC/AaeHeXHUwMDFlV5rh/onaXHUwMDFmhvvUyExUTrmVS+RcdTAwMTHdq8HKj8p6fnS6fj5YRbhrXHUwMDFknFx1MDAxZnqOe1x1MDAwNVx1MDAwMYlyUpBRXHUwMDE4zpSYjEJxXHUwMDAyX5N1TUY2s6T/pO9U8Fx1MDAwMvhcdTAwMWPcQaouXHUwMDE5dIb8XGb5c5CvUv1r2lx1MDAwMFdcdTAwMDaWsPGhro/Dnzc7sqZWXHUwMDFhx4yfXHUwMDBlzInnWyNIp1x0uOCW9Hwr3I6fWSPfcFTR8j1pQJ7b+MxIg1pIX3P/ZMh/ovZHId88Y+S7IFxyI5cw8u/PXHUwMDBl73d3xMXB7u1Ff394Vry6XHUwMDEzdc+hjypwmyAkcGOQenZa6JO2z1x1MDAwMVx1MDAxNSdcdTAwMWTaJVxy9d3O52hQuiqeYj9cdTAwMWWlXGb7j59cdTAwMGbDfmroq7ZKXHUwMDFhndwjOFx1MDAxN/pcdTAwMDV9tH0z7NpVXHUwMDE0XHUwMDFiV/r0dLdz4l1C0Cf2gIDT9KPj15/y7GtnPXOiQaGfyVx1MDAwNuxcdTAwMDfy6Vx1MDAxNYilrPVV38+QP1v7o5DPn8lcdTAwMDXsQmZcdTAwMDXqxV18Rzv3JTi9bDQ6V1flze7Po2LvZtNz6Fx1MDAxYlx1MDAxNlxiRSoy6TdagjKzUl9cdTAwMTIhMHdMO4hn4sr8gD6xNV0z7Fx1MDAxNeLNMuj/zaGPqSHqWkV+7SVcdTAwMDJKh+LmR6lR7lx1MDAxZUhz+u36dKe52+j4ru9cdTAwMWKXb8S6M8Wl29o5td2FgI/uiFxybSxI6lx1MDAxMM+Fvlx1MDAwNSuosd4u52fAn639YcBPXHUwMDBmJWecWStkXCL5zty8XHUwMDBi963qymX36qpwZWHUXGJXd473fY9otVx1MDAxOHButJJO7EPybVx1MDAxZqHPkVx1MDAxMepcdP5GXHTfoc+ZdEdcdTAwMTdI6+vKXob92dpcdTAwMWbm3089XHUwMDA3iEmuXarLJbx8XHUwMDA3clQts1alKIrfXGJcYnlcdTAwMThaduI39iWIXHUwMDAwXbo1he5cdTAwMDA0YWaxL10gj0HkjGvPXHUwMDFk/Fx1MDAxY9wmOlx1MDAwZb769zPkz9b+KOTb1PBdS5a+QbZE5Hy/vtpbXWtcdTAwMTXuyvpsfVg/XHUwMDE5rF9vXHUwMDFme1x1MDAwZXxcdTAwMDaBi5qXXGaN4po/Yeij4lx1MDAwMpVEVCh8N/RJazFAgt9XfT9cdTAwMWXYXGb5j59cdTAwMGZDfqqhj8Axyj22MPJX+fadS1xyXj4pXpmrzfWz+t7Nre/IN4GSXCI6YEIx4FM7R1x0+C40zkpcdTAwMTfXLz1cdTAwMGbiky77odXeuvYz2M/W/jDYp1x1MDAwNvGRxchdJtslJP7p/jFcdTAwMGVHa7ntXXV2IIrV3Ztyw/dcXFJcXFx1MDAwNy4xmlFWXHUwMDAygJp18ImHtD6ghNWeL+dLXHUwMDA0Y5WvR/pluH+i9lx1MDAwN+FeilRcdTAwMTNfoXYnXFwtkUIuNzzfPfteW2Orqn5cXPjRKlx1MDAxN8q9S89hL2RcdTAwMDDAOGeWwP+UX1+5JORcXII1NHs9x71GIzjoXGb4XHUwMDE58OdcdTAwMDM/dS1cdTAwMWZccmp3zt3iS/mnWFxmi93rg9zOyt5m9z63Xlx1MDAxYf5cXPdcdTAwMWP40p2FRmJSK4I1XHUwMDE5yLOKfqRcdTAwMGUw6lx1MDAwYs5cdTAwMTh67tanXHUwMDA2auvOdfPVuZdBf7b2a0H/t19P+Frq94shdf54XHUwMDEwaVx1MDAxMjQrv1KCxO/x9bpZvVmZnab/qEVcdTAwMWZ37FI00lx1MDAwZbhRXHUwMDEygD//+u2v/1x1MDAwMFY+0v8ifQ== yxO115-2-4

    x(;+)

    Nėra x reišmių su kuriomis f(x)<0
    (funkcijos reikšmės būtų neigiamos)

Funkcijos reikšmių didėjimo ir mažėjimo intervalai

  1. Funkcijos reikšmės didėja, kai

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daVPjSFx1MDAxMv3ev6KD+TrWVNZdXHUwMDEzsbHB2dxgbnpjglx1MDAxMJZsZGTL2DKHJ/q/b5bAlpAxNoxccmLX7ohuqJKlVFW+l0dlVf/97fv3hfih5S/8+X3Bv6+4YeC13buF3237rd/uXHUwMDA0UVx1MDAxM7to8nsn6rYryZVXcdzq/PnHXHUwMDFmXHK3fe3HrdCt+M5t0Om6YSfuekHkVKLGXHUwMDFmQew3Ov+2f++6XHL/X62o4cVtJ31IyfeCOGo/PstcdTAwMGb9ht+MO3j3/+Dv37//nfydkc5tt6NHwZLmVDigmuabd6NmXCIpZUxcdTAwMDORVFxyLlxiOiv4rNj3sLeK8vppj21aiPY7W93Nn1x1MDAxN9XeuXtZqe+fwXGjnD62XHUwMDFhhOFh/Fx1MDAxMCZcInVcInyTtK9cdTAwMTO3o2v/NPDiq/6YZdpHfatcdTAwMWR1a1dNv2NfXHUwMDFkXHUwMDA2rVHLrVx1MDAwNPGDbSNk0Oo2a8k90pZ7/I2BdoRcdTAwMDDChVx1MDAxNppcYiVcdTAwMDa9XHUwMDBmT70gmVagjFx1MDAxMJLonFxcy1GIk4By/Vx1MDAwNr79k0p26Vauayhe01x1MDAxYlxcXHUwMDEzt91mp+W2carS6+76b6yow6g0XHUwMDFhXHUwMDE4KC1oOlx1MDAwMld+ULuKreCO4YJcdTAwMTBNtdHEgKAslcZP5lx1MDAwNFx1MDAwMG+hXHUwMDAwIJ0yK0Nrw0t04690JtqoVVx1MDAxYvYrzW5cdTAwMThmh7PpPVxyZ1+HUi2iTy2/0pe0169mtC99QrfluY+KXHUwMDAyilx1MDAxYcaENErxdI7CoHmdf3xcdTAwMThVrl/QrU7stuOloOlcdTAwMDXNWv4rftNLezJcIj9BXCJ5xYWLJvFcdTAwMWH1XHUwMDEzsXxG9nf26M36ffnkcDBcdTAwMDV2OKJKt5OMsJDSXGJcdTAwMWNClFWgPpjMRTW3Zd9maFx1MDAxMEK3XHUwMDEzL0eNRlx1MDAxMOP77kdBM85cdTAwMGKZvMCiheCV71x1MDAwZVxyOr5Cti+P1Za9Y1xubftJf/qeanPyy+Dnv35/8eqRWpZ8e0i/0tt9y/779O6Ts4zWLN86IFx1MDAxOU2pxkFPNWNcdTAwMWPJ7HTF1VWlpj1xtlx1MDAwNqVcdTAwMTapuXF0XWyS4Uw6kjBGgEowwkA6XHUwMDFj9lx1MDAwNpwoXHUwMDA3J8PqXHUwMDFlKKZUTq4pklxmTr5cdTAwMTGEcUqoMJSzVI5cdTAwMDHLIFxcXHUwMDFkTihHTiTGMJLlvCeWoVxcUoIo+f9kmec3+0rgXHUwMDFmOfv2U1x1MDAxYZ74N8JcdTAwMWZcdTAwMDfbf1x0/UaNdDFcdTAwMDC0IYZoXHUwMDE4XHUwMDEw7Vj4/9jejs/i6kHAqsenXnm3vLlaOy1cdTAwMWH8wVx1MDAxMYooI605NlxcXHUwMDFikULlkVx1MDAwZlx1MDAxMPCAM0GUlEJSeO51ICE6wihOXHUwMDA14UriZPGZMVx1MDAwMnFcdTAwMThhlFx1MDAxOVx1MDAxNJWApX+ePmtAXHSUOlx1MDAwMFx1MDAwMiUxXHUwMDEyuOFcXOZcdTAwMTmBK3Q6uFwi6fDMXHRhOoTwrG+qbPDKzNvP0JxPiVxmXHUwMDEwLSTfPPBcdTAwMDXQfSVcdTAwMWMg49iOY4P106utanl9Izg+P/1cdTAwMTmd17vx3erZXHUwMDE3ZFx1MDAwM8k4XHUwMDEygdCotFx1MDAxOVcoIVx1MDAwM0mtc2AokZJcdTAwMTmRcVx1MDAxZIrJXHUwMDA1Ulx1MDAxOHRcdTAwMWbRP5hzwZxcdTAwMGLGcFx1MDAwMUiVb+5zXHUwMDAxPokpo/nkVHCzXHUwMDE13O33zM5cdTAwMDVOclA+OqibeqtwyYexVKBcdTAwMWT0XHRQWdEtosB1XG6vJFx1MDAxZKG0wzAw48YoXHRKXGKRXHUwMDEztWhkgO6dXHUwMDA2XHUwMDFiZ6b+XbHYIJ3rOVx1MDAxYlxmLvgkNqCM55v7bGBcdTAwMDRHKeRcdTAwMWLYgO5Whaxf10snYeBfqqBcdTAwMTfsnS5+QTYwgN1AQVJcdTAwMDWpKFx0XHUwMDE5XGLpgDQgXHUwMDAwnW/NjcxcdFo0LqBAlVwiktKiRlx0cy544epP4lx1MDAwMkZkvnlcdTAwMTAlUM4kSDI5XHUwMDE3/LjfvihvrFxcnp5t9k46u/u7LS9sfzkuUFx1MDAwZUVcdTAwMDBxhVx1MDAwMDLAUoOacFx1MDAwMVx1MDAxM1x1MDAwZcfvc2mEZiZjblx1MDAwYspcdTAwMDWE2y7B51xcMOeCsVFcdTAwMDKMzlx1MDAxZlx1MDAxMqapZlx1MDAxYSZfPpBQ2YLmNVx1MDAwYjCwXj7vXHUwMDFlXHUwMDFlXFxcXMTVopFcdTAwMDFzgIMwVFxuJrRR2Vx1MDAwNYOEXGYkdVx1MDAxMOxM2US8JiylioRcZlxiRlx0OChaao6MMrs1y+lwXHUwMDAxM9pcdTAwMTBcdTAwMTB8XHUwMDFlXCLMqWAsXHUwMDE1sJFuXHUwMDAxKNR2XHUwMDAxUkxOXHUwMDA1S7Ttdkun1TJbWzXRwdKev4Fz8sWoQEtcdTAwMDc9XHUwMDA26zZgXHUwMDFjYFx1MDAxOOQyXHUwMDA2ROFUSSGUIcIwVXTHXHUwMDAwXGLFVqZEUddcdTAwMTbnbPDC1Z+WPlx1MDAxY5kw0CiHkfpcckHC/kptveeH64tnOno431ndM721wq0rjiFcdTAwMDNcdTAwMDHEXsCEXHUwMDAy5EKqad4xkFx1MDAwZaowU0RTQYu+qIh0JrhC0KXvOKeCOVx1MDAxNYygXHUwMDAyMzpGUJxcdTAwMTCtiZy8jnFx92eduTQ6lIt3cpdyr77hul+NXHUwMDBiXHUwMDE4c3D8teKaSlx1MDAwZTRX2IgxXHUwMDAyMFx1MDAwNVx1MDAwNFCjQUDRk4dANWCYx8WcXGbmZDB2IYGOLDFgOGFcdTAwMTI95cnrjUrBqqz4S1x1MDAxN5f7XHUwMDBm/pG3XHUwMDAxXHUwMDA3P0vb/lfjXHUwMDAyIVx1MDAxZC1cdOGUKqJcdTAwMTikXGLsc1x1MDAwMWFGUlx1MDAxYkIoQcXsXG5cdTAwMTCnRVx1MDAwNpLhXHUwMDA1hs3JYE5cdTAwMDZjySCTY85cdTAwMDdcdJpzonSm5n9cdTAwMWNcdTAwMTnUfnZcdTAwMWFlX/84Pa521eZcdTAwMWQ56VXvvlx1MDAxYVx1MDAxOTDOXHUwMDFjwlx1MDAwNWfUWMcgv5JAjCMpXHUwMDEwXHUwMDAxXHUwMDA2KUFk12GKSlx1MDAwNppcdTAwMDPRZs5cdTAwMDVzLlx1MDAxOMtcdTAwMDXS5Jv7XFzAOVVKXHUwMDExMbljsNlbqzW99U26Xz2vt41/eX9Uu/pqXFwgJVx1MDAwNlx0XHUwMDFjXVx1MDAwM2ZcdTAwMWRcdTAwMDOarlx1MDAxNfS5QFAmXHUwMDE0Y3Z7XHUwMDAyL3rpIdiKaSPE3C+Yc8H4XG6DV5ZcdTAwMTKwk2BUrCZfSrgrnbin3sZccvdO731vrdo64/qrZVxmmDaO3f3F7Fx1MDAwNjhB9fNNSlxmiIODYjgzwqZWofC1h4Lh21x1MDAxMjL3XGbmbDCWXHI4XHUwMDFmuUPRLjNcdTAwMTBcZovN5K5Bb7lcdTAwMTPeXHUwMDFlnS79IIeXsV59oHHt4OGLsVx1MDAwMVx1MDAwN+oojFx1MDAxNYiWXHUwMDAytNZiuMiA2CDCZlx1MDAxN1x1MDAwNbC8pEVjXHUwMDAzXG6gwZBsXHUwMDFldM5cdTAwMDb/52xcdTAwMTD79/FLbCBHp1xmKOFcdTAwMDRcdEGzyV1cdTAwMDN6wHaX9paq3ml546Esz242j5utopFBbr+y0Fx1MDAwZeVaU4GG3lxik9uGQDlxkFx1MDAxMG0+noEmcnYpXHUwMDAy4zBljDZcdTAwMTJcdTAwMWZJkYzS+CRFfsZcdTAwMGbpQ13aXCKCKZRcdTAwMTY+63hcdTAwMGKiXHUwMDE16mVm4/RcdTAwMWJcdTAwMTBdjZrxYdB71LVnrWtuI1xiXHUwMDFmns1posB/2kl51rRcdTAwMThcdTAwMDa1ZmLu/OpzXHUwMDA1j4OKXHUwMDFiXHUwMDBluuMoo4dcdTAwMTV8hIvmsT08JFE7qFx1MDAwNU03PFx1MDAxYX6cNajrg63jTmYyLt2On5hbu1x1MDAwYuSdMFx1MDAxY+2hM/REXHRF0zQxXGZfP1x1MDAwNKKQMFx1MDAxNFx1MDAwNtBG88R0aYzPc9E5MEdRXGbaQUoqs0WS00Yh4MRcIlx0m1x1MDAwNIKZbOkrXHUwMDE4XHUwMDA0LZEkUcQpON+vo3DA+alVXHUwMDFlzPnr59E8U8LHjfeDnl99XHUwMDAzMlx1MDAwNuMmi4SZYvz+YzF+/zFcdTAwMThnWuRbU4xcdTAwMWJcdTAwMTCSsTdcdTAwMWNcckIqnVuyerZ3tqR0SL3osrVzWvSjQTizxzJcdTAwMTCuODBuRK58XHUwMDBmjCOY0jaW1Vx1MDAxNMPu2Vx1MDAxNe1cdTAwMDB3XHUwMDA0mKRcdTAwMTaXYfyvJ8Q5kWZa6/L/zNp+XHUwMDFjXHUwMDEy9z5cdTAwMTaJe1x1MDAxZoREMXLRXHUwMDFjbHk2WiE5eVx1MDAwNNzsnPV6UGrfhDu9XHJZuT2XMdxcdTAwMTVcdTAwMWOJXHUwMDEyw1xyilZWXHUwMDFibkCbXHUwMDFjXHUwMDEyXHUwMDE5cTDMQFx1MDAwM0jRuUSEzC79JVx1MDAxY45ANFx1MDAxYcNcZox5WDZkfVx1MDAxNYlcdTAwMTRcdTAwMTmEimlcdTAwMDS4/1xiiUCy+jpTJMLHXCJcdTAwMTE+yiaOzkVRqjl6VnzyWrZwcetgsbHVa+3cXFz9XFwrL/e2gtXbgiNcdTAwMTGUQ+3WcU2lVqj/ufDTlryDYkYwgio/u/0t71x1MDAwM6JcdTAwMDLC7Fx1MDAxOV9TqGCf4/BRdz5cdTAwMDeHoEZXjuBcYlx1MDAxYsNg8vLycu9401x1MDAwZstxu7FTKrWrZbO2XrkpOFxmiXLQXHUwMDEy2nVhJbXOXHUwMDE1jVx04WBIqlxiclx1MDAxMVx1MDAwNaZmeDImdbhIXHUwMDBlvDCSonsqXzhcdTAwMWFzXHUwMDE4hfaMQ0XQnf1sXHUwMDE0vuu8mXehsEQ/XHUwMDE2htnnzVx1MDAxNIdyJFx1MDAwZTEuXHUwMDAygtHR5I7pqqmvKH+7sntcdTAwMTeV2sc3O1x1MDAxNych71x1MDAxNVx1MDAxZIfcYWiG0NpRXHUwMDFiJeZcdTAwMTZiXHUwMDE4OHhcdTAwMDVwTlxi4Vx1MDAwMmZ4WFx1MDAxYzBHWkFQXHUwMDA2ou1usslcdTAwMWNTiVx1MDAwMaJRn1x1MDAxZlwiwruWWN5cdTAwMDfFXHUwMDBmtoilXHUwMDBmMolmdLZcdTAwMDZcZrWeXHUwMDBmnTxbXHUwMDEz1Dc2L4+vd7ZKiyvb4Vx1MDAxZF0vm3rhaiZyUNTEXHUwMDAxu1x1MDAxNpqsXHUwMDA3XHUwMDEzncvIYowohULLgyrHmJ5psubNXHUwMDE5WamSjSDk0y3ix8Hwg1xy4pTtYbWNM9c/UL4vaX9tZPTSXGJXiopnp4OPXHUwMDAz4l5F1r31o/Bk48Rb6Vx1MDAwNeH1cnmj8CuUXHUwMDFjfVNji5WIIMBztUpcbodcdTAwMWNjZa6YkFx1MDAwMGSWxVx0aHXTV8ic1f6svY9BXGZcZi1JTuOsg3djMKk2YFlNnVx1MDAxNINTXtvPjlDakn7vW+77k9QtXHUwMDA0jW6Ir7vfxkHqtq3exO1u5lxyntpcdTAwMWbHaFx1MDAwNuhcdTAwMTNcXFx1MDAwM1x1MDAxM/Rccntccn+UunfR/crFXHUwMDFlbC9fnPOtXHUwMDBiaC0vXHUwMDE1XHUwMDFjfOhcYjLBrFx1MDAxMcTQMHO6c3/JXHUwMDAyI0eqMfiiVNBZbiZ6XHUwMDEz9myUyvhUNlxuzLFXROxRtFx1MDAwM9TgXHUwMDFjvyU5eklWu+KB7u+fX2mv49+tXFxcdTAwMTTeXHUwMDA1lVx1MDAwZUEnylx1MDAxZVx1MDAxMoa+psznZVx1MDAxMH6GXHUwMDEzKpjWynqhRcFcdTAwMWYlTFx1MDAxYnSazWfmRef4m1xif6PKZFx1MDAxOVx1MDAxZHngXHUwMDA2oFx1MDAxZlx1MDAwNoq/5T/yqFc4rG93vfO18j3v3Lc651x1MDAwN92VgoNPMEdcdTAwMGKjQFx1MDAxMtBcdTAwMDZkblO9XCKO0kJLQ+xB5uK1NUK8R4W+XHUwMDFmeyhcdTAwMDex+96AcWnZQL9QXHUwMDEzi6Gew6S0XHUwMDE1i2iItVx1MDAxZS6KXHUwMDE1jFx1MDAwMJHFPYXvXUj9XHUwMDFmr4ktMXBcdTAwMTiz51nYojDBaHpcYnTSjfxv1yaM4lpcdTAwMTlcdTAwMDM49WPvOFqZXHUwMDFl7zikR8M89S464WJ0XHUwMDE0i4ZcdTAwMWNtXHUwMDFjf1x1MDAwM52sopxsqVRcdI7rR72fq5f1i721g6LTXHR1KFHA7GpcdTAwMWTl+a240jhCSGlP0zfaJndH0olPXHUwMDE43uT9dMJtPklpYkv27Dm9L2SU8lowlGDCYJtyyVx1MDAwYvu/XHUwMDAyzclk+GoqXHUwMDFkXHUwMDAwSY3k2ppuk3qL9jPEJWzc/Ubq0ePt8io0ike+PT1gwW21XHUwMDBlY5zLgU6gTlx1MDAwNd5TXHUwMDFlMFx1MDAxZJaF28C/W1x1MDAxYdb536rJx5Z1JopjSSDxf/7+9e3Xf1x1MDAwMV6xhOwifQ== yxO11-2-12

    x(0.5;+)

    Funkcijos reikšmės mažėja, kai

    x(;0.5)

  2. Funkcijos reikšmės didėja, kai

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daU/jSFx1MDAxM/4+v2LEfl28XV19rvTqXHUwMDE1R7jvm3m1QiZxiCGJQ+Jwrea/b7WB2Fx0eFx1MDAxMthcdTAwMDTMq3g0zNDddp/PU1Xd5fLf375/n4nvW8HMn99ngruyX1x1MDAwZitt/3bmd5d+XHUwMDEztDth1KQsnvzeibrtclKyXHUwMDE2x63On3/80fDbV0HcqvvlwLtcdDtdv96Ju5Uw8spR448wXHUwMDBlXHUwMDFhnf+6n1t+I/hPK2pU4raXVjJcdTAwMWJUwjhqP9ZcdTAwMTXUg0bQjDv09P/R79+//538zLTOb7ejx4YlyWnjQDBcdTAwMThM3oqaSUvBSMssXHUwMDE4pXslws5cIlVcdTAwMTZcdTAwMDdcdTAwMTXKrlKDgzTHJc2E0X7I7paOf0Tlu0NcXO7udvdcdTAwMWVcdTAwMTbSeqthvb5cdTAwMWbf15M2dVwi6kqa14nb0VVwXHUwMDFjVuLa86Bl0vPuakfdi1oz6Li+p1x1MDAxZIlafjmM711cdTAwMWFjvVS/eZE8I025czUp7VEnpUTNlVx1MDAxMlr1ct39XFxcdTAwMWLPXGLUWlxiJlx1MDAwMS3gQMNcdTAwMTaiOk1cdTAwMDM17DdcYtyftGnnfvnqgtrXrPTKxG2/2Wn5bZqstNztc5cleFJxK6Q1qFx1MDAwNVx1MDAxONMrUlx1MDAwYsKLWuya7okkXHUwMDBmXHUwMDAxOUPFbNqaIJlcdTAwMTRA6oOQkMlxbWitVpLV8Vc6XHUwMDE1bVpXq+6WZrdez45ns/I0ns+rKF1H/CnlZ9pJV76UWX9pXHLdVsV/XFwpoLlFRIVcdTAwMDZkOrz1sHk1WH09Kl+9srg6sd+O58NmJWxeXGbeXHUwMDEyNCtpTqbJT6BIujjTuWhdnON8fa47d35+vNKZW9k6jXpT4IYjKneTNeRxxThjnCMyLY3NlLnwW1RCeqDoYkojXHUwMDAzK7V5MSZ1v1x1MDAxMy9EjUZcdTAwMThT93eisFx1MDAxOVx1MDAwZrY56c+cw2Qt8F/MXHUwMDAx9SibN1xi3pZ7Yop1d6X/+56u7uSX3v//+v3V0vmLzl2zL9Zb+rxv2X+fOj8671x1MDAxMKZyaUdY4FqhXHUwMDE4nXZs2V8v4/5Cu95eXHUwMDBmj1x1MDAwZs4q16WGKDbtXHUwMDEwXHUwMDFlPMKqQkt9XHUwMDE1iqVgd/ejtVx1MDAxZVrkXHUwMDA2iX45rTQxMdphnlx1MDAwMZDImEatLFOYjkGPdjhcdTAwMTdcdTAwMWVcdTAwMThcdTAwMTBcdTAwMWNcdTAwMTkxJJV8QTuglUlAXlDaSdfSJGin/2FfXGL++ZPvrtlcdTAwMTfz/kb401hcdTAwMDevalx1MDAxZIznwt+AJVRInVxusGHol9VjXHUwMDE1ra7c7lx1MDAxZJysb1/qbmu3efZQNPRcdTAwMTPN0lx1MDAwMFpcdTAwMWFhpa0wNrNcIlx1MDAxZulAeCRSlNFKSak0XHUwMDFiUEOEICa2XHUwMDFhOSAxNehJ8lx1MDAwMTLkREDKyTchmUjrylx1MDAxMIJH60aTQFBE10KkrX0mXHUwMDA0LVxm9YTptJtTQlx1MDAxOFx1MDAwZiH05Y2ZXHJyp95dLyZ9bGwgc21cdTAwMTC0THMp7OhsXHUwMDEwL5Wj64dyRf24ODp/OG7uXHUwMDFmrN1ffzk2QM9YUkORUJRcdTAwMTX+XHRcdTAwMTdw5mkhOddaOi2V64GGXHUwMDE2jVx1MDAwYpxaaSFcdTAwMGK5YlFBqnpNqaBX4LOoQMtcXLvAXHUwMDFhzYkq3mBcdTAwMTdEZ82VteihXHUwMDAxTXVcdTAwMWRcdTAwMWY9sOikfX365biAkymgXHUwMDFkXHUwMDA3kmVKulFcdTAwMWZcdTAwMTmA1Z5cdTAwMDJtmNGCLFx0k7EjiklcdTAwMDYgmVx1MDAwNUW9KaqlMGWDV0p/XHUwMDEyXHUwMDFigGWDyT024Fx1MDAwNFx1MDAxOUKEXHUwMDFjXTNcYipLzXZcdTAwMTTYXHUwMDA1W+kslrZF53BpK/pybCA8QpBVgthQXHUwMDE4PrBtIK1nJWc0XHKUl7EhislcdTAwMDXSMGqq1VMqmFLBMCrgYFx1MDAwNpN7O1x1MDAwNtpcIiiEVHNcdTAwMTjGXHUwMDA0XHUwMDA3dn3p6Fx1MDAwNGd39/nK9kX75nRtdq3+XHUwMDA1mYD+clx1MDAxMvnMcFKO+plcdTAwMDCVx0mZokcoIaXIqFXF5Fx1MDAwMuqAMcAtTK2EKVx1MDAxOVxmJVx1MDAwM5NrJVx1MDAxODI2XHUwMDE5oVwilSnDyKDZXm/Ut+5Xltia7tRWZjfv/Z3LL0dcdTAwMDbSXHUwMDAzrax227lcXNNw97NcdTAwMDG43UVcdTAwMTDSXHUwMDE4d7Rlim4kXGKFXHUwMDEyXHJcdTAwMTHXlFx1MDAwYqZcXDCEXHUwMDBiMFx1MDAwM4VcdTAwMDEusIa7g3s++obBXHUwMDFll6dRZ33TwMFx8NCar2yq1e0vx1x1MDAwNehcdENGglx1MDAwMO7cN/pcdTAwMTVcdTAwMDNaxFx1MDAxZZL1LVx1MDAwNVx1MDAxM0prXHUwMDBlXHUwMDAzXHItXHUwMDFjXHUwMDE1uP5xLKpWkFqfUyboXHUwMDE1+KzdXHUwMDAylXuoyFx1MDAwMSxHp16OTFx1MDAwNZf+7HxjZ3F39fRq9yw62Fk8PD8+LFx1MDAxYVx1MDAxNaBcdTAwMDeCXHUwMDE2IVdcdTAwMTKlsTrrnpRQgTRcdTAwMWWNMqFcXJJ+zUxmgFx1MDAxMi5QZCSQsmDROsVbXHUwMDBmtrRoXFxAPWXSXHUwMDAw2ilcdTAwMWJM2WAoXHUwMDFimFxcvYCaQVx1MDAxMkWgXHUwMDFh3Ug4fbg1NXnT4nFny1QsXHUwMDFjRTu3ja/GXHUwMDA2hnuSXHUwMDBiypBAoDfpY1x1MDAxZsmATFxiMsKVsFYg6KIrXHUwMDA2nDm3XHUwMDE1Mlx1MDAxM9KGTslgSlx1MDAwNnm7h7lcdTAwMWJcdTAwMDaSNGFN+vDou4exf1VqsaX9+Vr3urPC57GysVs4I2FcYlx1MDAxN1xipjy0RjPB0ErMOP09coHwnJOrdvdcdTAwMTFVXHUwMDE0XjHgoFxm2TOFPVSccsErpT+LXHUwMDBi8l2PXHUwMDE1kk3M3qJcdTAwMTec2/3gis02qtc7XHJ1vzW3c1x1MDAxY67cfTUu4NbTzHBcdTAwMGXO1SrrW/hsJDBuXHUwMDA1XHUwMDE1UExi8Vx1MDAxZFxmSDEgi4bBlFx1MDAwYqZcXDCUXHUwMDBidK7nIVVjLX+De8HWnTxuPzT43d397Vx1MDAxYVx1MDAxY5Xi2vJW8NWoQFJcdTAwMDHQaCwoq1Fltk6fbVx1MDAwNEvo4lYzXHUwMDA1ZCRcdTAwMTTd9ZDMXHUwMDE41Iyxglx1MDAxZSSodIKmXFzQK/BZXHUwMDA3XHSY72GAoMhyXHUwMDE2o+tcdTAwMDXrW6XzK9OUfnN5Z+lk/sRfXHRcdTAwMWa+nI2gpXM0VtRxTZI/i/ZnxUCgs8K5lkZIU3QyQDBCcVPUs4QpXHUwMDE5vFb6s8jgXHUwMDE3u4dokPRgjm/wN7q5XVxcL5naylwi3zs9fuDl3Y1V/sXYgFx1MDAxYumhYGC4dGzwYsfAvUUtuFx1MDAwNCZcdTAwMTCFxsL7XHUwMDFiaYNkXHRaU9BcdTAwMTelp2zwWulPYlx1MDAwM5G/fUhsYKVRiKOfLFbU+tnF4vL1/fnd3NLhqjhccqq3nS/GXHUwMDA2yKyHXHUwMDAwwp1cdTAwMWOiXHUwMDE1fHDPwHhgpNt2lYIjXHUwMDE0XTOgO0FcdTAwMThcdTAwMDNFPUuYksFrpSdLXHUwMDA2cXBcdTAwMTe/Rlx1MDAwNjo/YFxuZ2Rtaq0wXWDDuGBxe0XtbYvD5e6s8mulm6p/+GOpaFxcMFx1MDAxMLlAoidoVVrNSEtCo1JuvH9cdTAwMTSsnmHEXHUwMDFkUoGWpFx1MDAxMkxcZvvEQNqSXHUwMDAwJ1x1MDAwM4W0MYGvxEvhXHUwMDE5NeTpZURGrVx1MDAxNnxcZkDvy3hcdTAwMDOipVx1MDAwNq4zpuRcdTAwMWJcdTAwMTBdjZrxfvjwuNb6Upf8Rli/75vTZFx1MDAwMf/pJqUvaa5cdTAwMWVeNFx1MDAxM2lcdTAwMTdU+1x1MDAxN3hcdTAwMWOW/XovO45aaW6ZqvBJOrZfXHUwMDBlSdRcdTAwMGUvwqZfP3hZnZOnK89TXHUwMDAxXmYyzv1OkEhbXHUwMDE3Zeh9MFx1MDAwND6Ymr5cdTAwMWFcdTAwMDRuv/otMPx1fJhCwlBy4SnhZFx1MDAwM9kjXCJcdTAwMTPvJ1x1MDAxMcBcdTAwMDY8xaRcdTAwMDAnv93bg1x1MDAxM1x1MDAwMyHQvFx1MDAxMlx1MDAwN9tcdTAwMDSBmXp+XHUwMDAxQYtcdTAwMWHIfuJj0Lx/jcFcdTAwMWXjpzK5N+O/jlTVt1x1MDAwNFx1MDAxZlx1MDAwM3D0cn4+i48hXGJcdTAwMTdZXHUwMDFjTFx1MDAxNOF3XHUwMDFmi/C7j0G4wFxcXHUwMDEz3DjfV+AmXHUwMDFk4mFcdTAwMDAvPVx1MDAwNPt6W+ydb90szqqz0821rdWjYlx1MDAwM5xw6znLwnnjcJndw35cZkym3e5cdTAwMWJwMmKV4iYzXHUwMDE2Y4e48CQ4QUvqjdJgRkO5XHUwMDBilsaEkWM4hvt3kvbjcLj9sTjc/iBcdTAwMWOy3PNyN74oIOM4OvSQ7L6zuXRZxdqmPvar1fjgsmTXXHUwMDBijkOZIM1YLlx1MDAxMp/7XHUwMDAxtznLPFx1MDAwNcaQzuGkrZlcXHxA6Vx0QqEliW/I2nGcMFxuXGallsnLNJ+u8H5cdTAwMWNcZuFjYVxiXHUwMDFmJVx1MDAwZfP3oMhcdTAwMTIjW0vJ0XFY3mvfdlx1MDAwZjbh9rxZPWlcdTAwMWSt1oLFy2rBcVxiZHeScY1cdTAwMTKU1qBcdTAwMDfkoVx1MDAxMFx1MDAxZTCySUlcdTAwMWLlXHUwMDEyJujL/j5cdTAwMWNyZkC4WEafLlx1MDAwZmV2uU6B+GYgXHUwMDAyyz9cdTAwMWFcIt1IkJaUcZJcdTAwMWHqQFZloTrZ35jvbJ5t7qo1tt9cblx1MDAxNotcckQhtGeJ0J0nuVx1MDAxMdpcdTAwMGW8VGKMXHUwMDA3UlxiTvorKsv5XHUwMDA0XHUwMDE1U+6hJCRKolx1MDAwNKlGw6HmILSEcVx1MDAxY/t8XHUwMDE1XHUwMDE4yo+FofxcdTAwMThcdTAwMThmXGaewZhx3I0x46ODUJfv15ql871uy1bF7a5Zv7zs/Cg2XGK51Z42gCCps0aw/uNYXHUwMDE3/lx1MDAwMVx1MDAwMIV1XHUwMDA1jJpcXCBcdTAwMThcdTAwMGWecVvw0ji3y1FFoZBcXKGZ/Fx1MDAwNlBxMDiLXHUwMDFmXHUwMDBiwmx9k1x1MDAxNYZqMLW3SSOl86Hko2/SdIL1m9LG9fGP7sJ2ffGu3e10ddHDODPtXHUwMDE5LoxcdTAwMGJTaYXSOOAjxZknLFx1MDAxNeBaMlx1MDAxYVx1MDAwZjY581x1MDAxMMSbN2KBSUFAKFx1MDAwMFx1MDAxMN9cdTAwMTVcdTAwMTX+XUDkXHUwMDFmi0M+Xlx1MDAxOFbbNHPP35h4bumzQMw/XHUwMDEwQcaYXHUwMDE2XHUwMDA2RvdRXGL96LJe6Yo7tnG9vLm6e1vrhLViQ1Ew4blI6ZZcdTAwMWKmSfO0XHUwMDAzIZRd5DRUoFxiky5qwiR9XHUwMDEyaLjTPmQ+3tCX3vM9oFRq3DiCnbxcdTAwMTeEj05cdTAwMDbvOpJcdTAwMWPzkX52hNKU9L5vXHUwMDAz94/irlx1MDAxMDa6deruTptcdTAwMDap23ZcdTAwMGInbnczPXhKf1x1MDAxY6N3SsH8OIVGW8nJ7Fx1MDAxZn1v5nDrrFx1MDAxNM49bEjd9Fx1MDAwZkpr5aY0W1B07HEy+sBtifC++ELPXHUwMDE2IUkk4zwxXHUwMDE4WD1BdyBAT4F1dqkktdSM6Fx1MDAxM0AmoXtcctLyT4TgR8vBXHUwMDBm1kfHrI7meerJfHVUXHUwMDAwT77fM7pcZmxcdTAwMWP5vlFcdTAwMGKV9ZvqRq1bvVxc8LFxVnRcdTAwMWNcbk+QlCMoXCL9sYN7M4ie1KSlXCJDScORXHUwMDBmxIC5+99cdTAwMGZEg6T3cpRcdTAwMTKN5jLz5kBcdTAwMGaGIIBcZliUXHUwMDE2pFLU5lfUU52EfFx1MDAxZctcdTAwMTHiRLzy3iUw/8+98mbReMlcdTAwMTBcdTAwMTngNPtcZtNcdTAwMGZquctcdTAwMDWzJqZDrskoYlx1MDAwNNehz8tbSe56uYZealxu7+JcdTAwMTFcdTAwMTJUuVx1MDAwMp00TNCErDeEXHUwMDEyKl1e7F5d3OBu6aq+JFx1MDAxN093cW22+ERC48lBakGCXVx1MDAwZX5cdTAwMTaNiMRcdTAwMDJw0rKN4mh+9VxyXHUwMDAyXHUwMDEy+GX+L5iEecp5XHUwMDE5csOJsrKv+GeohHlcYlx1MDAwMiUmcjzzvbrnTV8rtFx1MDAxNuMwc6c88kE8QjRipJDckHlkXHUwMDA1ir7vknHtScpcdTAwMTDEXCJoNemVetjjcleRu16snzeyyK+scpW7TU36nna2wVx1MDAxYl4xrlx1MDAxZJhcdTAwMWat+e2N5ftcdTAwMWaHZnU+lkt3tlRsXCJJQpBZ1Myg1u5rk1x1MDAwM29cbmjtWaaNsuA++qQn+mGjt5jlRmqpjVx1MDAxY0c44qlVPlmr/J3wk+7FcFx1MDAwM29cYvzTXTtU7Kxh6stnh9HWSVx1MDAxOWMsXHUwMDE37nNcIlx1MDAwM3JcXJLGL2hcdTAwMWRbxVx1MDAxNSg9+C2hosKPhLVi4/me4Fx1MDAxNH5jgt+3pypm/FZrP6abe/pcdTAwMTBNTlh52oJIq5m5XHSD2/mXy+S3anI5j+pcdTAwMDTSXHUwMDBlOElFf//89vNcdTAwMWbiY2FcdTAwMTAifQ== yxO115-323

    $x \in (-\infty; 3)#

    Funkcijos reikšmės mažėja, kai

    x(3;+)

  3. Funkcijos reikšmės didėja, kai

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1d+1Piylx1MDAxMv59/4otz6+H7PS851TdurU+UFdcdTAwMDVcdTAwMTRcdTAwMWborVNcdTAwMTaPiFEgXHUwMDE4go/d2v/99kQlIYjAXnDDuWBcdTAwMTW7zEySefT3TfdMT+fHp8+f18Knrrv21+c197FebXmNoPqw9qdNv3eDnud3MItGv3t+P6hHJa/DsNv768uXdjW4dcNuq1p3nXuv16+2emG/4flO3W9/8UK33fu3/S5U2+6/un67XHUwMDExXHUwMDA2TvyQnNvwQj94fpbbcttuJ+zh3f+Dvz9//lx1MDAxMX0naldcclx1MDAwMv+5YlFyXFw54NSkk1x1MDAwYn4nqimAJsowzuNcdTAwMTJeb1x1MDAxM1x1MDAxZlx1MDAxNrpccsy+wlxuu3GOTVpcdTAwMGK+N05cdTAwMGK7fXpcdTAwMTKo2mX+rPF0tHe2XHUwMDEzP/fKa7XK4VMrqlPPx6bEeb0w8G/dM69cdTAwMTFev3ZaXCJ93FWB329ed9yebTtcZlL9brXuhU82jZBBarXTjO5cdTAwMTGnPOIvXHUwMDA24EjBKFx1MDAxN0ZcdTAwMTNNKVx1MDAxNYNse1x1MDAwM6aFXHUwMDAzwlx1MDAxMMNcdTAwMTTTjIt0xTb8XHUwMDE2XHUwMDBlXHUwMDAzVuxcdTAwMGZw7V9cXLVatX7bxPp1XHUwMDFhgzJhUO30utVcdTAwMDBcdTAwMDcrLvfw2mRCXHUwMDFk7HKqqWBKaCb0oMi16zWvw6Gq99xoXHUwMDEwJJWEa2rUIMM+srvbiITh77jnXHUwMDAzXHUwMDE0o117RaffaiW7r9N46b5XoYnFhr6k/IzbZMtvJcQtfkK/26g+XHUwMDBiXHUwMDA2KGpcdTAwMThjUlx1MDAxMaXiMWl5ndv041t+/fZcclnqhdUgXFz3Olxyr9NcdTAwMWOu2IukR1xyWfP37i+L9/XDJ3lwWt12N9TjzeH5oF9to/1639YyXHUwMDA3juaSSFx0WDFjiNQ6UapZ7dpKM4dcdTAwMGLMXHUwMDA0qbBPKVNypPFupzG5Um7AdS6A4+NG99suIaX7XHUwMDA3v2Heqlx1MDAxNDiEUKmF0Fx1MDAxYUfeUGCjdVx1MDAxYalCq9pcdTAwMGI3/HbbXHUwMDBisatLvtdcdNNdXHUwMDFh9d1XXHUwMDBi92u3OjLe2IRkXppcdTAwMTe69o4xjdhP/L/PsfRFP1x1MDAwNv//+883S4+X59Tln5L/vrR1elx1MDAwNjMg0qmvXHUwMDA0hrDWiFx1MDAwZTXo2Yn89e2hVC1cdTAwMWZcdTAwMWX2/Zv1rcou482DU3Wfbf5CXHUwMDAyd1x1MDAxNDFGXCI3XHUwMDAxcCGH6ItcdTAwMGKOss9cdTAwMTGMjINcdTAwMTBcdCmbO3/F1Vx1MDAxYdBcdTAwMTVcdTAwMDLJYYRcdTAwMTJcdTAwMWNcdTAwMDKtXHUwMDExffFIvdBcdTAwMTdwxFx1MDAxYuGExFPMP4+/0lxinExcIoWb7fJ6yavtnp5cbn/9pFc+eLjde4tEuFx1MDAwM9IohJeSknFcdTAwMTbPTjGH4PhLSVx1MDAwNFXaaFx1MDAwNFwiLDepXGaVzo3I14ykgmPqvqlcdTAwMTVcdTAwMTHJ0smvpEKJXHUwMDAxrblhsTBPYpWzXHUwMDA381x1MDAxNPb2rs2JqF2Ua0+5zY3iWdZYXHUwMDA1XHUwMDFjgVx1MDAwMm8ko1JcdTAwMTmujYhViohmXHUwMDE4OJThXHUwMDFmx1x1MDAxMpbPh7UkgVxcT1xio1RcdTAwMGJcdJKoVEXnyDI44FhcdTAwMDHkO0bAcEE4f4N37MyDmCBGXHUwMDAyN5zHnPjKO1x1MDAxYSd6bqjIpt4kzWJ5Z/hm84X/UN58sT9+6O1nZNDnRlx1MDAwNonRSGtcdTAwMThcdTAwMTRtXHUwMDA2aURcXGBcdTAwMTJcdTAwMTdcXPk8195dL7vNx8puv/S1W9guXHUwMDFlLSFcdTAwMTdcdTAwMTAhJSeoMlx1MDAwM9BcdTAwMTRcdTAwMTdQ7TBUa0FzRVx1MDAwNVx1MDAxYU5cdTAwMTnnXHUwMDAyXHRcbrTASXRFXHUwMDA1KyqYQFx1MDAwNTDe2ED9QyrUsKZXXHUwMDBi+oW7+9pcdTAwMDXNn63D7sFNs3RB9+/Wl41cbtD6XHUwMDEwklx1MDAwMpIgVUBcdTAwMDRcdTAwMWI2P1x1MDAxOFx1MDAxMVx1MDAwZepcdTAwMDQ4UFxc4jAp4KmqZo1cZoAwjlx1MDAxZiOzaZCs2ODN0r+LXHL4WCtcdTAwMDEkQkFJpaang4J63D1p187qvG1KTaJcbt/z/aWzXHUwMDEykFx1MDAwZZiWglDFlebCXGYvplJcclx1MDAwZddcZi8jWmhcIkyqppljXHUwMDAzNPNcdTAwMTRcdTAwMDWT0GFWbLBigzFsoMaaXHSGUVx1MDAwMzhcdTAwMDNOT1x1MDAwNnVDXHUwMDFlz0vrleLmpfvVy/PH7lG7vGxkwIgjXHUwMDE5XGLKjc2Vw6pcdTAwMDHa3o7WaIdcdTAwMDNROFxcWbdcdTAwMTKAXHUwMDE5JFx1MDAwM8lcdTAwMTNrmCsqWFHBXHUwMDE4KjDjN1VccmFcdTAwMTLtiFx1MDAxOVx1MDAxNINcdTAwMTNyeNiD4KZ9YNhmsL3LzzdcdTAwMGVrS8hcdTAwMDVcXFxizYlcdTAwMDYhcVJcdTAwMWTmXHUwMDAyxlx1MDAxZEC1m0iJV2pQmWdcdTAwMDMjXGbTnK1cdTAwMTSDXHUwMDE1XHUwMDFiTGRcdTAwMDOamPnSioGxqoGW0+9Qsmpxm9zubG58I1x1MDAwZq1eyaVcdTAwMTf0fmvpyFx1MDAwMFx1MDAxY2p3ozRQiohPoChiXHUwMDAzXHUwMDAwx1x1MDAxOM2IxtmWiuxbXHTYTqWBiVx1MDAxNVx1MDAxOazIYFx1MDAxMlx1MDAxOTA6dlx1MDAwNVEwRvDDpne3KuZPvOb+t1x1MDAwN3mpy9tC6u6155WWjlxmqMM4SFx1MDAxMERThHzc+sh/gYIjXHUwMDE1JdxcYvxcIkplfmdcdTAwMTFcdTAwMDRcdTAwMTgkXHUwMDAzXHUwMDFhd8+KXGZWZDCGXGZcdTAwMTJ+e2nNgKOyTDWdXjO4c1x1MDAxYo3rM8PL3Vx1MDAxYrVTv7s5U/X8xdKRXHUwMDAxcSQ3ilx1MDAwMdFKUZX2ZlwixEHNXHUwMDFih0DJoV3XjHJcdTAwMDExQlx1MDAxMFx1MDAwNN5qa3HFXHUwMDA1XHUwMDEzrVx1MDAwNDJ2M0EoylxygVx1MDAxObxcZmTrqHxTO1x1MDAwZrbl+Xk7XznqbkueOS5gaPODMFRcbia0USbhm1x1MDAxOHGBkFx1MDAwZdpOmMe1lKBiXHUwMDA0RjuLijlaS6W5tL5YcnF+2fPhXHUwMDAygbqLMWplI6yoYDJcdTAwMTXQsWqBUlx1MDAxY41mraangs7etc7rrdL3jf2uXHUwMDEwcuvK629mzkaYRFx1MDAwNco4UmM3S67RRpJ6eMGAKepoglx1MDAwM2RcdTAwMWRcZriRJOteXHUwMDA22lCKuOMrXHUwMDFiYUVcdTAwMDZcdTAwMTNtXHUwMDA0RtPJg71cdTAwMDSOWlx1MDAwM+pcdTAwMDYzXHUwMDE4XHT50/YxnG2db9Y2aCVvXHUwMDBlLsr5q8qSsVx1MDAwMVxuqcOlskdcdTAwMDdcdTAwMTBHVKVcXI6UQLXB7tYhVVKAzCtcdTAwMDacMGWUXu0rrrhgXCJcdTAwMTdIkk6OXHUwMDFkjqxcdTAwMTCBnGH1sN1k69tXonzVON57vKne7PPm6eOycYEwjlbSrpUwKbhMXHUwMDFk3kQuIFRyXHUwMDA1YOxmQ9b1XHUwMDAyiWS+ckV+vtmKXHUwMDBi3udcdTAwMDI+3kigXHUwMDA01UuicMym5lx1MDAwMlxiSs1ypeBfXFxcdTAwMWXvtMJKuXBBc7vLxlx1MDAwNZo62P1cdTAwMWGMYIrxYVx1MDAxN1x1MDAwM0tcdTAwMDVcdTAwMDLRxUFJJqjMvodcdTAwMDGOsJB8dUJpxVx1MDAwNZO5QIw/XHUwMDAzrfCPmVx1MDAxOdyNVNhv3zJ9VtjgXHUwMDE3jZ18Udbd6+KSUVx1MDAwMSdoXCJgR9uz/ERcdID04qFwlFx1MDAxMcqutHBcdTAwMGVLcFxckSumh3Y/V2Twf05cdTAwMDah+1x1MDAxOL5FXHUwMDA2Se0xrVx1MDAxN1BCXGZcdTAwMTA6/eLh+1x1MDAwN9Ezwlx1MDAwNal4XGKcO7ZbwW5cIpq0b1x1MDAxMWjjMMPs8VxmxVx1MDAxOaDJtDDo44OUMdpIylx0ZZy9XHUwMDExzmU0IFx1MDAwMlx1MDAxMpYgks1hl2AoY1x1MDAwNNBcdTAwMDNh+5FcdTAwMTDJqYJgXGZcdOHzUf9Bzs9XyVx1MDAxZEtcdTAwMTfIuThcdTAwMTnFXHUwMDFjOFx1MDAwM11cXPmdsOx9f1Zwh1Lz1bbXelx1MDAxYZKYXGJcdTAwMWR/2TFcdTAwMWZK+trymp1oKnWvhtFcdTAwMTN69WprkFx1MDAxZPrdOLeOj6ji1Fx1MDAxYox2uFx1MDAxZnhNr1NtXHUwMDFkjz7OTtY7r1x1MDAwM1xyTmKoa9WeXHUwMDFiTeVWXHUwMDFjf1x1MDAxMeNjPVxu7ZKg1GSGY4jvR6zJJMZcdTAwMDVcdTAwMTDHwlx1MDAwNE16XHUwMDEwRNBhn6EoZFx1MDAxM6pcdTAwMDao51x1MDAxYqI1LG52XHUwMDA3XHUwMDFiXHUwMDEzXHUwMDAxOSbCd0LFelx1MDAwZuCMXHUwMDBirudxiuDXXHUwMDAx/n6UriFcdPxFgIskXGZcdTAwMTZcbvDHj1x1MDAwNfjjx1x1MDAwMJyr8S7D1iw0iky/zrd5s9/mTXf/xD8tb+y7XHUwMDFilcvSYTPbXHUwMDAw50w6qLZcdTAwMTNcdTAwMDZUXHUwMDE5RsxcdTAwMWJB2aw3IDBcdTAwMTBIdlx1MDAwYpzEXHUwMDAxlVx0sLM4XHUwMDAx1HRBT1x1MDAwN3Isi8aJxO9Fwzw7QCx+LFx1MDAxMItcdTAwMWZcdTAwMDTEd2Zae4zFzOC6v5//Xjw+PPF731x1MDAxZW6IV9vxc8VC5s70pXAoUP6NwFx1MDAxOVx1MDAxNltcdTAwMGIs7ZxLrI1cdTAwMDOSXHUwMDBiw9GalmZx6+vC4VxiQ6NBamODjtApcSi00pLCXHUwMDFj7OZlwSF8LFx1MDAwZeGjJkSeTlx1MDAxZLjEXHUwMDE4sL0spl/sXHUwMDE2jUalUty7lN+OSjv5+lWp8VA8zThcdTAwMTDBOsZcdTAwMTKjKNggpJKmXHUwMDE2tFx1MDAwNDjKhpG04XikXVHIXHUwMDE4XHUwMDEyOVx1MDAxNpVWcfndQJRJcV1cdTAwMDFxZiDSd2JeUCUlonFcdTAwMDbntHxJlv3vXHUwMDA3XHUwMDE1eru3XbuTplu/zZ7PelxuiUQ6xoaSlYTYXHKa+C7Pp9qNQ0ChYSooQ6zKVL3mqJlSXHUwMDA37Vt7ik6gXHUwMDEyPOV8iPU2hFx1MDAxOLJw8zM7MFx1MDAxNFx1MDAxZlx1MDAwYkPxMTCExFwibnqVl1PUyaSeflx1MDAwNahcXClVnzTJ3XVudlxuon4rXG77XHUwMDEyso1CpsDhjGtOrEBpk5pcdTAwMGWNcJCHkI5cYjNcdTAwMTQ4WdxuL6VcdTAwMGWqvyjQYCRFMzHhiP7eKlx1MDAxMGeCKzWPQ2LLgsNcdTAwMWP9WCAmnzdcdTAwMGYkXlx1MDAwNTh0r+H9X6v6gkY5dstcdTAwMDU02Pi8dFx1MDAwNlx1MDAxN81t98Hb87r9x7unwkk5PDzX348us43G6Fxmp/W6QI2QS/yVXG71XCK1o1x1MDAxNHCjldKayEW6YVx1MDAxMULiNsRx84fTX92wXHUwMDA1sVx1MDAwN09/p1L6vH1Kk5I6LVxu57xZmeygOCW+7lPq+mk2Yr12v4XNLVx1MDAwNdhJ/cDKTVx1MDAxOPRcdTAwMTMteEl/7qN30TfO9YGysZ5cdTAwMGZcdTAwMTS5X6E9XHUwMDA006uj1+27y9t6e/f4yFxycpvfgmYgatvZhlx1MDAxZdPcYZShbUhcdTAwMDQlqUiskjo6OjpmhFLsnVVSo6BOf1x1MDAxZHaSOJzYXHUwMDAwV1xuZ2RcdTAwMDEq4cEwgCBQ40hcdTAwMTR1qlx1MDAxOTEguFx1MDAxZbVcdTAwMTGFXHJUXHUwMDBm81BOXHUwMDE34uTwSyj9hzs55KhwiEaLQlx04EzD8EtcdTAwMWVsLqeGXG67ZmEj/yQjtI+54XhZirJHxWiUon6JSUCP9a2mSITUXHUwMDA2NJ5+XHUwMDEyv7lcbq5zNcjvXHUwMDFk7bXUSZueQos1loBJlLa7LjiQXHUwMDFhUlsuXHUwMDEyXHUwMDFjXHUwMDA0XHUwMDAz9oRccv5O3jlW4Vx1MDAxMlx1MDAwNlxm/icyXHUwMDExUtiIsppzpZMxY1x1MDAxM2SiXHUwMDFksFx1MDAwNrj17I5eoJImXHUwMDEzkFx1MDAxNKGrVWYjNK3YZLQ0XHUwMDFhU1x1MDAxNFxyNsQ+RVx1MDAwM1x1MDAxNjhcZnlM5ShzbOxcdTAwMDBJjOGKXHUwMDBiYtSkXHUwMDFijpel6IajYjQjmfyiUcAtncz0XG6J48p1Z3P3/q6/sX2yVSHFq875zkb2+YTYgC5cdTAwMDaxKDhJXHUwMDFm2sSxQctd27dFXGLCiFikR/YsVoHiXG7NePJcdTAwMWJN85VRMJ1RMHZxjI9dXHUwMDFjs87/SFxi01x1MDAwM+/9l4xlXHUwMDEzeKh1XHUwMDAxUfZcdTAwMWRmQiFcdTAwMDBT5yONcFx1MDAxNONcdTAwMDbNIyE0Y2Jx1jhcdTAwMDVcdTAwMDdNj+j9RFx1MDAxY9lVw1RrY9Rqf4rO5Z12WfaRipu38KU3/sFLb4nn/b6lN81cdTAwMTm3evv0WG89XHUwMDFjbLm1eqF0kGt1ToK+73stmXGsM+5Y/3Fq1Vx1MDAxONR2h1x1MDAxN1x1MDAwMFCTclDRXHUwMDAwrYiwb6pZ4Dr4bHMsMCpcdTAwMDGInsfpptUsO6dZ9tPLI9aq3W45xItcdTAwMDemXHUwMDBmXHUwMDBljtd4oZ34MWv3nvuwPionf1xcRVx1MDAxZsuIXHUwMDExoi1wolx1MDAwN/34+ennf1x1MDAwMVx1MDAwMJzKQiJ9 yxO115-2-4

    x(2;+)

    Funkcijos rekšmės mažėja, kai

    x(;2)

  4. Funkcijos reikšmės didėja, kai

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da1PbyFx1MDAxMv2+v1wixX5dtDM90/PYqlu3eDi8XHUwMDFmiYFAbm1RwjZGYGxjy9iwlf9+e1x1MDAwNFiyjLDJ2o6oXHUwMDEySTlhRpZaM31OPzTT+ue3T5+Wwod2bemvT0u1QcVvXHUwMDA01Y7fX/rDtd/XOt2g1aQuiH7vtnqdSnTkVVx1MDAxOLa7f/35563fuamF7YZfqXn3QbfnN7phr1x1MDAxYbS8Suv2zyCs3Xb/6z73/dvaf9qt22rY8eKLLNeqQdjqPF2r1qjd1pphl87+P/r906d/os+EdH6n03pcdTAwMTIsao6F4yhUunm/1Ywk5Vx1MDAxMlx1MDAxOFx1MDAxN1rY+Iigu05cdTAwMTdcdTAwMGJrVeq+JIFrcY9rWvpcXHk8bJ7x/c3z+4OV8lXn88PtiYive1x1MDAxOTRcdTAwMWHl8KFcdTAwMTHJ1G3RrcR93bDTuql9XHUwMDBiquHVy6Al2rO+1Wn16lfNWtfdO1x1MDAxZra22n4lXGJcdTAwMWZcXFx1MDAxYmPDVr9Zj85cdTAwMTG3XGboNyGMp1x1MDAxOFecXHQllFx1MDAxMnbY674vNPVyYTgqI1xyXHUwMDE4plOCrbVcdTAwMWE0XHIk2O+85v7Eol34lZs6ydesXHUwMDBlj1x0O36z2/Y7NFnxcf2XWzbco+E2XGJcdTAwMTasRjk84KpcdTAwMTbUr0InOFx0ajkzXHUwMDEylFx1MDAwNKlQJoSpRXNcIi3dXHUwMDAzWFx1MDAxMVx1MDAwZp+ToL1VjXTj73hcIjqkVVvuXHUwMDFizV6jkVx1MDAxY81m9Xk0X3Qo1lwieG75XHUwMDEx36I7vpTQvvhcbr121X/SXHUwMDEzrkkgITRcdTAwMDdk8eA2guZN+vKNVuXmXHUwMDE11eqGfidcXFxymtWgWVx1MDAxZlx1MDAxNexZ8aNcdTAwMWJZKtdK53a7Uj+SKzv8en9tZVAuV4bD7G66Vek5KZfBXHUwMDAzXHUwMDA0QG0lXHUwMDEzSNIxmTiq7rcjXFx4mrSfo2SEXHUwMDAxwLFbrzWrk0VSa5+hdMiq3ZX71XWsyf7Fmn/3mkgkkVx1MDAwNFx1MDAwMlx1MDAxYVx1MDAwN2W1XHUwMDE2+KpAiExcIvVqzZBpOSZSw++Ga63b2yCkgT9sXHUwMDA1zTA9wNFIrjguuKr5Y7NPt5TsS5NG250x5lx1MDAxOPdcdTAwMTP/71OMquiX4f///uPVo7OUPfrymJrHZ/st+e/zrU/PdlbpdOuQ7FBLS3+NmZrszkpcdTAwMGaDPds4OFx0bveheWavzvZcdTAwMGWOc0522npCSmOkRs6UQFx1MDAxY2E7SVxciFxco+aahl2l5ZpcdTAwMWTXXHRPXG5iKYnApDJcdTAwMTDTwpDruFx1MDAwNc9cdTAwMDBaK6WQmjgtlvSZ6zinY+gkXHRcdTAwMDOWJ7KTalx1MDAxNmSXXHUwMDA2aEbPR4L+ctbkR53j8/5O8NNY1171dDjP9nRcdTAwMTTZeEKPjTV+XHUwMDEy+P1cdTAwMDOs7C6ffjve1taenlusnJ+u51xy/NxDzTT5XHUwMDA0oMjYXHUwMDE5izH9XHJenFx1MDAxYjDWcMWMRiNGXVx1MDAxZomeQFAgOFx1MDAxMk1cdTAwMWIrU5LOjlx1MDAwZZgnXHUwMDE4XHUwMDAx2ZKkjFtJdu5cdTAwMTXvXHUwMDA3wCN7rMk2KC5JPeLZfCFcdTAwMDSw5GNcdTAwMThWXHUwMDEwwsxcdGGkb6Zs8MbUu5+xSZ9cdTAwMTlcdTAwMWIkVGzMXHUwMDE1YIqYR0xcdTAwMWb27O+W4OpUnFxclMrhznejN7t+efdcdTAwMDOSgURB3phcdTAwMDQrLcKoayCAk1tmODdacyW1nF8gNCM2XHUwMDEwkltGXHUwMDFm+YyFXG42ePXoX8VcdTAwMDbKpJtf2EBJTt5cbntcdTAwMDdcdTAwMWI82u1+qXJzvr2BXHUwMDBm/Z1ab4Mt91x1MDAxZj5cdTAwMWNcdTAwMWIoz1wixVx0wmHI6JRvQO6AJ1xyU9ZqZdCiSEmaNzJcdTAwMDBGflx1MDAwMUr6KMigIINJZGAzXHUwMDAzXHUwMDA1I1xiXG7wniSB2lx1MDAwMf/m6Oz2pKXUWV2Lfah9Zlx1MDAxZpBcZohcdTAwMDE4WlxyXHUwMDEywMRcYoy4QEtPXHUwMDBixYlcdTAwMDWMm1x1MDAwN5b3OEFbLlx1MDAxOddcdTAwMDVcdTAwMTdcdTAwMTRcXDCRXHUwMDBiyCvO4lx1MDAwMvKTJYLR0ztcdTAwMDanLdOTg9J6yFx1MDAwZk9vfFx1MDAxY5RcdTAwMWV4q/ThuMBcdTAwMTLaXHJoZ1Kl0qNcXCC59CxIIa0hPkhCL5dMIJEzQ45BXHUwMDExXCJcdTAwMTRMMIlcdOhKWUxAl0JlZdw/iVxigtbGUbDWLVXFzr1cZu6Pyl9ho/7hiMB4TCpB+KFcdTAwMTCJTpDKXHUwMDFlWulcdTAwMDFcdTAwMDeiSKZcdTAwMTQzNu9cdTAwMTFcdTAwMDJcdTAwMTdcXEkg5y7m+4JcdTAwMGJcbi54nVx1MDAwYlx1MDAwMLNcdTAwMWYlXHUwMDEwXFxAi3eQwaFcdTAwMWGs9naOy2eV/srZ7t3ntrjb+p43Mlx1MDAxMFx1MDAxZZfk/4NCgcaSXHUwMDA3XHUwMDFk49mRgWTCQ6BJcE9ccq21JuaKiFxmlPa4sMzFXHUwMDA3UYyQdzKQwqJiySdGXHUwMDA1XHUwMDE5XHUwMDE0ZJBBXHUwMDA2JtMx4FxmhFx1MDAxNFpArIST2GCvL7vrx993V1dVee3+7rLfPYHBR2NcdTAwMDPQXHUwMDFlM1x1MDAxMVxyolx1MDAxNUnb/0RcdTAwMDbKY4prXHUwMDA3MKFofPJOXHUwMDA2JFwiU8ZcdTAwMTb5goJcZibnXHUwMDBiWGa+gEtN2m6SSjiJXGaOV9vbpX7zeyk87t6xwdewednL3XPFSWSAzLNIPoG2LmsgR1x1MDAxM1x1MDAwNkIhOVx1MDAwZWRsiSVIo1XuPVx1MDAwM9CKQr1cIkoouGAyXHUwMDE3ZC+tJlx1MDAxYXD+MExcdTAwMWYl7KG83es82D2mu/dfutbvnd18uChBS1x1MDAwZpRFjkpcdTAwMTlFXHUwMDFlwphfYCxQ+Fx1MDAwMERcdTAwMTXSpOTMXHUwMDFkXHUwMDEzKMdnxlx1MDAxNrnDglx0JjKByl5sxK1cIqVcdTAwMDecfunhyW5//6E+OFx1MDAwZlx1MDAwZVx1MDAwNjf37XDroW07e1x1MDAxZo1cbqz2lDbKXGLOgVx1MDAwMJ9abERU4HKOwDSglDYlZ+6ogFx1MDAxOZpF6ii8goJcdTAwMGImPkdcdTAwMTA83TzkXHUwMDAyolx1MDAwMiR9f0eEsPKFPd6YXHUwMDAzvbxfPz6qV3c3di+X+Vx1MDAwN+NcdTAwMDJcdTAwMDQ3XHUwMDE3ynIjudCQzlx1MDAxNmiPXHUwMDE0mVuiXHTkNFe5X3fI3c6K5DBcdTAwMTRcXFBwQVx1MDAwNlx1MDAxN6hMLlx1MDAwMIpcdTAwMGZwZM/CJCpcdTAwMThs4uN2K2yt48NcdTAwMWRu73VcdTAwMWZtfS93q1x1MDAwYiZRgaRcYkFcdTAwMWKukZiAXHUwMDBiiEV54Vx1MDAwMlSS0GWYYlx1MDAxNE1gStI8clx1MDAwMYkpsHiOUJDBJDLA7NShYkoow/j0McLayWapPziqbH29vthqr17uXlx1MDAxYzL4YGQgUHhGg1x1MDAxNjRcdTAwMWJ6JJvyRFx1MDAwNtZjLo9cdTAwMDLoNszmf4WBllx1MDAxYcl9KaigoIKJfkH2qkOurVt3x2D6Jcjf/L3VjUqphVx1MDAwNpbPOvLLt612sPHBuFx1MDAwMFx1MDAxNXpcdTAwMWPAXHUwMDE4ROBGJcbnJV+gmDtcdTAwMDGg0kKJvDtcdTAwMDbAkINmRfKwIIMp/ILMx1xiYFx1MDAxNWn8e5ZcdTAwMTeoXtN+2SjdfTnlm1dXn1x1MDAxYvcritT6g3GBIctvJZdudSHo9FIj5ZxcdTAwMDYwNFx1MDAxNVpB/tNcdTAwMDVWSeSawFdQQUFcdTAwMDVPVFx1MDAxMNZcdTAwMDbha1SgrU23xlx1MDAxYpO0XHUwMDE1ZFKmXHUwMDBmXHUwMDEwvkB41OrWN4JVcVX5wq6b+2fneSOCVPFcdTAwMTJL8Vx1MDAwMFwi09pYhja9JZGiXHUwMDA1dHsyXHUwMDE0KS7wOa4xtFx1MDAxZVxytjVWgYzWd8W+SFxm+1eqlVxirqXFWaRcdTAwMDJGOt5cdTAwMDFo1Fx1MDAxY5Pp53dcdTAwMDD6stVcZsvBY8QpbKT1s39cdTAwMWI0XHUwMDFlRiY10t+/3LSMNK00gnozMnW1y1H9XHUwMDBlg4rfXHUwMDE4doetdtxboUv4ZFx1MDAxYTvjQ9LqXHUwMDA09aDpN47GL+eM6eawlIyXmI5cdTAwMGK/W4tMLbWbn0NhdtKOM6WEq+RcdTAwMTSr5kSD/GaJqFxc4lBx5kX7e1x1MDAxNGkzhSqpZ3dWeppidsNNtGlgfs/xOU0scbB9WmRcdTAwMTlL8Vx1MDAwNlxugVx1MDAxM2FzzmaxfudtXHUwMDE0XHUwMDBlKT82ysM5f7tK3ohcdTAwMTI+XHUwMDE14lx1MDAxOfb8eLFcdTAwMWZcdTAwMTMwXHUwMDBlSSTMXHUwMDE144PFYnywXHUwMDE4jCNkWlquSK01XHUwMDFhXHUwMDFkXHUwMDFmMVx04ztGli/FWtipXFyG5tD/JnT//lwi31x1MDAxOFx1MDAxN0Z6bsGiMUAgtzzlZGvjXHUwMDFlyjEuJKKVao5bfrn0kDtr61x1MDAxNlx1MDAwYmtupsO5qzXIXHUwMDA12Fks4P931nZxSDxYLFx1MDAxMlx1MDAwZlx1MDAxNoNEXHUwMDAyWyZcdTAwMTLJzpKxZWZ6JOrN/ftjsDt3y0H/WFx1MDAxY12FX7d6uUuFjVwiUTLuWeuSXm5TXG7XXCJtbsntRTK65I1cdTAwMWHSuPnV7ENPcre1hytDIVx1MDAwZlx1MDAwNVx1MDAxYtNZXFxm3JYgM4syPP9cdTAwMGWJXCKpr3NFXCJfLFx1MDAxMvmibOJcdTAwMWLFM1xycKSf6ZF4dHTIuzfX4d7JaXnt2uw2eG/9a76RKNB4TLiahORBWpbe4yalZzWgXHUwMDE1knMj5lx1MDAxOH/+XHUwMDFjXHUwMDEwjYtYNcBcZtalXHUwMDE0OHzSnV+DQ1x06cbYIGrGuFQqvtzENNDW9vdqtSz3rrZ72Dtb61x1MDAxZlTMY75hKC144FxcO0N2z9XkTlx1MDAxYkTwNCe/VFumgMH8alBw8Fx1MDAwNFx1MDAxMlx1MDAwZVG4XHUwMDE17dOaQ+XWhsEsXHUwMDFlXHUwMDAzf1x1MDAxNFx1MDAxOOJiYYhcdTAwMGIyh5lZIKWAW6nfYVxm6/pIn6zvtO8vzz9/3brZPVrZ7duco1CSXHUwMDE5Uq78XHUwMDFi424zXHUwMDA3T+3rssxt5tBKMDqAMTO/J7JcXHiKR9vL0Fxia6bNx4KxhFx1MDAwNC3nnlx0ylx1MDAwZlx1MDAxMMVigShcdTAwMTZcdTAwMDNEJdKNcapcdTAwMDZcdTAwMTVaaXD6x1wi5qzTVFx1MDAwN2s7pfPG1ikrVeqVtbW813SXhlxmXHUwMDFlgCvIRLZcdTAwMDVSQOTWU5JcdCmAS61hjtutuXx3PpaTPy1cctO//qmITOrqXFxRXGKLRSEsyFx1MDAxY2Z7pW6TXHUwMDFjUJwyvT18+1VcdTAwMWU5RaHbp4CgLEOpTOotMlZ6QlxiK9xbLaxiOL9VXHTOXHUwMDFhXHUwMDEyXGLdVlxuMrp22udcIoyspyvsPG9cdTAwMTg+d/yix1wii1x1MDAwM/nygmPP5Vx1MDAxOVx1MDAwN5+XXHUwMDFkUoyXl1m9iPryQqvMeieGk1xu6SSbT0L63YHo3n1vtstnYadcdTAwMWIuQ3vQverlXHUwMDFi6dJcdTAwMWGPWSuiymhSm9E9XG6SSY9wZ1Bpolx1MDAwMSPmuXeRUbQ/ju5U+zPCXbpcYsxMtij+rKH9XHUwMDE364lmvHonOUBxS/y9MTqZYmVScNtr0O1cdTAwMWV2aJB6XHUwMDFkpzZhp5e4g+f2pzH6KVx1MDAxM1x1MDAwYtlFxyxcdTAwMDVZhpvp8z76Wu2V/cPg5pu4uNyuqM3tg/J1vnGHwnquhlxiYlSPML1P0IJnOVx1MDAwNaRcdTAwMTZRoNRqjnlcdTAwMWbmaVfQxJU2NMJVOJrGxCpObjiYX1x0wEVcdTAwMWJBvVhcdTAwMWKoXHUwMDE34+kmdp2lzZ9yj1x1MDAwNcz00aZlW3r/+iS8rGya7lZJXHUwMDFjVrdcdTAwMTTmXHUwMDFjhejeXHUwMDE5JJxtIyiK1Dp8yz3L3HNIwZWBOb4jhKP3VGdQW7BqylVcdTAwMDHSvdCALHOMgF9cdTAwMDRBTCrqXFwhaFx1MDAxNlx1MDAwYkEzW1xiZq2JT759Jl2Vm0ttOU9cdTAwMTRrm1x1MDAwNMLe987GMSvvXHUwMDA0N1x1MDAwM399+3Bl+4if5q7IVtpcdTAwMDVFj2yJRCGM21x1MDAxOD/mgSp0u07JSyWj+Ubm1WpegZ9cdTAwMDchsqdcdTAwMTLBwlx1MDAxNfi1kNinXHUwMDEwv8ZPooeSXCJRZihCtknzN1xmPSVcYrfQaFx1MDAwNqgsXHUwMDE2wC9oXHUwMDAx/LJcdTAwMTCe4e6Npa4qg5Q23pz51E0qSOwsXFz5aFf2lU88YaYuRb3jajTurP9cdTAwMTSTqOzFvG5fXHUwMDA2vGuj3Z3fPF/vXHUwMDFlXsFp//roka3Jr9+CnL/9WFrlOaOolJQgOVx1MDAxYk1cdTAwMWWnglnJs5PHNSbI6P88lyjrXHUwMDAxXHUwMDE4YIJ8XGJDoUx8pVx1MDAwNJeQi8/I2lx1MDAwYkaeh8TEK5KH6WTSRHLLi022XHUwMDFmiEuk9Fx1MDAwNLrXXHUwMDFlXHUwMDFiplx03jCylcZcdTAwMTFccpIjqdHlL8jbw0mny1Sk6HTjOpRFJL89X2HJb7fLIc3lUCdIp4LqsydcdTAwMTZcdTAwMGbL0n1Q66+Oa/3vl9GPS1ZGiuNoIMpcdTAwMDL88+O3XHUwMDFm/1x1MDAwN4dUlfgifQ== yxO11532-178

    x(;5)

    Funkcijos reikšmės mažėja, kai

    x(;5)

Funkcijos nuliai. Parabolės simetrijos ašis

Tos x reikšmės, kur funkcijos reikšmė yra 0, vadinamos funkcijos nuliais.

Vertikali tiesė (lygiagreti y ašiai), einanti per parabolės viršūnę, vadinama parabolės simetrijos ašimi.

  1. Funkcijos nuliai: x=1; x=2

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daXPaSFx1MDAxM/6eX5Hyfl20c/b0bNXWW77vK3aMzVtbKVx1MDAwMjIoXHUwMDA2xCFcdTAwMWPsrf3vb1x1MDAwZj4khDE4XHUwMDAxR7wlUuXYo2s03c/Tx/RcZv98+PhxJbpr+yt/flxc8Vx1MDAwN5VyI6h2y99Xfnftt363XHUwMDE3hC06JIZ/98J+tzI8s1x1MDAxZUXt3p9//NEsd2/8qN0oV3zvNuj1y41e1K9cdTAwMDahV1x0m39cdTAwMDSR3+z9x/08Kjf9v9phs1x1MDAxYXW9+CFcdTAwMDW/XHUwMDFhRGH34Vl+w2/6rahHd/8v/f3x4z/Dn4nelbvd8KFjw+a4c1xccZNuPlxuW8OecqFcdTAwMTGE4Nw+n1x1MDAxMfQ26GGRX6XD19RhPz7imlZa1atbcVgqtmtftkpcdTAwMDestbtZNpX4uddBo3FcdTAwMTbdNYZ96oX0KvGxXtRccm/8YlCN6k+DlmifdFU37NfqLb/n3p0/t4btciWI7lxcXHUwMDFiY8+t5VZteI+4ZUB/SYFcdTAwMWVTyFApXHUwMDBlzPD4Lu56XHUwMDAx6CmrLIBBiVYznerYetggMVDHfuO++1x1MDAxN3fta7lyU6P+tarP50TdcqvXLndJWPF5359e2VxiT1xusMglN6hFPFx1MDAwNHU/qNUj13PPKs1cdTAwMThcbrTILNdCxr3xh0LhoMFIMCaWqutDe7c61I6/Y1F0Sa923SWtfqORXHUwMDFjz1b1cTyftCjWI/HY8m/8ku78zYT+xU/ot6vlXHUwMDA3TeFGWCmlUUondKlcdTAwMTG0btKPb4SVm1x1MDAxN5SrXHUwMDE3lbvRWtCqXHUwMDA2rVr6XHUwMDEyv1WNjyS6/FxiiuErrtSbp9eX/lF9r4YnqsD977hxXHUwMDFh48FcckdY6feGI6xcdTAwMDEsjSE3RmltbeKcWrntXmZsXGZcdTAwMWHlXrRcdTAwMWU2m0FEr3tcdTAwMTJcdTAwMDatKN3HYf9XXHUwMDFkXHUwMDA26355bMzpXHKSx9Jgbbs7xth2n/i3j7E2XHUwMDBm/3j+/e/fXzx7opJccq9cdTAwMWVTr/h2XHUwMDFmkv8/vvvsNEPAmcgywFEryyBG1jSWqV6Kc9yvf13vXHUwMDBlupf17te7SrNzmm2WUVxuPDpLSlx1MDAxYXlrjTAwQjNSo8dRXHUwMDAycMs0cVBcdTAwMTLY86ZcdTAwMTmSP4lDKsGEtkLJ+FHPPEOA9Vx1MDAxNFx1MDAxM1x1MDAwNFfGrJWkXHUwMDEyYzxjnVx1MDAxMjG6VSZ5RtlYm1x1MDAxNsEzozdbJvxPlL77XHUwMDE0xlx1MDAwNf9GXHUwMDA2oMH2X/QzmLTp5idcdTAwMDbQpO9cbpWYnVx1MDAwMG5Z875+1vjWudvatmLQ6+yfnNWyRlx1MDAwMNzThlx1MDAxOVx1MDAwYkS3xiryXHUwMDFkYpP8wFxixpPMSGMljbfRMcSGfodcdTAwMDTPXG5cImjiXGZtJWCqo/PjXHUwMDAzRr2QQlrqKOOO/5VcdTAwMWEnXHUwMDA0ITzOtVx1MDAwMWaBkzukYvZ64lx1MDAwM5RcZlx1MDAxMVBn0+9YZj5cdTAwMTg5NlcyeEX07jMm9LlxXHUwMDAxTIw5qFx1MDAxN4JMJM7OXHUwMDA1x/W94lXny1x1MDAwNeLR9XVx7eCoXHUwMDAwg+pcdTAwMTJyXHUwMDAxOWTkeHKlJVx1MDAxNya2yUMy4JK8XHUwMDAzxbhcdTAwMDby2FxiY5lnXHUwMDAzqaVcIlx1MDAxNzMhxpxccnI2eJlccoRU6eYnNjCkQ1xmpY3hMI1ccrQ6XVWr6+H9ub7bXHUwMDBlb1x1MDAwMLZb9d0lZFx1MDAwM20kRVx0XG6Mw/toqCDQXHUwMDAzXHUwMDA1krRcdTAwMThISDbrXFxg6CDQXHUwMDE5uWOQU8E0KqCnTaJcdTAwMDJuhqZRi9mTkcdfbb9ZqV7f3jY0uymcd8PBZWnpuFx1MDAwMD3FXHUwMDAxwFx1MDAxYaNcdTAwMDQqTOVcclx1MDAxOHiaMUdcdTAwMTSMkYvAUz3NXHUwMDFhXHUwMDE5XGJcdTAwMTSCXHUwMDE5VHnWICeDqWSQ8IJTZCCRRIbsXHJcdTAwMTmD3mZr+/xcIvyyc7J2d3q3/eVbOVx1MDAxYewsXHUwMDFkXHUwMDE3gEc+gaFcdTAwMDDAWCvMqF9AfoJnXHUwMDEwuVwiXHUwMDE5kdtAdJlxLrAuStCS5TFCzlx1MDAwNdO4gJuJ2UPBhESyfji7Y1A86PtcdTAwMWRWKlx1MDAxNZv9b/3SWlx1MDAxZDbaJZs1MqCQX3FtXHUwMDA1XHUwMDEwSNBcdTAwMWFCyyhcdTAwMTlcdTAwMTjhXHRGp7h5XHUwMDFj5Eam2ECjR1x1MDAxNOBSKYIuXeB8wpwyXHUwMDA2Vlx1MDAwMrlcdTAwMDZcIuFcdTAwMDDmbJCzwYSMXHUwMDAxm+hcdTAwMTkgPcaifUP+UH9Zu/n0WX6qVoLiXHUwMDExnFx1MDAxZrTsWVx1MDAxZJeNXGYs2X4gs09EqVx1MDAwNYPUXFyCNlx1MDAxZUhcdTAwMDNaoFWCPIisc4FhymhOrJZzQc5cdTAwMDVTs4eTU1x1MDAwNoJbYTFhUqZywc5uvXlsj+tcdTAwMTE2Op2NY3V7XzBLxlx1MDAwNZpbQjtKq4lcYrVKXHUwMDE03DxxXHUwMDAxZ1qBRnK/jVpcXDnTnLhcdTAwMDAkaM54PpOQc8F0LtBcdTAwMTOjXHUwMDA0zoFiXGIpxexkUDhrbtVwS2yIgq1ccsJccnV8XHKtZSNcdTAwMDMlPKtcXLMkz0hAqriRglx1MDAwNFx1MDAwNchJXHUwMDBlwFx1MDAxNFx1MDAwMoNUT7PGXHUwMDA2RGdcZkCp3DHIyWAqXHUwMDE54OTCZusqnJTks88r3u1b7G9efa7z0nFju1i4ON3Z2lg2Mlx1MDAwMPDI5jN0XHUwMDE1nknT/8RcdTAwMDXSMMNJXHUwMDE0wNBknlx1MDAwYlxcP5XSXCLngpxcdTAwMGKmzytiuvmZXHUwMDBiXHUwMDE4XHRcctHKmC2mcUGpcFxiamO/Wbpf3zm8XHS2m5drza0l41x1MDAwMqmFR86BMlxcOcfA6DRcdTAwMWJYz1x1MDAxMrZcdTAwMTRYYSxcdTAwMWGd9ZyBpLBHYlx1MDAxZSbkbDBcdTAwMDNcdTAwMWJISDc/sVx1MDAwMVBQLEaq2qeRgbg/btjK4JO8+bTW39zvldcq39aWjVxmjCa0U6iN1jlcdTAwMDagUuWHRFx1MDAwNqhcdTAwMTVcdTAwMDBKQ9dj5smAXHUwMDEz5pjWJmeDnFxyprKBmjyZQOZEI4wskZxGXHUwMDA30IPtT0psXV1dbVQ/fbpufsajzK1MmEZcdTAwMDdcdTAwMTY97ay+XHUwMDEywrpcZmKKXHUwMDBlgESlSVholZRMQNbpQDDDXGJ4dEJOXHUwMDA3OVx1MDAxZEyhXHUwMDAzzSevVJTkXHUwMDE4WKth9lx1MDAxY2L7tKtrl5Ld91dcdTAwMDets/Uj1e76X5aMXHUwMDBliFx1MDAwNTwhuVRGMGtZYl3yc96AXFxcdTAwMDIhhVx1MDAxNqiMynqlXHUwMDAxXHUwMDExOuFOYE5cdTAwMDY5XHUwMDE5PJJB5Fx1MDAwZqKXyMC8kjawXHUwMDA0XHUwMDBiIaSJ0TCNXHUwMDBiXHUwMDBlzve/XHUwMDE1j7ZcdTAwMGZ6eLQhL7c2XHUwMDA3p1x1MDAwN1uZS1x1MDAxYqRWLYPxjFwiXHUwMDFmSGlcdTAwMDE2XWPELfdcdTAwMThcdTAwMTIvgHKVSCyRcJ039K0njbVoQSgmpJKxXFxi4CemMlx1MDAxZsNcdTAwMDBFWiE4S6xw/mGoj1x1MDAxY3hcdTAwMDOmtXHF2/HAvFx1MDAwMdPXYSs6XHUwMDBi7lx1MDAxZmrcRlq3ys2gcTdcItWhXG67PPXKSNNqI6i1hvbOv1x1MDAxZVXxKKiUXHUwMDFiz4ejsFx1MDAxZFx1MDAxZq3QI8pkXHUwMDFmu+NDXHUwMDEydoNa0Co3zsdcdTAwMWbnLOrO81x1MDAwMnIvIY6v5Z4/tLfOo/4xIPLJpcBCKIsssZ5+XHUwMDFhXHUwMDBlX99cdTAwMGJcIpM4XHUwMDA0xjxQXFxoRm6sXHUwMDExPJWsXHUwMDAz5TGNbpmAZsSOi4MhJ7lcdTAwMTJcdTAwMGLbIVx1MDAwNlx1MDAxM/XHr4GQXFxcbrRW2Tms/3lcdTAwMWSEz6RcdTAwMWab5WeZv74vzYhcdTAwMGU+rL5/PvLvk1x1MDAwNZlcdTAwMDJxTFx1MDAwMmGhXHUwMDEwXHUwMDFmvC/EXHUwMDA371x1MDAwM3GyMJNtrVx1MDAwNiCYx97eVFP7/Vx1MDAwZc62q3azXHUwMDE09aW/sXpxsXWrs1xycXp/XHUwMDBmKbRGbVxyJ1x1MDAxOKe8bLBcdTAwMWVcdTAwMDJaZ8xAL3KdXHUwMDBmV57mztQyLsFwnFxy5UBdslxmYFx1MDAwZVx0t5+ztO9cdTAwMDfD4/eF4fE7wfCV7cCMJVx1MDAwN1skRmhcdTAwMWFcZu/DLXVytdm7v+dHt/VbbSuDXHUwMDFlZFx1MDAxY4ZcdTAwMGVo3KAwmlx1MDAxOTdcdTAwMTMwXG5DpOF2u6ag4MKYRW7Toz1CXHUwMDE04ZBcdTAwMTPqh3tcdTAwMDLMZm2FXHUwMDAyXG4k55Lq+jkg/tA+Xz9cdTAwMDRE/r5A5O9lXHUwMDBmJ+ehSFx1MDAxZKxcdTAwMTbqXHJILHXCo2+bXHUwMDFhTJl1blx1MDAwZlx1MDAxYudrpUo5c+UrKSRcbvBIk5hcdTAwMDAyi0ZAXG6JXHUwMDEyPK1QkStKeDRCLK6Q9UeRaJRkXHUwMDFjf33wmSPx55Ao5MQsXHUwMDEwWVx0JIuhZlx1MDAwN6Iq3W99VsdcdTAwMTRF7WzdXHUwMDFkXHUwMDFlXHUwMDFjfy7e1TM3XZxcdTAwMDJcIlx1MDAwN89cInJOyqzQpneuY+AxicikXHUwMDAyRkBcXJxnKoSntKXnc/JCyD+FXHUwMDE3NshcdTAwMWPHodRCg5rLPnXLXHUwMDAyw4J4X1x1MDAxYyaft1AgilequJhLSvA3ILGPg53O6uFcdTAwMWXfXZOrnbXejWivr2dcdTAwMWSJ0kNcdTAwMGIuXHUwMDEwdDMu6V2iyDk1pO6SjqLBxdVvUi9AkkFUrq5O21x1MDAxOVx1MDAxM0GKOkan8l9tXHUwMDBmXHJLKutigfjOXHUwMDA2sfBOXHUwMDE2kcPkXFxccpC/psnzmVx1MDAxZIhFvDvca3R3t1b31rG097lQNCeZK5lIXHUwMDAxXHUwMDExrUev6ZZNoLFcIrGi8lx1MDAwMYjMc1x0XHUwMDE0XHUwMDAzVnC3XHUwMDE1w+KQqN6ej+XUKerhPNZQLFx1MDAwYlx1MDAwZd/ZXHUwMDFlztlcdTAwMWNed0lyT/vKP/U0rmWchETtNlx1MDAxNHRcdTAwMWE4M1x1MDAxMK+qt/eFSrnNVtmXo+JaM1xmLr5cdTAwMGUyXHUwMDBlRJCem1x1MDAxNVx1MDAxNoKBZMLY0ZlcdTAwMTEpOEWJUpLtUe6zOCQyj7HEQtPEju0j7U81XGJWKVcr8Vx1MDAwYtOlP1FsMOep/eRcdTAwMDDFLfF1XHUwMDFmUtfPUrZcdTAwMTA0+1xyet2TLlxyUr/r9Cbq9lx1MDAxM2/w2P4wRotAXHUwMDFmxUqEP7KFs8MvWF+9rre/8Ct+dXLFymHhsnPVyzj8KCZDzZBLQ+aOXGZiemLSkkfqvD5rmEaT7tivglx1MDAxZuk/hZG/1Fx1MDAwND7AXHUwMDBmcvgtXGJ+Llx1MDAxNVx1MDAwMVa+YVx1MDAxZpB+r8FOT7q7O6vfvoe7XHUwMDE3Z51Gw5dcdTAwMTmHn9UuXHQqOblzXHUwMDEy3TuPws8wT1x1MDAxOC5cdTAwMTWFg5pcdTAwMWOuRa7oe1x1MDAwYvwobJRWo+BcdTAwMGIvXHTI8fez+JtUJyvtxOlcdMVcdTAwMTDxTd/ncVA56Fxm2o3C3navdFx1MDAwN42Tnc7O7kXGoUeOp9RgtNJcdTAwMTTmScZHQ0DneHJcdTAwMGVcdTAwMTZcdTAwMTRcdTAwMTPM7VS4uFx1MDAxYXktPYaKM+5cdTAwMTKwmkK7XHUwMDE3imI5s55cdTAwMDSyeIxcdTAwMGKhXHUwMDExX6iRV1x1MDAxMtxccrK6mvaHkPp/Xlx1MDAxNVuQ3JMu9U5eJjG8XHUwMDE08VwizuFhTt6Xm7kyXG6NtZxEP/WOk5Xp4Y5jejTOUz9EJ8lvu0rv6GVRWqHfXHUwMDEwx7LD2uZlca9TqVx1MDAwNEF1sL476JQ0zzqdcM+QQ2pcdTAwMThcdFPo9HJcXEmiJCNujObum5uUXVxc3YFyKSWDXGYlhS9cXLyUVEprwVx1MDAwYoW3Vlx1MDAxOWazu/1/zibjZ1x1MDAwYnBcdTAwMTZLkMlyU5o8sSDefcbIRE6730RFerhdWofmRCQ8USU4VkZIfqexyS+8msYk0eG1X1x1MDAxNGe8s31Z29vdXHUwMDBl7zfblcO5Mkk1dHoxdyqRTFx1MDAxYqm1XHUwMDA0bcVoUCC18Yz7mlx1MDAxMZImKkHjsbio4Fx1MDAwNepcdTAwMDDSMpesZkxcdTAwMTjQ5oV9QLVA6nhOXHUwMDFjS0NcdTAwMWMjZ1x1MDAxN8Yk/EZgT5z8nbhm3zDn/VxiOftcboBusXJ51d1fvS+cXHUwMDFln59cdTAwMDesWqjvz3clzlwiYI1cdTAwMWVcdTAwMDcp3Fx1MDAxMkTy9JCPTv5KqVx1MDAxZN2S5eXaorCLS7Vp5ZFD5r5cdFx1MDAxNdw3RL64XHUwMDA271x1MDAwNY9cdTAwMDDc11x1MDAxM8A8Nv5fllmnwV/s90TR+bvU6o8+8k2zT1x1MDAxZlx1MDAxZVx1MDAwMb5SbrfPXCJcdTAwMWG5Z1x1MDAwZSVRXHUwMDA11cfXj1x1MDAxZr9yXHUwMDFi+N/XxpXnt+vhx62gXHUwMDE4YtzBaZhp+OffXHUwMDBm//5cdTAwMGb5w1dcdTAwMWMifQ== yxO11-2-12x=0,5

    Simetrijos ašis yra tiesė, kurios lygtis x=0.5

  2. Funkcijos nuliai: x=1;x=5

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daVPjuFx1MDAxNv3ev6KL+Trx6EpX21RNvWJcdIR9X19NUdlcYiZrJ1x1MDAwZVx1MDAwNKbmv78rXHUwMDAzsWNwkzBcdTAwMDSceXF3XHUwMDAxkbzI0j3nLpJu/vr2/ftCcN+pLvz+faE6KFx1MDAxN1x1MDAxYn6lW7xb+NWV31a7Pb/doipcdTAwMWV+7rX73XJ45nVcdTAwMTB0er//9luz2K1Xg06jWK56t36vX2z0gn7Fb3vldvM3P6g2e/9xP3eKzepcdTAwMWaddrNcdTAwMTJ0veghuWrFXHUwMDBm2t3HZ1VcdTAwMWLVZrVcdTAwMTX06O7/pc/fv/9cdTAwMTX+jLWu2O22XHUwMDFmXHUwMDFiXHUwMDE2XHUwMDE2R41cdTAwMDPJZbJ4p91cbltcbpozwS3jZniG31uhh1x1MDAwNdVcblVfUYOrUY0rWrj/sbd5X+herbL93u35ZklsbfDL6LlXfqNxXHUwMDE43DfCNvXa9CpRXS/otuvVU79cdTAwMTJcXD93Wqw87apuu1+7blV77t1hWNruXHUwMDE0y35w78pcdTAwMThcdTAwMWKWXHUwMDE2W7XwXHUwMDFlUcmAPlx0ozyOyJhcdTAwMTaomVx1MDAwMjWsdddcdTAwMGLBPDDGXHUwMDFhXHUwMDA2ilx1MDAwYi1Fol3L7Vx1MDAwNo1cdTAwMDK161x1MDAxN6i6f1HLSsVyvUbNa1WG51x1MDAwNN1iq9cpdmmsovPunt9YgidcdTAwMTW3KK1cdTAwMTFcdTAwMWHpocNTrqt+7TpwLfcwrFx1MDAxMyBoaFx1MDAxNLNRa6rhmHBcclxmOOroJVxcXHUwMDEzOuuVUDb+jFx1MDAwNqJLUrXurmj1XHUwMDFijXhvtipPvfksQ5FcdTAwMTTxp5K/o3d05+dj0lx1MDAxNz2h36lcdTAwMTRcdTAwMWblhMTIXG4htNKoonY1/FY9+fhGu1xcf0W0ekGxXHUwMDFiLPmtit+qJS+ptipRTazJT5BcYl9xIb9cdTAwMDS5h/WDqq5vLee3zttHxdrZ/nBcdTAwMDRcXHe0y/1QgjyuXHUwMDE4Z4xzXHUwMDFhdy2NjZ1TK3boXGbpgaKDKS1cdTAwMThYqc2LPmlcdTAwMTR7wXK72fRcdTAwMDN6/b2231xukm1cdTAwMGXfZ9Eh8rpafDFcdTAwMDb0RvG6JHQ77o5cdTAwMTHS3Vx1MDAxMf31PZLt8MPw7z9/ffXsdJlzR+6FuEX3+1x1MDAxNv/99PLjs45lKlk6JFx1MDAxZCmE0cqKiFx1MDAwMd5cIp2D29Z5bWfp/KZ8Xi6c7K3Kwspcbss26SB1vLKcWW6sMlx1MDAxYSOs34e1zNPCIPFcdTAwMGVcbsmM1VNjXHUwMDFk5lx1MDAxOaAud+xHnc5UrNuHrMM5XHUwMDEyXHUwMDA3XHUwMDAycsFcdTAwMTRRpI5x4CPrXHUwMDEwXHUwMDBlXHUwMDA0XHUwMDAxJ7OsXHUwMDEzdd80WGf0ZjOE/vSxd0fuxbBPiH7q6+qrJlx1MDAwNzOp6LfCXHUwMDFhxSSOb3FcdTAwMTR2Oztqo3VcdTAwMWTka3v+XHUwMDE2z5X7jU2eNfBcdTAwMTPLUlx1MDAwN1rqYaUtXHUwMDFhwkuCXHK4J6xcdTAwMDBcdTAwMDRuiIkhuq27IbfSM1x1MDAwMq3QhlhcdTAwMTG0miZcdTAwMWJcYrL4hKWWknYjXHUwMDFhQnyNXHUwMDBlPFx1MDAxMlx1MDAxYk3qQFx1MDAwMVrEaDCf6MBQK5UxMbNxTlx1MDAwN1x1MDAxZkNcdTAwMDcjdVx1MDAxZsxcdTAwMDWpI++OXHUwMDE3Y/5RXFxcdTAwMDCAyeKhJaBcdTAwMTRcdTAwMDJDXHUwMDFiw9NbZHDaXFxbPS3lcP/y+qh0wi/319TJzVxmklx1MDAwMaFcdTAwMWMlmfJKg2GRulxy2UBzj1mGglxmXHUwMDAzK6mLMk5cdTAwMDZcXJGFg0TqXHUwMDE5JYOIpOZkMDzhq8hAmGTx0DBARlx1MDAxMo9cdTAwMTOEXCLqjVx1MDAxZrrbrFx1MDAxY1xmjvImX1hqXZTyZn/muIBcdTAwMWNcdTAwMDGyv5iQhjk+XHUwMDE4pVx1MDAwMjReOER0mpJkqGWdXHUwMDBiaHxBa6qYk8GcXGbeXCJcdTAwMDNcdTAwMWWLtSXIgFx1MDAxM1OQNSwnsFxmlq9XzdL60UXP57d+6bi2cnxRq89cdTAwMWNcdTAwMWJwclx1MDAwNCRcdTAwMDJpU+3iXHUwMDA2I2yAXHUwMDAwXHUwMDFlt5ou5eRAIVx1MDAwN5loaebYQINmis1NgzlcdTAwMWKMwVx1MDAwNlx1MDAwNpLFkZ/AXHUwMDE5QyDcjM1cdTAwMDY2XHUwMDFm9NYur3dvd/nN/e1dU960ev1cdTAwMTlkXHUwMDAzJa1cdTAwMTaEdaOEXHUwMDE4ZVx1MDAwM2G0JyXXilx1MDAxYnImLMt+zMDZOJZlNWYw54JXzv5cIi5cdTAwMTCY6iaAXHUwMDE2VltcdTAwMTNcdTAwMWavt7ig175bl6XV01xco49SyM3SXHUwMDFl272aOS5cdTAwMTCeZFx1MDAxY1x1MDAwNb2/VJbFdH9IXHUwMDA2SnrIlFIoJcly1lxyXHUwMDAz5FxmLY/z+ZxcdTAwMGLmXFzwOlx1MDAxN5CspHKBIfOSuIKP7yV0g83c1dqOuHzI3Z2qXHUwMDFlOzkp3u7MXHUwMDFjXHUwMDE3gGeAXFxcdTAwMDDtZm5cdTAwMDVP2Fx1MDAwNYieovGR1jBkMXWbTSpcYudcdTAwMTFcdTAwMTSxwZxcbuZU8JaLwFOnXHUwMDE1JXJBbsJcdTAwMDTRw0XTKG+v1jaON1x1MDAwNytcdTAwMTW7rfjO1d1Z1phAeIAgLVfS2c7aQlx1MDAxNDFcdJlAa49cdTAwMWLysiUg49Q9XHUwMDExXHUwMDAyQypcdTAwMDDtKVx1MDAwZW6gjHKLPFSiqVkjXHUwMDAzTjVcdTAwMTJgblx1MDAxNsy54O3gYbpZoDkqTt7m+OFcdTAwMDLePch3jlx1MDAwN72H3mVr686/24OV9sGMkYFkzDPSzVx1MDAxYoJQXG746Fx1MDAxYVx1MDAwM1x1MDAwMr8nXHUwMDExXHUwMDE5XHUwMDE5XHUwMDE2XHUwMDEypFx1MDAxNDzrPoIgMtBcXKmsxlx1MDAwYqKVmXMyXHUwMDE4nvBVZKDT41x1MDAwNYa5+JjE8X2ERrn3Y3uzU+z7flAqLuauTf6uMGtkwNEjXHUwMDFhdL0trUVcdTAwMWQ15ZlcZlx1MDAxOIAxQmlmiFxysk5cdTAwMDbuSveaMqumwZxccl45+6uih+lrjznTZC6LXHSmXHUwMDE1kfPjmm6cNddPSqxcdTAwMTM0texsN2eNXGbQeExcdTAwMTDWpUBpXHUwMDA0vPRcdTAwMTJcdTAwMDSJMLlcdTAwMTCgtVJ2ejsgPshLXHUwMDAwXHUwMDE0aJBldvnhnFxmXjn7q8hApC8/XHUwMDE0WmqGXFyNz1x1MDAwNsVzlFvHi2cle7RytXZzz09XTtZmjVxyNHhuRlx1MDAxMbl281xiidWHjlxyuCaOlKhcdTAwMWNl2ERDs0ZcdTAwMDZAhyVLJnbxnFxm5mSQMpfA0tdcdTAwMTho44xcdTAwMDM5wa6kXHUwMDA3vjJoXG7R3z2u31+er1x1MDAwN4vQKJRnjVxmLHpu3aE2zDJcdTAwMWGJxFxcXHUwMDAykYHWUjJF5lx1MDAwM/lRXHUwMDE551x1MDAwMk6WnaWXYXMumHPBm1xckFx1MDAxZUCUYLSdaDLhdLt1XHUwMDFi4PHBsVo5bVSafXF8q0szRlx1MDAwNciEp5RUQoGjglx1MDAxNyFcdTAwMDPrcWJcdTAwMGKpXGZj5ERkPWJgQ8riYlx1MDAxZTCYU8GbVPCT8KFcdTAwMDCSISnM+D7CTqvyY+92W66fil6pdF3ce9jdWZ41LuDaI1wiMJZbcrbli3lF60k3VFpcdTAwMDDgXGb4XGLEWJbx7O5KmJPBK2dPl1xmguogeI1cZrRK3ZRAj2OkXHUwMDE4J+GCbVXaLO9uXFxcdTAwMWVcXLfra4e5jthdwk7WuCCRuECD5/Yhu1x1MDAxZEdcdTAwMTYkV4ktSS5dXG5aMlx1MDAxMoRGLZmY3ppcdTAwMDLrXHRtrSFLXGZJkaN4JV1KfFx1MDAxNvNcdTAwMTHrUlngUn1EbHCkYlx1MDAwMkxLTfZjbKvWXHUwMDA0mL5qt4JD/+ExVD1Sulps+o37kVFcckXYpeRZXHUwMDE4KVps+LVWqO+qV6NcIlx1MDAxZfjlYmNYXHUwMDFktGOSWKZHXHUwMDE0ST92X3ZJu+vX/FaxcfTycU6jXHUwMDE2nsdcdTAwMDK82GiUir1qqG/dXGbc+4Co01x1MDAwM3cuaVx1MDAxMYCOqaW3gPjzXHUwMDA0MZlcdTAwMDSiQu5ZLVxcXFyeXHTDRWI+X1AtYVx1MDAxNFxmXHUwMDAyc5G66W1ccnTbjoiHbVxiQlx1MDAxZI3xT1BIVFx0wDn7iKjcz2E4pP1IMVx1MDAwZlx1MDAwN/3nuapGpPAxXHUwMDBix7Dm72dcdTAwMWTyXHUwMDA2yGVcdTAwMWNcblNcdTAwMDX54HNBPvhcdTAwMWOQo7XJ0kjbSjLacJJccsG3XHUwMDA3l1x1MDAxN3BxrIu1QrCdv12sN1xudj3bIEepPaIyg9o6TsPEsn5uXFz8jX6BXHUwMDE1ZorL+lx1MDAwMT1cdE7XMlx1MDAxMC4lwZgoJ+PLXHUwMDFhiO/S/FwiZft5ONz9XFxcdTAwMWPuflx1MDAxMlx1MDAwZVV6jkBStIxzNOMr24daK1dcdTAwMWVsXHUwMDE0eLmXr1x1MDAxY+na9tX5ylbGcailp6VcdTAwMTKoXHUwMDAwyCNjkJhcdTAwMTVD8KxcIjNUXHUwMDExSJwrMj1tKz0kJFx1MDAxMqzI+0YpgI9cdTAwMDdFulx1MDAwNoT8iFx1MDAxZDX/XGaJ78r/9y4kwudcIlx1MDAxMT5LI+pk6TNcdTAwMTK15sbpivHdz7NjtWXXS82gXHUwMDBm9rrL1/K1tUbmZqhcdTAwMTJAXHUwMDE04Fx1MDAxOVx1MDAwNtpcdTAwMTj6XHUwMDBmXCKxz81lykKJllx1MDAxOfJBSTFCol1fXHUwMDBlQzSaronvSJrj8FmWZ1xuh6BSLVNcdTAwMGUu+YKKu/hvXHUwMDAx8eby8HCx0i/f7y/dXHUwMDFk5tbPtvLFxcytL1x1MDAxZlx1MDAwNaJUyuPO61x1MDAxMy5rKMnVqEJcdTAwMTTWI+Ndkc0qXY7LKXqf3CO9RlpXSJBqXFxcdTAwMTgqQ/ayMlN3P7NcdTAwMDND+bkwlJ9cdTAwMDRDTF3LXHSEQWAwSSrJWkVV2vWH8vJcdTAwMTFjam9cdTAwMDVcdTAwMDe7/pLNNlxmXHUwMDExlOfSxJFcdTAwMWFy0o+JWVmjSVx1MDAxZlx1MDAxYWVd9k5gXHUwMDFjpodDTnrZReMlKbdx1aFcdTAwMDJLI6Q+YnPnP4Phu1x1MDAxMkK+XHUwMDBihjnxuTiMP2+6+jA9c5tLYDZR5jZxuTwoqK1u96TBUYtN/dBcdTAwMTUy4zjkhENJylx1MDAxMFx1MDAwNVqyTEdnRLkmdFBccpJzqLWV01spXHUwMDA1OHkwVpNnyzR+vVH6eTDkn4tC/rEgvOrSyD1/0cRzS6OFS2lAlG6iXHUwMDE048vf3ozUVC5rvb1Su7l+gM1cdTAwMWat04JtmMNsXHUwMDAzUXLhMSktKuRam1x1MDAwNFx1MDAwZY30nNuotFVkoEszzVx1MDAxZM+MxZaTxr7BYaR8OCFiJbjMLF+oXG7DtVx1MDAwNvpd85JcdTAwMWY8s1x1MDAxZu+hqCS67lvi+nFWLfjNfoNed69LndTvOrlcdLr92Fx1MDAxYjyVP/bRO1UgT0OepeZcdTAwMWKXq2Ns5Fx1MDAxZK/2XG51Wzal5XPdyt9cXN3Vu7CddeQxXHUwMDBmtVLcmaGaJSxRclxiNXf2OIFcdTAwMGaFmN4mXCJcdTAwMTBcdTAwMWXZlS5cdJQkg9SMuS5cdTAwMDDIPpGMxTNL/euV4Cebolx1MDAxZmyJpi3Xk5i+QscgOJZj4+OwtKVcdTAwMTfvN1x1MDAxNvmS4KphL6qDXHLsZC45WFx1MDAxMofcIyNcdTAwMTNcdTAwMThq0ilcdTAwMDS8hFxuRM9yN1+oLUeyVac3a2iEh5ZcdTAwMGIphZuC05FgXHUwMDBmcVxi6Fx1MDAxNlx1MDAxM1x0t5DI5SZcdTAwMTOvzSFcdTAwMDKQUsKsbubT75pa/JevzcshcTCNqEVcdTAwMDBcdTAwMDWK2Vx1MDAxMW2OjFx1MDAwME9cXMudJlx1MDAwMFx1MDAwMfrN26VcdJI7XorQSzvhXTyiMHUzXHUwMDEwySPCRFOeotPJb4rC6T3bvYH8/k2Bn3Yusk8jRoZcdTAwMWJ+SZ9yO7r1x1nSXFwqkn/S5lx1MDAwZaDTY1x1MDAxMeYpLYzLYyo5xLdcdTAwMWbHaIR5wi1EJlx1MDAwZptcdFx1MDAxYv9+lEdcdTAwMTZxyXlcZlx1MDAxMcmcRGaHRNB4NNySSe62pLNo61lYyT2hXHUwMDAxgGlJTlx1MDAxY8RB//rdUqXIXHUwMDFkL+RnQlxu+ak/zlMnbJUybr1cdTAwMDCOTyM7XHUwMDFi9f3q9SlrbbbOXHUwMDAyKXq5u5x/mm1cdTAwMWFxOchcdTAwMDRYXGJtcikxmZmUu31DgmlcInhGnvk091xuTOSQu1x0XCJQXHUwMDFm8lx1MDAxZEb/zCF/XHUwMDE3N/xfOeTvhFx1MDAxZreWzGBS5GPDr7+33Nltr/2A2sZ9o355fFbYkoNsw8/t5jcuJ7LgqKSBmVx1MDAwMF+4Udcl8PjC+dk5+MZcdTAwMDNfmvls0oNhyLnRZlx1MDAwMtxBqXh5WVx1MDAxOHRWN/c37qtcdTAwMDW82aw3XHUwMDFmPlx1MDAxNHeVtuurjzWf3ZcnolwiL4EryfWoXHUwMDE3jqg8q8mzZS75JtfTXGZEv0RcdTAwMWRcdTAwMDfymaxbtcTQhcNNXHUwMDEygJKkX2rzXHUwMDEx0ei5vfxZXHUwMDFi4uJn515cZvGEJm1akFukLnvSxlxihlxcT/AlXHUwMDFj/b21cm6vWTnpXHUwMDFk/thgg+BaXXzsevxpwNp4btObXHUwMDE1XHUwMDEyyZXQo14xMZvnPE1D5i5cdTAwMTfIprjeQmjPLUCUXHUwMDAw46/HR5fbzMQtni+Kcb8rU+779sX88clR7pFcdTAwMDdOXHUwMDE05/72XHUwMDA07YVip3NcdTAwMThQr1xy2ZOGya88vXr08IVbv3q39FJsfrlcblx1MDAwZrdbKUS3XHUwMDAzUqjJ//r729//XHUwMDAzyT0sZSJ9 yxO115-323x=3

    Simetrijos ašis yra tiesė, kurios lygtis x = 3

  3. Funkcija neturi nulių

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daXPiOFx1MDAxM/4+v2Iq+3XjldQ6t2rrrVx1MDAxY+RcdTAwMGW5L97aSpnbXHUwMDAxbFx1MDAwMoaQbM1/f1vksDEhkFlgnLc8szWbSFx1MDAwNrelfp7ullrtf759/75cdTAwMTI+tisrf35fqVxmSm7TK3fch5XfbXu/0ul6gY9dbPh7N+h1SsMr62HY7v75x1x1MDAxZi2306iE7aZbqjh9r9tzm92wV/ZcdTAwMDKnXHUwMDE0tP7wwkqr+1x1MDAxZvtv3m1V/mpcdTAwMDetcthxopusVspeXHUwMDE4dJ7vVWlWWlx1MDAxNT/s4rf/XHUwMDE3f//+/Z/hvzHp3E4neFx1MDAxNmzYXHUwMDFjXHRHheHJ5nzgXHUwMDBmJaVSXHUwMDEwwSUn8u1cbq+7iTdcdTAwMGIrZeyuosCVqMc2rYhyZbWx0WhccpruLXi53oXYKZDovlWv2TxcdTAwMGJcdTAwMWabQ5m6XHUwMDAxPkrU11xyO0GjcuWVw/rroMXaJ32qXHUwMDEz9Gp1v9K1z07fWoO2W/LCR9tGyFur69eG31x1MDAxMbVcZvA3YMwhSkkwSnBKpHrrtZ9cdTAwMDdcclx1MDAwZeGEMGpcdTAwMDA0XiRcdTAwMTKCbVx1MDAwNE2cXHUwMDA2XHUwMDE07DdasX8j0YpuqVFD+fzy2zVhx/W7bbeDk1x1MDAxNV338PrImjpcdTAwMTSUXHUwMDE2zDAry9tcdTAwMDX1ilerh1ZwR1x1MDAxMkOJ5kxyxqXgkazdynBOKFx1MDAwN8Zcclx1MDAwNVx1MDAxOU2ZXHUwMDE1ob1bXHUwMDFlKsff0Ux0UK127Uf8XrNcdTAwMTlcdTAwMWZOv/wynK9KXHUwMDE0qVx1MDAxMXtp+Vx1MDAxMT2jvT5cdTAwMTdTv+hcdTAwMGW9dtl9Vlx1MDAxNKpcdTAwMThcdTAwMGVcdTAwMWUoXHUwMDAzVEVz1PT8RvL2zaDUeEe3uqHbXHTXPb/s+bVRwV40f/ggK7W76zxcdTAwMDE5OCxcdTAwMWXt8Put9b4nT1x1MDAwZd/G2T50UOpZKVeZw1x1MDAwNGNCXHUwMDE5TkAoplx1MDAxOItdVXPbQ2A4ilx1MDAxMUpcdTAwMDVOPkVcdTAwMWRR41x1MDAwZl/xy9OFOtg9XHUwMDFhbOT6T0+3nUIuNLnVwtXW9ntCoUycgZGUSaNcdTAwMTSAkO/JJFx1MDAwNOFcdTAwMDK7lVwiXFxzOSZT0+2GXHUwMDFiQavlhTj2x4Hnh8kxXHUwMDFlXHUwMDBl5prlg3rFXHUwMDFkU1x1MDAwMHymeF+SONr2XHUwMDFiI56xf6KfvkfIXHUwMDFh/vL289+/v3v1JIVcdTAwMWZ+eEzVo2/7XHUwMDE2///Lo8/OeMaoZOsr4XGiXHUwMDE5XHUwMDA3bfTMfFx1MDAwN6J5Wd7okMFFMKhcdTAwMTfWXHUwMDBiXHJThG7K+U4yRzNcdTAwMWNcXI5/rTZFjGa/gHPmXHUwMDE4jvqlXHTl3GiaXHUwMDEwbH58XHUwMDA3XHUwMDBlXHUwMDA3g3QlXHUwMDE44VIzM8531FhRhTGcXHUwMDAzV5LFyfeF73DGhOBcdTAwMDJcIrZMXHUwMDE13/FoXn+e75JcdTAwMDCd0POVoL86afKHnePz/knw41hX3vV2KJfJ5lfwS2qkNKBcIrRMXHUwMDAzPz817KxUrVx1MDAxY9U3aoXmdbtM/bXztIGfOkJcdTAwMTFlJDCJ5k5cdTAwMWJcdTAwMTGx3ytcdTAwMWJQXCJcYiXGXHUwMDE4alxmjHo/3DjIXHUwMDA0OD+ccFx1MDAwMK4hIen82IA4QFx1MDAwMO1cdTAwMWZKSqjhSEzvOEDoqqFFVmhcdTAwMWEk5ahcdTAwMWTRZL7ygUJB0Vx1MDAwN9Ap9X++MFx1MDAxZoz0zZVcZj6YevtnbNLnRlx1MDAwNmpy6KO1nS8uZ1x1MDAwZn30Rv22sNk/djdcdTAwMWbpcT1XJLvltesvx1x1MDAwNtRBX1xme7XlXHUwMDAyyUZ9XHUwMDAzbHdcYmCIIVxiI1Kjj5pyOtBcdTAwMDIjN1x1MDAxMnn3XHUwMDE5XHUwMDE5ZGQwiVxmYl5/glxmgEhOqIDZPYP1wdPdaWnjcsf1dPiQy9+x/c3bL8dcdTAwMDVcdTAwMDR9NK5cdTAwMTWgwlx1MDAxYaZ1wjUgXHUwMDE4J1x1MDAxMIn/XHUwMDExqiTQpKRpo1x1MDAwMmqpgGuSOVx1MDAwNlx1MDAxOVx1MDAxN0zjXHUwMDAyxiZGXHToXHKjXHUwMDE2yVi8OY1cdTAwMGJcdTAwMWGPTeM16lx1MDAwN0fNm5PDjsndS3+/9lx1MDAwNblcdTAwMDDjMaqNjaBkbMnYfiFTxqGSIUdKXHUwMDAwo5Eq085cdTAwMDVAKSimaDRcdTAwMTBcdTAwMTlcdTAwMTlkZPA+XHUwMDE5cDLRMWCUc0LIZ9jgbEdtlVx1MDAwMrZfePQ3XHUwMDFhbnBTyz9cdTAwMGWqX45ccsDBR1x1MDAwN7tAqFxy0aNswKlxQFx1MDAxMCEkhlxiQlOVXHUwMDEwNH1kQPBhSZzUMjLIyGBcdTAwMDJcdTAwMTlokmyOdkuNXHUwMDE2TFx1MDAxMzH77sFccr0/XqXNwlrA2pvBU2HvQpzoL0dcdTAwMDZ4XHUwMDAxY5wqLrhcdTAwMTCUJMJcdTAwMDSjXHUwMDFkXHSaXHUwMDBitLmCMpF+OuCE233vbEcho4PpgYKeXHUwMDE4KFBccnaJTMbma1x1MDAxYVx1MDAxZFx1MDAwNOze9cXdQ/H8bue2Z1x1MDAxZeVDfj1IXHUwMDFiXHUwMDFkgGO3XHJccpNcdTAwMDKENsrQXGLvQzrQ0jHG4Fx1MDAwNGiEXHUwMDEw+k7RXHUwMDAwXHLpQCFbSMEwjjBKXHUwMDAwSft+gsZIXHUwMDAxeStcdTAwMGJcdTAwMTQyMphKXHUwMDA2QD/wXHKAo4NcdJ9YQtQ3JZdcdTAwMWNs9StcdTAwMGbeJTl/ONnby/evvlx1MDAxOFx1MDAxOXBKXHUwMDEw7VxmXGLT3GhIulx1MDAwNoo4XFyjZ8GYZFKaXHUwMDA1plbNyTWw6UKMmMw1yNhgOlx1MDAxYsDEZVx1MDAwM3QxpXWV5eyugXu+X1x1MDAxZKze7eZcdTAwMDbhwPeC/uZDz09dpDCNXHKAO1x1MDAxYyRhXG5cdTAwMTRQKUaXXHJAXHUwMDFhx1xioZSgXHUwMDFhfVx1MDAwM1x1MDAxNluoTydcdTAwMWJcdTAwMDBX6MLEQZeRQUZcdTAwMDZcdTAwMTPIQE5OOzJcYlx1MDAwN8bo7KtcdTAwMDatuld5kDeXMr9ev/W2XHUwMDFiuyf53MZX41x1MDAwMqFcdTAwMWPFbeZcdTAwMWVcdTAwMTFcdTAwMTgsmPEoXHUwMDAxqLaLiExrXGai0lx1MDAxZiZIZDYmMy7IuGAqXHUwMDE3TD5wISXgrOlPrCAq/+rYK1x1MDAxZeauLm/o8dX15aa7envw1bjApoFcdTAwMGKuKFx1MDAxM1x1MDAwNEDqRM5cdTAwMTFyXHUwMDAx0iOxWfHcprynnVx1MDAwYijhiqGXk5FBRlx1MDAwNtP3XHUwMDEzJE02R5uLVCmu5SdSXHUwMDEwn85cdTAwMWZvqrc9elx1MDAwNNucXa0/nreMn7rNxSlsgFx1MDAxY+Aom3CsNOFUJoJcdTAwMDQkXHUwMDAzRc3wqFx1MDAxNqdGp30zwXBcdTAwMTD4QCpbMMioYCpcdTAwMTWYiVRAOVx1MDAxOIw0XHUwMDE1n51cbs5cbnnvcGerUGhBsKG3XG5EXHTT+WpUwDBIXHUwMDEwnFx1MDAxMY4/XHRcdTAwMDWRKK9cXGBcZtpZjWFcdTAwMDLRsLiDSvNKQFx1MDAwNI7BjFSRd5eRQUZcdTAwMDbvk4H4YPVQUELtVvvsSUeV+/z2fZ36XHUwMDA3Qj5tXHUwMDFmXHUwMDFknpfXLlx1MDAxZc1cdTAwMTcjXHUwMDAzVFLHZiPbKFx1MDAxYsmAJ1dcZsBBfmRUa8aE5mlfPKRcdTAwMWNcdTAwMDNcdTAwMWXNXHRkZJCRwVQymJyBiDGCTTrCyHlmMtgtN/N+9/r8pnPv9kVcdTAwMWTO2tf+2Vx1MDAxNyNcdTAwMDPBtSOMNtZpYkB0ND6vnlx1MDAwMWHIXHUwMDE0OHJCqbSfTGDUZo1xXHRZkkHGXHUwMDA101x1MDAxZIPJXHUwMDE5RzbrRlx1MDAxMPaJbOT9KrT3XHUwMDFi9VxcX1x1MDAxNMrmsHZ5XHUwMDE0lvlXSzJcdTAwMTCK2VxmRaqoXHUwMDA0oeg4XHUwMDE1MKO5YYRKKWLLXHTp5Fx1MDAwMlx1MDAwMchmQmdLh1x1MDAxOVx1MDAxM7wwQVhcdTAwMTmE7zFBvGBGglxiNEV1V7HzelPzkFx1MDAwZnd6hcL1Ybjfvlx1MDAwZtfX8+c3J/ombTSQqGKiMFx1MDAxY1x1MDAwMEqJYppcdTAwMTJI1C3AXHUwMDEwwCHErlx1MDAxYlxiLdE5WlxcZpFxXHUwMDEwXHUwMDE56InY40/IvDF/Plx1MDAwMv1Y1Vx1MDAxMmG3XHUwMDA3KJnHiYORjk/gXHUwMDE5WZNALFx1MDAxOftcdTAwMTN4rlx1MDAwNn545j1ccimFjLRuuS2v+Tgyp0P1/dPOykjTWtOr+UNDV6mOqnfoldzmW3dcdTAwMTi0o95cdTAwMTLewkXD2Fx1MDAxOVx1MDAxZpKg49U8322ej9/OmtKdt4oyTmw2im63MjS0Nlv3p0CoJq/ZaY2qSVjsdtNQ+HGlqFSiUFx1MDAxOO5woYzGXHUwMDFmpKEmsXVnjEONXHUwMDExOFx1MDAxNGi2bTWFhcGQ4sSCzTu2XHUwMDE4VJFcdTAwMThcdTAwMWaAXHUwMDEwg1x1MDAwM4aON59HqZCPUfjG+JFNfpv0j1x1MDAwYuaNKOFzPZ63nlx1MDAxZq/mY1xuxnVcdTAwMWNcdFx1MDAwYsX4YLlcdTAwMThcdTAwMWYsXHUwMDA340JMNLRUXG4jtaCxmoFTXHUwMDEz+dbvXHUwMDFhrXy5vMFcdTAwMGVcdTAwMGZ2XHUwMDA292Lg5fP1dINcdTAwMWOkciRDT1pJLimwZIFEZrfkXHUwMDE4NYrYcmGL25Kj3Fx1MDAxMdTaWkJRJKpng7mweVx1MDAwNXwuW3D/ztYuXHUwMDBmh0fLxeHRknBIJ+JQojdoSydGXHUwMDE3TIMhO8lcdTAwMWRVc6WLhult3G9sVsVcdLmBlMNQXHUwMDBix5ZKo1x1MDAxOFx1MDAxZVqjXG5JY6uc4dl7xo1Nol3cdlx1MDAxOIqBMESoS43hXHUwMDBlUDZcdTAwMTNcdTAwMGW5RLlYvMrK/z1cdTAwMGXpcnFIl2VcdTAwMGYn1s+kSLTo6n3GXHUwMDFllup6p3jYXG5Pqzvna1x1MDAwN71Oe61h0lx1MDAxZXpyioZcYqTQXHUwMDAyLVx1MDAxMTdcdHvIMSQ0XHUwMDFh/V0piVZcdTAwMGI84fZzOKRUXHUwMDFhSWxY/KuBaOLqmlx1MDAwMfHzwSdLNr7hXHUwMDEwXHUwMDE0XHUwMDEwaotcdTAwMDTPjMOKn1OXtf1cdTAwMDO/c1x1MDAxMVx1MDAwNHegbm939lJXy3JcdTAwMTSHXFxcdEdcdTAwMTF0XHUwMDBilOFgXHUwMDE4JFx1MDAxM0fRIFJO0GmlQmDvXHUwMDAyXHUwMDFkU+aAQCBcblx1MDAxMFTI2WCogVG01POo0/1VUCiWi0KxXHUwMDFjXHUwMDE06slZW0xTjlRcdTAwMWJbI5qGwqPgol8ssj19Vjt9Ot/Zal7sk0LKUci0Y+xcdTAwMWGQQqxcdTAwMDFhyaNcdTAwMWNG2KNcdTAwMWPom1x1MDAwM7N16c1cdTAwMDLXgMCRaFx1MDAxMO1qlEZcdTAwMGI841qsYUoqRMMvj1x1MDAwZpdcdTAwMDdEWC5cdTAwMTBhOUCMbVx1MDAwMYxcdTAwMDFRopWwjs/MQNT9m729ytX6Q+vCXHUwMDE0jk9cdTAwMGb3XHUwMDBme4+p21x1MDAxOE24pcBcdTAwMWOb/sRcdTAwMTFcdTAwMDJcdTAwMTJcdTAwMWTxROY041x1MDAwZZHYbrhcdTAwMDRNXHUwMDE2WMiZ8k8vxaJcdTAwMDMrJCB5/GJcZsYgtGhcZrLlYpAtyVx1MDAxOE52SVFcdTAwMWZcZtK/mn0/5OPXeaRcdTAwMTSDxFGK2oxcdTAwMDNb8ShhXHS1oySxvjnY3eLFpSVZQ4h30JzaZFx1MDAwMjPrfogtysLF4lx1MDAxN2heOn7NdshcdTAwMTIhvrrksHN1znFntYOK8fo+q1dRX1x1MDAxN4Emlzqxrp7knyh7XHUwMDE0douXxetOcbtRLlx1MDAxNI/WW15vt1tON87tkUVhjyZcYkXtvufoyVx1MDAwNE6Mw7Qk0q7TmkWmXHUwMDFmXHUwMDEyQqJcdTAwMDeIvSZqpP3V0SVcdTAwMWEhLn7lRshzXHUwMDEyXHUwMDExxLV0Vlx1MDAwNM45ZSc+QFFL9LkxMpkhXHUwMDFkyWv1mvi4x1x1MDAxZFx1MDAxY6RexypN2OnFnuCl/XmMfsq8iom5f4xcYopcbqdmz/k565xWc7uwXqvCoHezXHUwMDA27GT7ZCvdqFx1MDAxM1xmXHUwMDFjpjDgXHUwMDE0RFx1MDAxYcMgaV/tXHUwMDAxXHUwMDAxWzZAXHUwMDEzhlx1MDAxMaBeXHUwMDE47ihcdTAwMWF5gVx1MDAxZS5cdTAwMTe2wlx1MDAxYlx1MDAxYdiZXHUwMDAyTSXROVf8lyf9LNFcdTAwMDKq5Vx1MDAxYUC1XHUwMDFjJzfmTo1cdTAwMDea8FxcXHUwMDA2c2ZcdTAwMThe0PuTykNhrX27dcbOT/qP53vN1J3TS8CQM4eg9lx1MDAxYlRnZlRcdTAwMTRUP6NQ2rw8opSQwtrAxaFQOMxufyhlmJEzZlx1MDAwM2iu7fbUPOr5fVx1MDAxNVx1MDAxMOrlglDPXHUwMDE3hJNcdTAwMTLhlfgg1MQohjGtZs+DL7JS7spr8YPTonta2utv7O51+ulGIdfEQbVHq2+rXHUwMDA0aD663GNdUGKr0lDgWsRfJjr3XUiwr1x1MDAwNOKIKsKBqJhRjl7jx4UjOIaiKFx1MDAxMVdGy5hpft2UJEJoI+ZcdTAwMDDLheS9/5TL+n+e975cbsRcdTAwMDFcdFxmp55QRSB2uGLYzcFcdTAwMTHSXHUwMDEwhThUxEZKU79woipccnvHtWjcXf8pKpF6YkFcdTAwMWWK92HoaH7irO1Vo37eZzvk6v5EhCRf2zjmj376qVx1MDAwNCTRNqlcYp1rOk4ly4hmJd6GabSNYKjWVL9LJPadQ8h6gFx1MDAxZT6MXHUwMDFjgX7N9iO2Jl/8/G9GJGknXHUwMDEyxDVwxrkhRFxmq6vK+MdXOcU5t3upXHUwMDE4oVx1MDAwMzd0Ko9MVKTh143r0JxoZPLLXHUwMDA07U6/Tcwzs1x1MDAxZtJ9OPN2t7e22UF3z3/avDpv+qdP863rVVx1MDAwZaxezHtRbPjGeIHkLeNcdTAwMGXa85FcdTAwMWPu2EZtjPW/XHUwMDE3uf5cdTAwMWSJXHUwMDE1MYe2XHUwMDA3XHUwMDE1UDqDlkXQd87jM27fe5jaV1x1MDAwNWbEMeXq5Fxmf1x1MDAxMtWTgn05caHblqVcdTAwMTTA6Ow5VvtbV/drhbPq9dFuy30oqubRXXe+m8pcdTAwMGJcdTAwMDC1YVx1MDAwZZOco1x1MDAxZVwiY1IxeryWXHTiXHUwMDEwSiWlWlx1MDAwMSdkgdn/IFx1MDAxY1x1MDAwM+iBSIlzXGYmtrDwUfI/U3T45pJ/j+p/XHUwMDE37keDv/BDOH8tOc9q5IafXG75v70ge8Vtt89CXHUwMDFjtTfyxGnyyi+PXHUwMDFl3Xyl71VcdTAwMWXWx/Xmt+rwj91cdTAwMGJcdTAwMWPC21wiabjM/s+Pbz/+XHUwMDA3SUFpniJ9 yxO11532-178x=5

    Simetrijos ašis yra tiesė, kurios lygtis x=2

  4. Funkcijos nuliai: x=4; x=6

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da1PbSlx1MDAxMv2eX5Hifr3ods97btWtLV7mXHJcdTAwMDFDSNjaclx0W7ZcdTAwMDV+xZZcdJDKf99cdTAwMWVcdTAwMDGWLGOwKVx1MDAxYsSuSVx1MDAwMmE0kubR50x3T0/716fPn5ei206w9PfnpeCm7DfCStf/ufSnK79cdTAwMGW6vbDdokss/r3X7nfLcc16XHUwMDE0dXp///VX0+9eXHUwMDA1Uafhl1x1MDAwM+867PX9Ri/qV8K2V243/1xuo6DZ+5f7fuA3g3867WYl6nrJS5aDSlx1MDAxOLW79+9cblx1MDAxYUEzaEU9evq/6ffPn3/F31Ot87vd9n3D4uKkcSiFzFx1MDAxNlx1MDAxZrRbcUu5RWNA6qRC2Fund0VBha5Wqb1BcsVcdTAwMTUtqfPg/GD1crVW2Lo5Oa1cdHV7XHUwMDFh3iWvrYaNRjG6bcRN6rWpJ8m1XtRtX1x1MDAwNWdhJao/jlmqfNxd3Xa/Vm9cdTAwMDU913VcdTAwMWOUtjt+OYxuXVx1MDAxOcCg1G/V4mckJTeuk5x5SH00XHUwMDE2XHUwMDE1aFx1MDAwM0ZcZi7fxmNcdTAwMDBcdTAwMWUoZoRcdTAwMDKDnFmeadhau0GzQFxy+1x1MDAwM1x1MDAwM/cnadqFX76qUftalUGdqOu3elx1MDAxZL9Lc5XU+/nYZaCGoGGGSU7N4dJcZqrUg7BWj4aa3lx1MDAwYuJJQNDaSlx1MDAwMSqZI/fOznYlXHUwMDE2hv8kQ98lMdp2t7T6jUZ6/FqVh/F7XHUwMDE0mkRs2EPJ76RTrv5GStySN/Q7XHUwMDE1/14yUNM4cW6YUCZpVyNsXWVf32iXr55cdTAwMTCmXuR3o9WwVVx0W7XsLUGrklxcSTX5XHUwMDAxXHUwMDAzcVx1MDAxN5eKl1UraqZkN6q9r+dq8/vO2lVnMORuONrlfiwzXHUwMDFlXHUwMDAwo1ZKY2j8LTKWqlTzO67KyCA0/F601m42w4j6+6VcdTAwMWS2omwj41x1MDAwZaw4zNVcdTAwMDN/ZNCpXHUwMDBi6WtZcHbcXHUwMDEzXHUwMDEzLLuv5H+fXHUwMDEzXHUwMDE5iH9cdTAwMTn8/z9/Pll7vFRlbv+U/vnQ1yloXHUwMDA0OMtcdTAwMTY/0lxiXHUwMDFhaTW9XHUwMDFjXHUwMDEy7LzEIy25aq/tdn2v/vXLysG1qeya4DjfPFwiJHhcZlx1MDAwNSdAXHUwMDAyXCKI5M238VXraWFcdTAwMTCtMkJyNT9cdTAwMWFJWjVgXHKmmMeBgdHcXHUwMDE4hSzB5COLXGKOTFx0JpKuL1iE5LhePfNLP76cr4asfVx1MDAxNpXKa6W91lMsXCI8VLGIa6W44PJcdFx1MDAxMlx1MDAxMZ5RXG4k08ZcdTAwMWFCXCJ+bFZcdTAwMTmqvTxcIl9TslxuzWnwJKkg49niXHUwMDAxqUhkhDRhJ1dOXHUwMDAybm5/lDd2L1ZcdTAwMGLR9jEogG9cdTAwMWL9vJFcbnpSg7aKM6WtMFbqXGbLoKe5UkpcdTAwMWJcdTAwMWFcdTAwMWMuMsqK1LSeXHTQXHUwMDEyrUUhUrrMzGmGZpwzbqmlgJbIL9WUhHjc2kOgXHUwMDAwq1BYIdRcYvFwXHUwMDAwRc+w/5e8M/yw2cJ/6NpssT9+5t3XyJzPjFxmJGaLXHUwMDFmycBYpZDQMLmC0a9+L5xGa5XWXHUwMDE5qub5+s5hULlb/YBcXCBpnFxyqVx1MDAxM6R2YIZcdTAwMGI495ike8hukYIkWmVamjcuYCDJ+kJcdTAwMDZ5VUKSXHUwMDE2L8hgUOG9yECP9VpcdTAwMTBUpGJycr2g1bsrrtdcbqsr65ffTlxuXHUwMDA1f7XQXHUwMDEyjVx1MDAwZsdcdTAwMDXOTaEkzVx1MDAwMmhQPKVcdTAwMTbFZIDgIWdEoVx1MDAwNDAhMNvSvHFcdTAwMDHXjFx1MDAxYlRcdTAwMGImWDDBS0zAYLyNYFxySOW8XHUwMDFlXHUwMDEzc8F2XTRUa+vk4mhzXHUwMDBmXG62W9FcdTAwMDHmzvHwXHUwMDEyXHUwMDE3XGLrXHUwMDE5XHUwMDBiRkhL5iZcYjnMXHUwMDA1zCiPXHUwMDFirYRcdTAwMTbMkDk6R5fmjFx1MDAxNFx1MDAwM1JhrNZJJ1x1MDAxN2SwIIMxZMDH2lxiXHUwMDA0XHUwMDA2ZVxm2qTCS1xcUPm6Wi5urJSarYPrg/5q9fteXHUwMDBi5EfjXHUwMDAyslx1MDAxMZBLo1xmamGkXHUwMDFj9ko6x42mcVFcXKBiqDPtzFx1MDAxYlx1MDAxMaDkTHPqyoJcdFx1MDAxNkzwXHUwMDEyXHUwMDEzSJstXHUwMDFlbGtcbpoyozGp8Fx1MDAxMlx1MDAxM1Q7O/1W//qutVE2tsyj/pqONj5cdTAwMWNcdTAwMTOAZ1x1MDAxNaChuZDSpnZcdTAwMTdjJuDWXHUwMDAzYVBami2paEZyzlx1MDAwNUbTnVx1MDAxNiGv+55cdTAwMGIueKL2O3FcdTAwMDEhYlx1MDAxY1x1MDAxNzCgyVJTOFx1MDAwYrY6je328bncN8tcdTAwMWL9dXZ1fta42P5wVICeXHUwMDAxRtpcdTAwMTBcdTAwMDemSC1ILICYXHUwMDBiUHlcdTAwMTZcdTAwMTgo0MrQdJm8XHUwMDFiXGKIXHUwMDE2rFD5XHKCWJDBXHUwMDEztd+LXGbMWM8hkqxcdTAwMWIuuZxcXDPoRVx1MDAxN4d4eVwigr3Dg43dzfCosFx1MDAwYsGHo1x1MDAwM+Y5Z4E0ZFx1MDAwZoDgw+5cdTAwMDLBlOfCo0hzUJzb3Fx1MDAxYlx0jCFjXFwtuGDBXHUwMDA1L3KBSCEhy1x1MDAwNVpKaaRmSY2XuODgplZe3rxcbsvm/Lzqn1x1MDAxZcqSv/1cdTAwMTFVXHUwMDAzlFx1MDAwMjTBnlZ/hYm4xmRcdTAwMDDSI1x1MDAxYVBWI1ibXG50yStcdTAwMTlcdTAwMDCAlmTsJSrMglxyXHUwMDE2bDDGZaDG7iRw0i5cdTAwMDVKNTlcdTAwMTmUNk1cdTAwMTBU15snYftSXHUwMDA27a1O7SyyeSNcdTAwMDPuIfXKMkU6j7HaYjJcdTAwMDAxXHUwMDE5aOXRXHUwMDFjaEClhlxcXHUwMDAy8ZaiNp62IIlcZizjXHUwMDAy8m4kkKWnuFx1MDAxNczkNdZoQVx1MDAwNU/Ufi8qMONcdTAwMTVcdTAwMDMlLdK6OUU084+7k+71XHUwMDA1NL59Watslq432+flTvGDcYFcdTAwMDTw0HIrrVLMKplcdDbS2tPIXHUwMDE5uONcIkLTfOWcXHJcdTAwMTSVXHUwMDExp+FCL1iQwYtcdTAwMWVcdTAwMDM79miDIKOYaaMn31Qsl1x1MDAxYsHtXG6rRnulvauj8uXRej/48cG4gEvlkVx1MDAwNaCltZq5XHUwMDExXHUwMDE45lx1MDAwMlx1MDAwM1x1MDAxZbjYbFx1MDAwNlx1MDAxNtGmojbzSVx1MDAwNVx1MDAwZXJCo8wrXHUwMDE1JCvRglxuXHUwMDA2XHUwMDE13sthwCBbnOwk0KShNDC5jfB9Z7mnf15+rZQv5OnOVWj0cVj6aFxcQGinf5ZpQZpcdTAwMTGk0H6vXHUwMDE3WM9yYIyTnaBJdcg5XHUwMDE3oHUhJFx1MDAxYSCvRsKCXGaeqP1eZPCMkVx1MDAwMFpqt/pNvpNcdTAwMTDo4FSXjlx1MDAwZm721m9bpVrx25duZfODkYFcdTAwMDDuXHUwMDExdpB0XCLUXHUwMDFjIOVcXHzUXGbIXHUwMDAwl1YgkO5ccnn3XHUwMDFlomHUTjJq8lx1MDAxYXC0YIMnar9cdTAwMTNcdTAwMWJIXHUwMDFjv69otDZo9Vx1MDAxNIlcdTAwMTSuXHUwMDBm+NZcdTAwMDUvtsvVy2L3plx1MDAwNttXZ71vXHUwMDFmjVxyXHUwMDE4mVx0XHUwMDA2XHUwMDA0zYJcdTAwMDBcclZnfFx1MDAwNsRcdTAwMDbKWqGEXCKysFwi97pcdTAwMDFzjE/NXbDBglxyXHUwMDFl2CBcbm6ip9hA27GqgVx1MDAwYrXVaHByM+H5Y+g54YJMMlx1MDAwNCU9MMBcdTAwMTVcYlx1MDAwYpZUoSHk00R4zCqLOlZcdTAwMTO4ybRrdsi3XHUwMDFlWSDWWMVcdTAwMDQwLvhcdTAwMTMpVZ7IhoBA+lx0SDtcdTAwMDOPwNCFXHUwMDExRFx1MDAwZqTtV0omJ0qBMSSF9yf9XHUwMDA3V34/iu5YvpBkqdLcvIYvqu1WVFxm7+4t3qHSgt9cZlx1MDAxYrdDXCJcdTAwMTPD42836UNFK42w1opcdTAwMTfToDpcZp8oLPuNweWoneRsWSrTK3xafLujXHUwMDAz3u6GtbDlN05GX+eW663HqUYvNdlcdTAwMTd+L4hcdTAwMTdztz6/XHUwMDEy5GPDXG7JXHUwMDE0NrSqTbFf+HzGmlxcglxccvTccUMmuJWAmDly6Fx1MDAxMidZ5Vx1MDAxNFx1MDAwNFqflJxf3Fx1MDAxMNK8XHUwMDEyw9tcdTAwMTjhKVx1MDAxZOtcdTAwMTmIXHUwMDEz91x1MDAxMFx1MDAxMvgsoodfj/Dnk2VccongK1x1MDAxMY5pXHUwMDFjzFx1MDAxNeE3b4vwm7dBuORjXHUwMDExTtpcdTAwMDInnVx1MDAxZiffXHUwMDA1vGmXVlx1MDAwZvzV0l7/qMn8bl/2wmLel3GpaUAl18KdJVQ6m1x1MDAxYs1Yj5QmWuyFder/XHUwMDFjIS48l9LEWCCpJu1pMpQjMlLtQM7iXHUwMDFj8fMwz1x1MDAwZlx1MDAxMFx1MDAwZt9cdTAwMTaIh29cdTAwMDNEMX6pJctcdTAwMTFAqSnyXHUwMDAwbS7XhX9UkHtb66XdTrBcdTAwMTPsX+zznFx1MDAwM1GTPk3yr5lcdTAwMTJcdTAwMWNsNkRcdTAwMTekx0Bya5hlJO3z23GTXHUwMDFlWfPUXHUwMDBlVIaMKZ5OJfZcdTAwMWNcdTAwMGVpuZVILDL35TY/OMS3xSG+1YIosqWPOCShIPlM63kv4fB0Jdz/+nXnjO/LqM/urlx1MDAwZr9sYN5cdTAwMTdEUnnRXHQ+/XXptczwyVx1MDAxObcx7kxNIYWUyswxJu6VQHTWMCp8fyCytLgugDg1XHUwMDEw+TNZL9AqZvRcdTAwMTTJsNBcdTAwMWPVyu3+mr/zo7d52+Wdq3Weu/i0XGZcdTAwMTCZ9oRcdTAwMDZBK4thkrHhjSamuGdcdTAwMTlKJYxSzvE+vzx4yDwurcvpKNGlXHUwMDFkmlxihkRcdTAwMGXEXHUwMDFlM9lX+igwlG9cdTAwMGJD+TYwxNRcdTAwMTSOJKiUjFx1MDAxYjN5ZJi82y432ie9Wv3otLZcdTAwMTOJ1fpuMXfHRzK5sy161mVcdOcupalcdTAwMTg+Uk5quWfilFOcflhcdTAwMDPz2+BhzFx1MDAxMy5cdTAwMThNxdRnISXXz8FcdTAwMTBcZt3E2SyOin1cdTAwMTRcdTAwMTgus7fFYfp9s1x1MDAwMGK1S3P3mGP/samDqO3x8Vx1MDAxOFx1MDAwMrWlJXGKeIxiYb+4W/K3epd3K9etzdppr1O+zDdcdTAwMWPjg5wuJpPWP+FSPVxmn9hgmntKSyZcdTAwMTFcdTAwMTlccsdcXE9sXHUwMDAwpNI4Junrh8tcdTAwMDduXHUwMDFhzlxit3JcdTAwMTZcdTAwMTmeXovD+1x1MDAxZFSTltVJcTjj/cr0XGIlJcl9nzL3T7JcdTAwMTdcdTAwMWI2+1xy6u6XLlxyUr/rXHUwMDA0J+r2Uz14KL9cdTAwMWajZ/E3LvyB2bGGoSTYXHTOpzhIyU6g/e2brVx1MDAwNfvVg8YxrNTbp8cq59BcdTAwMDNBi522hjPOgGeQx5X2NDOKhlx1MDAwMoBcdTAwMTjfzlxyeVxuPFx1MDAwMUhqsSbrVKJOhTFcZlCIzHpKWcZcZlx1MDAwN4tSmJGVkVlp6Sksr2eoX4XT//FIh2VcdTAwMTZvuVuX/Ftwg8NcdTAwMWb04K5cbudcdTAwMWTkXCJcdTAwMGVok+kk7WNcdTAwMWU4Xpbiy6NiNEpSr+NcdTAwMTI+PnVcdTAwMTPTaORcdTAwMTRU0kF+erx9UmhcdTAwMDaX9dOyv1Hs8W75XHUwMDAzUIlhsUVpUKTWy3sqUZ5cdTAwMGIudVxut9Em7ZCbXHUwMDAzl0hFbVDWXGLhXHUwMDBluTxcdTAwMTE1hcx4qFx1MDAwMGheSMV3n6EysrpLyWltx9zmeF+QyWhtMqhcYoWMoM+UXCIhxKGoqWXGPZdDQIG1XCLOw6VfeuB4WYpcdTAwMWY4KkZTcslr7Vx1MDAwMnolXCI1aHJn2aG8LsrCwUpcdTAwMWQuXHUwMDBmz7daqlTcr+7mn1EkXHKxYFxcMGFtZlx1MDAxN1dJTzEmlVx1MDAxMWiI7+eZ4GVcdTAwMWGzwEpiXHUwMDBlt/m8sFxu8m5cdTAwMTWMc4+xlGiOJl5zh6iZmHwtx6vt4+ON8+PvX7d3wp3Ls41A3Zl8I4+0LU+hO1x1MDAxNWa4XHUwMDA2wYdPSjpcdTAwMGaZXCJbgUiWSFx1MDAwZueYc5G5SC1cdTAwMWJ/RJFwulx1MDAwNU7oIEOng9j5XHUwMDA3Qr7kIOOvgeDrXHUwMDFjZOKNXHUwMDFkZKn3vaODjGxcdTAwMDJBXHUwMDBiM0xxerFa0MQvhfVcdTAwMWZYOFxujnZ188SeLedcdTAwMWOOUnqkYDAl3Fx1MDAwNz3yTDhcdTAwMTPTwlx1MDAxM0Zb7tJcdTAwMWNoi6mQknd2kNFcImhBmVl8MspiKXxcdTAwMWZcdTAwMDdZanNkJOsgM8D4XHUwMDE0scJfXHUwMDBmN03xWJ40W1x1MDAwMn7W18RJdVx1MDAwN2ozRV6l7cZqtjqoJHBcdTAwMDFcdTAwMDdcdTAwMTcrKDTPuKadL0FcdTAwMWLDraargsNcdTAwMWM/uOyJlY+WR2TO0qFpYHzo7Y9cdTAwMWaQyFx1MDAxNEeZ22zDXHUwMDBiXHUwMDFi9oXao1M8Slx1MDAxOK9ScXkqd/BcYrDdp+0wsrgmRnZr7bK2u315XHUwMDA3XHUwMDAxq5tTsb7d74rZ7lx1MDAwMc9cdTAwMWXZXFwyXHUwMDFhWqddoopcdTAwMTXZYVx1MDAxZJdcdTAwMGKPVH1cdTAwMDI4XHUwMDA3lGqOiYGE8oA7bnH+XGI1aSyGXHUwMDBiqHRcdTAwMWaO8I5W5luruDf/vPUu8PBcdTAwMWKnUnM/PeB7ye90ilx1MDAxMY3bgEJposLKQ+eTty9dh8HP1VHR+aNcdTAwMWF/uTNcdTAwMTQxxFx1MDAxZJbi9fzX70+//1x1MDAwYpFJbvEifQ== yxO115-2-4x=-2

    Simetrijos ašis yra tiesė, kurios lygtis x=5

Funkcijos reikšmių sritis. Didžiausios ir mažiausios funkcijos reikšmės

  1. y=x2x2

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1cXGlvXCJJXHUwMDEy/d6/wvJ82ZWamsgj8pjVamW7fd/H2G6vVqNcdTAwMDJcbqjmKFxmhVxyXHUwMDFl9X/fSGxTUEBcdTAwMWJ7wF1cdTAwMWVBS207s6iMPN6LIyPzz08rK6txr1x1MDAxOaz+trJcdTAwMWF0XHUwMDBifi0stvz71c+u/C5otcOoQVW8/3c76rRcbv0nK3HcbP/26691v1VccuJmzS9cdTAwMDTeXdju+LV23CmGkVeI6r+GcVBv/8f9f+TXg383o3oxbnlJI7mgXHUwMDE4xlHrsa2gXHUwMDE21ING3Ka3/5f+Xln5s///kHR+q1x1MDAxNT1cbtYvToRjaFS6+Chq9CVlTFx1MDAwMuOSKzZ4XCJsf6HG4qBI1SVcdTAwMTI4SGpcXNHqoSqLWuNsI9i5vIty5507+/taPWm3XHUwMDE01mrnca/Wl6lcdTAwMWRRV5K6dtyKqsFVWIwrz4M2VD7tW62oU640grbre1wiZtT0XHUwMDBiYdxzZVx1MDAwMINSv1HuvyMp6bqWXGZ6VirUXHUwMDFhuVCglVx1MDAxOFT3nqq5RfphXHUwMDA0MilScm1ENZpcdTAwMDWS61x1MDAxN1x1MDAxNrh/iWR5v1Atk3iN4uCZuOU32k2/RXOVPHf/1GOm0FOAXG6pJWu0SEagXHUwMDEyhOVKPFwieDvoT1x1MDAwMckjjdVcdTAwMDJxUOOabO5cdTAwMTb7a+F/ycC3aFx1MDAxNe26rzQ6tdrw6DWKT6P3vGaSVcOfSr4nfXLPb1x1MDAwZa22pIVOs+g/rlx1MDAwYqa5XHUwMDE1Qlx1MDAxOK24sIP6WtioppuvRYXqhKXUjv1WvFx1MDAxZTaKYaOc/krQKCY1Q1wiP0Gg38XVvWMlsXdcdTAwMTNendRO17b2w1xco3SxM1x1MDAxOHE3XHUwMDFjUaHj5Fx1MDAwN08zXHUwMDAzXHUwMDFhOLMgXHUwMDExXHUwMDA1yKGHyn7T9WZsXHUwMDEwan473ojq9TCm/p5EYSNOXHUwMDBi2e/AmoNcXCXwx1x1MDAwNp26MFxcl8Zm070xgbL7JL+tJGug/8fg9/99nvj01EWV+van4Z9PXX1cdTAwMDWJXHUwMDAwiHTxgEQk18IqXHUwMDEwemZcdTAwMTKB/PH+abRx9qVRLcvd+2Inxy95tklESOlZY5lWTFmlcKi37lx1MDAwNUK7amFcclhUXHUwMDE2LVMpyeZHI9xcdTAwMTNEVyAkXHUwMDA3jpZLkczMgEdcYqGeXHUwMDA0LpE6Zq1cdTAwMDAwY8RCXHUwMDEya0QpMkosMlx1MDAxOf5FXHUwMDEwy+jLPlx1MDAxMN6nz7775MYn/pVcdTAwMTRAg1x1MDAxZExmXHUwMDAwy9PFz1xmQIuIMeLW2a2Ir/eV3PXX/KXa4d3ORXWjflx1MDAxZHTzWSNcdTAwMDDmoVx1MDAwNm2V4Epb0sKYQP6RXHUwMDExlMes4lxmlSZcdTAwMTPKXGY0y6NVgcLT3Fx1MDAxMCWAIVx1MDAxNSR1WtL5XHUwMDExXHUwMDAyeFx1MDAwMlx1MDAwNGliklx1MDAxNJiVXGIyXHUwMDExZcBcYpx7NEdagVVMWimH+OmJXHUwMDEwrFwi9UHUlVVCSKbto1x1MDAxMcJI3Vxc2eBcdTAwMDdT7z5jkz4vMmBcdTAwMWPSxVx1MDAwM3NcdTAwMDCEXHUwMDE1hFxuMztcdTAwMWJ096ptv9Hba+3j7tc8L5WP+G3zXHUwMDAzslx1MDAwMXBAQVx1MDAwM41AP1N0wC3ZXHUwMDA3xNZSg0AhOKZEzVx1MDAxY1x1MDAxZIBcdTAwMDLFNFx1MDAxM8n4LOlgSVx1MDAwN5PpgFx1MDAxYp0ufqZcdTAwMDM00mojIVnvL7FB6Xr78uaPemWza/LrYaeaP74t735ANpCKXHUwMDFiMIbcXHUwMDA1zpLX9p1cdTAwMDWJXHUwMDFljb5SXHUwMDEyaDpQ68XFXHUwMDFj5kRcdTAwMDYojEFJXHUwMDBlw5JcZpZk8Fx1MDAwMlx1MDAxOVxilOniZzJcdTAwMTCGSc1cdTAwMTBnj1x1MDAxNMjO6Y5QVbZXqZVu7+riIZc7bH04MtA0XHUwMDE1iKRPaTo0+d2jbMBcdTAwMDVVu1x1MDAxMI524UdcdTAwMGVZZ1x1MDAwM05fXHUwMDA2XHUwMDE4lnNJXHUwMDA2SzKYTFx1MDAwNuRcdTAwMThPdVx1MDAxNLhcdTAwMDSukVxchZnZ4PjCvzo84cX81lFcdTAwMTV6zfu9bklkLm74XCJcdTAwMWKgp1x1MDAxOHlInHGrOKRMXHUwMDAz4Fx1MDAxZVx1MDAxYSNpJqy2mjgj42TApDGEPbtcZlx1MDAxYizZ4GU/QUyNIVx1MDAxYdJ+5Fx1MDAxZCfbSS9xwWl0iY3zm2K8tnEod/JcdTAwMTeVh9p65txcdTAwMDThMcnQcoVcdTAwMDJcclx1MDAwMZolOrPPXHUwMDA1mnlggcv+9iNBPoFXP2ig0UNcdTAwMTdYJTdcdTAwMDKEgcyHXHUwMDEwtUVcIjYxZOBki1x1MDAwYpJcdTAwMDFcXHLB4IGfxVx1MDAwNTjVMkAujaRlNLthUCnun29cXJ1cdTAwMWSe3UX+Zrd90vP3rv74aGRgpeeqQLv+W5tcbiBq6UlBJoGbI8y+k8CY2y21xmTVS1hywYSnf1r8cGrIwCjDODevcFx1MDAxMvwz3dtsiOuznH+Ub1x1MDAxN85z14XD3lx1MDAwN+NcdTAwMDLJjIdcXJO9XHUwMDA00lx1MDAxMFx1MDAxMybG9SNcdTAwMTdcYs9cdTAwMDJqI42iai5TgmaNXHUwMDBiXGZcdTAwMDBIZbOaw7SkgklP/6yAwXSzQJJcZlbJV1DBw35vW25fqduzXHUwMDFkmatfwF1P7Fx1MDAxY3wwKuBWe1JcdTAwMTnNXGLw1lFB2i7QXHUwMDFluVxigiqdYVx1MDAwMJj5gIFcdTAwMDDDlVx1MDAwNbV0XHUwMDEylmzwXHUwMDEyXHUwMDFioJqadijA7SRcdTAwMTg5+8bivdqM73un5uGrPIr07nG9UetlLnr4kpPAmcc4MCNcdTAwMTAtWpnk9T1cdTAwMDdcZphBTc5cdTAwMTNIcM54xslcdTAwMDA5Slx1MDAwNtndV1xccsGEp1x1MDAxN8tcdTAwMDVx0I0ncYFcdTAwMWU6pDCWcmRcZmNMvuJcdTAwMTjD/nV0cF+++faV//5tq3R1ur7tlytZ44JUXHUwMDA2slKecvlDQEuTPqNcdTAwMWJcdTAwMDdcdTAwMWO0R862tig1XHUwMDEzxpiUXFzzQ771qFx1MDAxNXLuXY4u2SNcImkpwf1QdtMj0CUxmjFz2TNcdTAwMWOpeFx1MDAwNaJRc+TwJkSXokZ8XHUwMDFlPvRJXHUwMDA1Rkq3/HpY643MaX9cdTAwMDH/5mZlpGitXHUwMDE2llx1MDAxYn1lXHUwMDE3lEZcdTAwMTd4XHUwMDFjXHUwMDE2/NqgOo6GUt9cbtSET8qxNT4kUSssh1xyv3Yx3pxTpzuDVHBvaDbyfjvoK1sqN2+DoZ2+oVx1MDAwN1pwTTicfXv/x+c4Mlx0Qym1x5lGRDLFleE25ZtcdTAwMWLmaVx1MDAxYVx1MDAwNEXrjZQ1synB5niciGaWWNj2QTikQX+AQkX2xJzi8z9G4YDzXHUwMDEzrbwy21x0spFF+JhIP6j5/qxAMoPx7vtivPs+XHUwMDE4x6FsvTTGLWl2xqWZ3excdTAwMGW368VcXK9e3Fx1MDAxMt+ae7f2tCtcbpV2tjEukEBM1lx1MDAwYudcdTAwMDRhZ22nIE6KWFGlJSPRXGJcdTAwMGWLy+Vl0kPmlC0woTQzs8HckPWquJ7HlvxfU7ZieLkuXHUwMDE0iMfvXHUwMDBixOP3XHUwMDAxXCJcdTAwMTl7U4EolSRcdTAwMDfPqNmV7TWG4f7F2pctfXRfur5j9drBeZhxICrjaSBjV1x1MDAxOFTGoklcdTAwMWTdtcZcdTAwMDNLXq/mLpd2kafu0JNcdTAwMDREa1x1MDAxOIkhUTA+m8JlRFx1MDAxNPPxbz9cblx1MDAxMtn7XCKRvZdKnFx1MDAxYYjiZILRolCza8SLMK5bP1d+XGLPrtq3paNwXHUwMDE3WltcdTAwMTlcdTAwMDdcInfHjKVRgmklmUlpRFx1MDAxNJ6QxoB1puiIwsxcdTAwMDZcdTAwMGVcdTAwMDVcYiDx+cJcct8lXHUwMDBlXHUwMDE3i0Nup0aBLFxyM9dcbmdPIdu/2dxfO1nfv8w9dPzq+elhwZrNjOOQoWe0stIwI9FcdTAwMGW5Oo+p5NwzwjLOkbFcdTAwMDWeOKVmqHFyXHUwMDA13PlXMk7VhKssJsSAmDSEQ5zDibK/XHUwMDA2Qjm8VFx1MDAxN1xuwlx1MDAxY39fXHUwMDE0XHUwMDBlt7dQXHUwMDE4mqkwNJoxbqWe3S49ydVcdTAwMGXWXHUwMDFl/C/X7KTtb5Zv72gwMOsw5J42qMHtvDJSSGNmKVxuRDQgXHUwMDAxhLBcdTAwMGJ0XHUwMDEwhadcdTAwMDSpQ+m2VdHOXHUwMDE4XHUwMDA34lpcdTAwMGIucFx1MDAxZWc7P1xmXHUwMDEy31lcdTAwMWbm3kshsqmxXHUwMDFh6WJcdTAwMDY01bMrxEZedvPb+Fx1MDAwMPewibnDXrlcdTAwMGV5m3EkXHUwMDFhwpqWXHUwMDEyOVmeiiGk0iOsJqBad6+BM1x1MDAwZlx1MDAxNnicgslXh2Pd7pk7XHUwMDBmPjRDf3tcdTAwMWO+s0Kcsz4stWjmnm+Ae5b0XHUwMDE5iTB1Z0RzpUCLoZt6XkJitLZ/trt+dnh9cLtnWuZWXHUwMDA29nY740hU4FkwXFww4U4w6dSFKLTUPI1GSlx1MDAwYlbKhVx1MDAxZXlcdTAwMDZcdTAwMTg6VZXcrTZaPjizXHUwMDAwWlx1MDAwMZ9HNtJbIfiYavAmXGLOeWN/eICSkuR7n1LfnyVpIax3atTdk1x1MDAxNlxyUqfllk3c6lxm9eCp/HGM3lxmPvaDS1x1MDAwZVx1MDAxMUlcdTAwMGa6XHUwMDA01JnRd39w2b3Zq1x1MDAxNta4v3XaXHUwMDAzVtnssqxHSjnz3DVsXGJMXHUwMDAygY+njlx1MDAxMlx1MDAxOeW5aLFF4MxcYqlcdTAwMTaZXHUwMDE59Cr8XHR0RyVcdTAwMTksXHUwMDAx+HdcdTAwMDWgVmSe6eFI3Uv4w8uzM2u7jN3ZzUuNW8fV3ULWXHUwMDAzpLZ/PoehXHUwMDE0ViCIVHaO0Vx1MDAxZWimlLZcXFlipEVe//NcdTAwMWH4KUSt5nN6d4m+xaJvWpKsnJ5cdTAwMTgnlXa3x9rZYzHiW329enRbL1x1MDAxZlx1MDAxN+7WWVx1MDAxYk5Nnlx1MDAxZmVcdTAwMWN5ZHdKTuY1upCowdEtQiFI8blzMoyr0Vx1MDAxM7Zz35lcdTAwMTBcdTAwMWVcdTAwMTjJgJF2XHUwMDA1XHUwMDFjOdOU3MtcdNZcdTAwMTPkXHUwMDBiuGuXef+cf1x1MDAxYZDGXHUwMDFh55PZOYRmXHUwMDE2klx1MDAxMfsmnP7NM2Jzgnk0PFx1MDAwNpRxKVx1MDAxYYIn9N6vZtbTbtOKwKitZTT1L75x+mJ6fOPYOlx1MDAxYWepN5FcdOqp4STBNShcdTAwMTCvUOOtjbV7efDl8CYqXFxG7bWNmjj/XHUwMDAy2SdcdTAwMTN096ZcdTAwMTJhaDKW2ahcdTAwMTnt2ES5fU7JpVx1MDAxNWaBJ++kXHUwMDBiJ2lcdTAwMDNGXGLGXHUwMDE5n1x1MDAxNFBKL4LxXHJcdTAwMTfJXGajd2T1XGLukkvGn+bKY0xxqySB2jKb3DPtPmNUXCJeet/UdfT4uvRcdTAwMTJ6JY1MTZew6cIkSdhcdTAwMTLHKHjFhYDd6+rheu/q5Nt+7Y/bI1xi2t9cdTAwMGXmXHUwMDFjXHUwMDBiK0ZuWcw9WZ8mkSBcYqRcdTAwMTJcdTAwMThL3fkltKc4U4JZt4Ok1Fx1MDAwMneIXHUwMDE4euR20NySXHUwMDExxFGbXHS+wYTQtNAkXHUwMDE0LcSfnjGRiLbo0PQ/4DP+ayXHP3P85/tGqSe3/KqA9acnXHUwMDA2WPWbzfOYxnFA2jRxYfFpMFx1MDAxMilW78Lgfn18Lf1S6n9cXNJ1XHUwMDFm9Fx1MDAwZV597+TP75++/1x1MDAxZlx1MDAxN+mG/SJ9 yxO11-2-12(0,5; -2,25)

    V(x0;y0)

    x0=b2a=12=0.5

    y0=0.520.52=0.250.52=2.25

    V(0.6;2.25)

    Mažiausia funkcijos reikšmė y=2.25

    Mažiausią reikšmę funkcija įgyja, kai x=0.5

    Didžiausios reikšmės funkcija neturi

    Funkcijos reikšmių sritis y[2.25;+)

  2. V(3;2)

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daXPiSFx1MDAxMv3ev8Lh+bJcdTAwMWKx1lRW1jlcdTAwMWJcdTAwMWJcdTAwMWI+aOP7bFx1MDAxZr0x0YFBXHUwMDE42UJgXHUwMDEwNvbE/PfNom0khGmDXHUwMDA3aHlcdTAwMTc62sYlIZUq8708Kqv449PS0nL82PSXf1ta9rvlUlx1MDAxOFRapYflf7j2e7/VXHUwMDBlXHUwMDFhXHUwMDExXHUwMDFk4r2/241Oq9w7s1x1MDAxNsfN9m+//lovtW79uFx1MDAxOZbKvndcdTAwMWa0O6WwXHUwMDFkdypBwys36r9cdTAwMDaxX2//2/3cL9X9fzVcdTAwMWL1Stzykpus+JUgbrS+38tcdTAwMGb9ulx1MDAxZsVtuvp/6O+lpT96P1O9K7Vaje9cdTAwMWTrNSedXHUwMDAzpWW2eb9cdTAwMTH1elxuyoLmwJjpn1x1MDAxMbQ36GaxX6HDVeqwn1x1MDAxY3FNy1x1MDAwZlx1MDAwNlx1MDAwZuLT7daXNVx1MDAxMVx1MDAxNlx1MDAwYnU4LVx1MDAxNJ4wuW81XGLDk/gx7PWp3aBHSY6141bj1j9cdTAwMGYqce1l0FLtoz7VanSua5Hfds9cdTAwMGX91kazVFx1MDAwZeJH18ZYv7VcdTAwMTRd966RtHTpL1x1MDAxNOAxNFJwaVx1MDAwMeg39lx1MDAwZrtcdTAwMGJwlJ5EJTRqK5nR2Y6tN0JcdTAwMTJcdTAwMDN17Fx1MDAxN/Ddv6RrV6Xy7TX1L6r0z4lbpajdLLVIWMl5XHUwMDBmL4/M0bOSgzZguVx1MDAwMK37Z9T84LpcdTAwMTZcdTAwMGb0vO33ZFx1MDAwMNxya7lcdTAwMDHVP+Ju2dyq9JTh92TkW6RGW+4jUSdcZtPDXHUwMDE3VZ6H70VpXHUwMDEyteHPLX8mz+TOL6TULblDp1kpfVdcZlJcdTAwMWGLiJZcdTAwMTnGk1x1MDAxZYdBdJu9fdgo376iS+241IrXgqhcdTAwMTJE19mP+FElOZLq8jNcdTAwMDZ6j7i8XHUwMDFlPkTVsrZPx+Xb45pfvdpT9XJ/xN1wNMqdnsp4JHWFjFx1MDAwNGxJ3aXSqZOuS006RXqg6MWURlx1MDAwNlZqMzQoYalcdTAwMWSvN+r1IKbnP2xcdTAwMDRRnO1074FWXHUwMDFkXHUwMDA2a35pSFxi9EjpY1mwNt1cdTAwMTVcdTAwMTNsu1fybinRid5cdTAwMWb997//49WzRypZ5tOf0r+fXHUwMDFmdXxWsVx1MDAxYbKtL6TCmVBKIP1cdTAwMWabVFx1MDAwZe/ubk82a5+V2txhXHUwMDA3u8Y8hHCVc1LRxjNaXHUwMDFhxVBYpYVIntZdXHUwMDAwpfKkspqjMVZwITNcdTAwMWSbXHUwMDFlqTDPXHUwMDAwSGSM+EtZpjBcdTAwMTmDPqtwLjwwIDgy4jk6M8syQlx0XHUwMDAwJXliXHUwMDA3ckQy2tqE/GZBMoNcdTAwMTf7QFhcdTAwMWYte/daXHUwMDE5XHUwMDEy+4Top7H2X3UpQI5Ev1x1MDAwNMkkXHUwMDE3KYm9XHUwMDA1/sdAXHUwMDFlb1x1MDAxZl88fTuqdFxu4vNcdTAwMDM0v61s5Vxy/OBJXHUwMDFhQDIkXFxpK1xmWYlcZlx1MDAxYlg6gURgNFx1MDAxYW3SXGLruVx1MDAxOFxmPLIwpNFcdTAwMDYtIM7OxWBcdTAwMWWZOo7WmTywQrJcdTAwMTQvpejAI1x1MDAxMWrFrFx1MDAwMmGFSGT14nTQI1g0LNXRXHUwMDA1XHUwMDFmTIdcdTAwMGZcdTAwMDaOTZlcZkaK3r2GhD41MtB2ZHxhpdFC0V3HZoPyTSO61OWv2/UrdSlcdTAwMGXuXHUwMDFlLoLw81x1MDAwN2RcdTAwMDPBgOhXSivTfn7vglp7lpPLaeiwMDDDgGNKbOBcdTAwMGUqrtXCO1iwwVtswFx1MDAxOWab+2yAJDJcbsBkovBvsVx1MDAwMTbq6mCvubJxarqdXHLf32yc2ftcdTAwMGbHXHUwMDA2hHdcbi41MERcdIxn6EBcbk+7XHUwMDEwgYTEXHUwMDA1t1Jkupo3OtBE6sjSnL5gg1x1MDAwNVx1MDAxYrzOXHUwMDA2XGIm29xnXHUwMDAzaYBcZqRl46dcdHaPYbP7ZbX2XHUwMDE4Norts6BVOP5cdTAwMDbbXHUwMDFmjVxyXGbzSFx1MDAwNGDIpDJlVZJcdTAwMTjopVxyQHvAjWScQiyUKc8hn1xcQFx1MDAxMuRcdTAwMWMswlwiUFiQwZtkkNKfbM5QWI10u/G5oHZUhbCyuV04eKxcdTAwMTUwOpbV7s7mR+NcdTAwMDKKXHUwMDEzjEDJwFx1MDAxOFx1MDAxMIiZXHUwMDFjXCJpsYeG5KQ1eVx1MDAwZuSB551cZughtDBcIpX4XZDBglxmXidcdTAwMDNcdTAwMDGj41x1MDAwNFx1MDAxMlx1MDAxNaDVdvw4YcvwoFPuqu0wir76+3tXhXZ346OxXHUwMDAxeVx1MDAwNsoooIc3hlx1MDAwZSeeU49cZjR4XHUwMDFjtbFWUlx1MDAxOGHYLCdcdTAwMTSmQlx1MDAwNvRRg6hcdTAwMTeewYJcZt4mXHUwMDAzM7JEgTNJXHUwMDA2kls+fonCenRw/Vx1MDAxNO5fxp/XVNx8Klx1MDAxNlwiaFx1MDAxZXw0MtDGs1YghVx1MDAwMZaokovBpFx1MDAwMZfMk1xc0ie1sJajxExX80ZcdTAwMDeSPixIzotcdTAwMTTiglxy3kwh2tGzi3RcdTAwMWKkf+OTQfClpo6PXHUwMDBmdm52r8qb7YvW5UW0kjsyQI/AIS1XxHWGXHUwMDFjn5Rv5MhAMOFcdM2sK2BCxnlmcpGjJyRXXHUwMDE0XpG0uElcck4+uVx1MDAwMFxmXUIrLpKBWJDBglxmRmVcdTAwMTBHu1x1MDAwNsC55kakXHUwMDAw9Vx1MDAxNlx1MDAxYtycqMrtfvluKzq/7da/XHUwMDFkbn77XHUwMDFjdD9cdTAwMWFcdTAwMWJw4zFcdTAwMTScMToqXHUwMDAwdCZrQKJATfbWlVx1MDAxZlx0ZXTe6YCTd6dcdTAwMTlLi3FBXHUwMDA3XHUwMDBiOlx1MDAxOJVD/MH0otHMUMw5frFBXHUwMDE3V3d21q/j05MjX59XYlFd83c+XHUwMDFhXHUwMDFkSPCcmnJcdMBcdTAwMWTgXHUwMDA3Z1x1MDAxNDhcdTAwMDeXY1x1MDAwNDBcblxcXHUwMDE20eSdXHUwMDBlkHht4Vx1MDAxYiwtyGBcZjJcdTAwMThdhFxmQitFvlx1MDAwMY6fQ6ycnHfriNFF5/rw4WbF34DCXHUwMDA2+2hkoKXHySNcdTAwMTBcXFujXHUwMDEwWJZcZtDj5DZcYmNdXHUwMDEwxdPoyyVcdTAwMTmAUNa5XHUwMDA2ZkFcdTAwMDdcdTAwMGI6eJNcdTAwMGXsyEJEJVxms5A2fm+xwfnN5lx1MDAxYW9Wrlx1MDAxZXcrjcJO7UnJXHLQXHUwMDFmjVxyrPFcdTAwMTRXXG6YKyxcdTAwMTLWZiNcdTAwMDX6PDOoXHRgllx1MDAxYpzpXCKFqURcbuCWZ1x0ls+1UFx1MDAwYjbIXHUwMDE1XHUwMDFiXGI1stpcdTAwMDC5JV9ZTjClsHdwLNdW99Te7f39l1M4P70v3n20LKLkbi2c6FVcdTAwMWSjXHUwMDE2cphcZtxcdTAwMTI4olx1MDAwMjfJqGXeyYBcdTAwMDRIXHUwMDExXHUwMDFm8cHCNViQwVtkIEenXHI4+cmEiVx0ilxyXCJ1dnVqbte7paeju+JV0GI3ce5WK75BXHUwMDA2KIVnOFOKodIg1VCgID1U1E5vNJJrkHsyMFIyzVx1MDAxNpVHXHUwMDBiLnjmgtjvxq9xgeGjS5ItJ7NcYjDBhMLF02pxp3ugTzcrJ5yb9b1iXHUwMDBiL/PGXHUwMDA1mZXLXHUwMDE0XHUwMDE1WO0yglx1MDAwMGBlZjZcdTAwMTFQetYwt2be0YOcYb7QekjQMNZl+zhcbkzulFx1MDAwMD/lhTzHXHUwMDAwlklupZlcdTAwMDLSXHUwMDA3XHUwMDBlTFx1MDAwMGmpOUVVSaw5XHUwMDAxpKuNKD5cdJ6+XHUwMDE3tlxmtH4u1YPwcUCoPVxydlx1MDAwYmSXXHUwMDA3mlbD4DrqWTu/OqjhcVAuhf3DcaOZXHUwMDFjLdMtSmRcdTAwMWRbw0PSaFx1MDAwNddBVFxuT4dv5+xp8UVcdTAwMTbOe0zJuu33rK2bzn1cdTAwMWZcdTAwMGVx9LJBcs2RQtJcdKb5f7xcdTAwMWZELnEoNfPAWVdcdTAwMTBSkaHNVPig8bRcdTAwMDEjSd+UdHtXzFxmh+AqXHUwMDBirbU9XHUwMDEwpjaL+Vx1MDAwMVxuwVpJ2E1XLM9cYoZ91k/scl/oP96LZkBcdTAwMGK/r8LvXHUwMDFm+fPFhPxcdTAwMTjk+l2bm7xcdTAwMGLk3fmCvDtcdTAwMWaQy1Qt+NBGXHUwMDAxzFx1MDAwMpmX8Uv+V/3Vxkr7Ufh7V4hcIvy8ubFS/JZvjKORXHUwMDFls5I8aXqnnUeeXHUwMDAxuXBBt1To6p3J6s6uxFx1MDAxZoQnwVlbXHUwMDA2zuM34+FcXFx1MDAxMFx1MDAxM1vnJPxkaztHIFx1MDAxZcxcdTAwMTeIXHUwMDA3c1x1MDAwMlwismzrXHUwMDBiXHUwMDEwSVx1MDAxOVx1MDAwNKeRXHUwMDFlP1x1MDAwMC48XHUwMDFkX1x1MDAxNla74erWdXR0XHUwMDFhRFLpUu6mzVx1MDAwN4FIXHUwMDFlpmdcdTAwMDVcdTAwMDNyb5WVmC2uXHUwMDE32tOk5YriXHUwMDEwISBcdTAwMWSvTVx1MDAxYofSc9e3XHUwMDA2lKGYXHUwMDA3gY9nb5HcZOJcdTAwMTA2hfrZj1x1MDAwMkSYL1x1MDAxMGFeXHUwMDE2kWdbkzlrrklP1Vx1MDAwNG7v2nZcdTAwMTFXdktF/0Fvd55qN6v3dytxvpGIksJPI2WvyMNSXHUwMDE4mjGJjFx1MDAwNtxQyI/ObiqjZpeHfidcdTAwMTRddMJgXHUwMDFhy9//XHUwMDFhXHUwMDEyIa2vXHUwMDBiJE6MRI4jfVO3Oo2UU4xcdTAwMGbE8Kooj07NU+V45aJ6Vm+fnfvVQr6BKCx6wpAzyIxcdTAwMDZlM0XlQnqIzChcdTAwMWFcdTAwMDZlXHUwMDA02lx1MDAxOXqm3ENJMJQoXcJ5XFx7SIg1dlx1MDAxYVx1MDAxYtZ9XHUwMDE0XHUwMDE0yvmiUM5cdIUwuoZcdTAwMGLcfilcdTAwMWPGd0z3zi7Zeff0yN+5vH0qtsL7yv5Z7mZmspvToudymuiQRr9MYlde1oBTXGJG3jlcdTAwMDPrrM7sdoRwhaIuXHUwMDFiL1xyZ+NcdTAwMWFDxTQ3hiz5/1x1MDAwZlxmV3C+OEzfb7bmcHRltUXp1mBOsKnjJt+9jatf93aPz8+2z87R7kSXKudIlEgmT1x1MDAwMIAhJ9xcdTAwMDBcdTAwMWIskHDbtilXX41keTSw2Vx1MDAwMVx1MDAxMcTk+VipJHd7yvx0e8jTyjpTIPL54pBPXHUwMDE3htVcdTAwMTZJ7mUv+Zee9m3iyGRccnDn9DA7wY6KXHUwMDE31rbXL/2q4lx1MDAxOFx1MDAxY5b8JttZu1x1MDAwZvNcckUhmYOAdlx1MDAwNT5MXHUwMDFhXHUwMDFjtIlgwdPAXHUwMDE1MVx1MDAxMv10XHUwMDFiXHUwMDE3z1xmisxjjCXPkGzTPtjen1x1MDAxNVx1MDAwMYVuXCLzJ5rD7/VcdTAwMDY6ravjonDKs/vpXHUwMDExSlqSz33KfH6cyoWg3lx06XFcdTAwMGZbNEidllOcuNVJPcFz+/cxep9cdTAwMTlMzcNccm1S1NtreYKywdvDk6Nu57PZvzk4/LJzcbW3tXOZ90SpIDOnXHUwMDE4xVbWktGHzFx1MDAwNmUuLpSSc0kuXCKpujGzS89cdTAwMDB6bjNcdTAwMTRNkSH5pWbM+lx1MDAwMNBu7YPQP33GYn6GcM5cdTAwMGXplP3RUTV7aV9maKWflm5mXFyNX6dcdTAwMTPdtcrx19ZcdTAwMTXqp+JNca+qwi979bwj0XpWcaM5Z+RyXHUwMDBlXHUwMDE5QeZpiaDR1ecpXHSzXHUwMDAzokFPuD1GKDjVXFy+9q0lIMhcIlx1MDAxYpSW/FBFfVx1MDAxZIalXHUwMDE0XHUwMDE0vKLKbeX+u1xm5v94gd6KIFx1MDAwNiaBukXmJDlmXHUwMDA3zLkgXHUwMDE3jVxmXHUwMDA0XHUwMDA1KVx1MDAxNFx1MDAxNVx1MDAwMSnim5dcdTAwMWKlR+41rEHDjsK7aESzkctcdTAwMDCASe1qXHUwMDEwJlgwfHBh7jbPt69cdTAwMGKnj9VadfNop/NQr+WcRsiXZlx1MDAwMlx1MDAwNCq3PVx1MDAxZs+sXHUwMDAxcr40M25vYmWsM/ozpFx1MDAxMUbxM1x1MDAxYWI0TrFqOuGc4lx1MDAxMeYhdVWiXHUwMDEwXGZtOtn1TCNSSFx1MDAwM1OZXHUwMDA2XdDInGhEXHUwMDE4j8Ttvlx1MDAxNcSQbCmcXHUwMDFiYFx1MDAxMbdZXHUwMDA1XHUwMDAwMC2lUZCG/etXXHUwMDFiqUXuNaQ/XHUwMDEzksiPgnKwoydupSVcdTAwMWUhqlx1MDAxY99cdTAwMWZpXHUwMDE22Xq4tntfP7tY2b8xq0p1by5yTiRMeL2d2FxcrTZccnGmhFx1MDAwMiVcdTAwMTGJm7U1Slx1MDAxMVwiZrlZ6SQxOedcdTAwMDJhYC/JRUieaVx1MDAxOVx1MDAwNskkJDO9kPy96Fx1MDAxM+47h8hrXHUwMDE4XHUwMDFmfaf+fiy6l+XaZVx1MDAwMS93W+vfglWb92jAWo/8XHUwMDE1LZiy7qt5stXC+URcdTAwMWZ5jsZtX/hcdTAwMTPT0lx1MDAwYvT9tYSY+MFcdTAwMTf9kVx1MDAxYq/kXHUwMDA0s0K3W1x1MDAxN6JT/7q1/XXt+G6z0Ow86Ivpzs9WXHUwMDFhbqym6z9bt2xWM2DC7aiR8Z+V8oBcdTAwMDIgw9xcdTAwMTf64CxcdTAwMGJcdTAwMDeN51x1MDAxNJliLjf7ZMedXHUwMDE4XCL7p6j78qeXK80vXHUwMDFm9jf851x1MDAxMv/7fJNi2XtOlFx1MDAxOfv0XGb65VKzeVx1MDAxMtPY9cNcdTAwMTNcdTAwMTJWUHlcdTAwMWWA5P7L94H/sDasP79Uey+3zKGHclx1MDAwN6hcdTAwMWX0//jz05//XHUwMDA1+lx1MDAxYUjLIn0= yxO115-323(3; 2)

    Mažiausios reikšmės funkcija neturi

    Didžiausia funkcijos reikšmė y=2

    Didžiausią reikšmę funkcija įgyja, kai x=3

    Funkcijos reikšmių sritis Ef=(;2]

  3. V(2;1)

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da1NcIktcdTAwMTL9Pr9iwvtlN2LtW1nvulx1MDAxYlx1MDAxYlx1MDAxYiqOT1x1MDAwNlx1MDAxZiOjbtwwXHUwMDFhaKBcdTAwMTVcdTAwMDGhQXTi/vfNQqVcdTAwMWaAoFx1MDAxN7SJaCd0tKrpzqrKczKzKqv615evX9eCh7a39sfXNW9Qdlx1MDAxYn6l496v/cuW971O1281sYpcdTAwMGX/7rZ6nfLwynpcdTAwMTC0u3/8/vut27nxgnbDLXtO3+/23EY36FX8llNu3f7uXHUwMDA33m33v/bnd/fW+0+7dVtcdDpO+JB1r+JcdTAwMDetztOzvIZ36zWDLt79f/j316+/hj8j0rmdTutJsGFxKFx1MDAxY0hFksXfW82hpCCkXHUwMDA0KSnA6Fxuv5vDh1x1MDAwNV5cdTAwMDWrqyiwXHUwMDE31tiitZ1Hv06v9a50N9o73la5QPdcdTAwMGZPw+dW/UbjNHhoXGZl6rawKWFdN+i0bryffiWov3RapHzapzqtXq3e9Lq27aGYrbZb9oNcdTAwMDdbRsLmuc3a8Fx1MDAxZWHJXHUwMDAw/2JcXDhScCY4MOBcdTAwMWO/R9X2XHUwMDA2nCiHMyq14prgl0xcYrbVauAwoGC/gWf/haKV3PJNXHLla1ZG11x1MDAwNFx1MDAxZLfZbbtcdTAwMWRcdTAwMWOs8Lr7lyZcdTAwMTPqXHUwMDAwaKqpYEpoJvTokrrn1+pBTPSuN1x1MDAxY1x1MDAwNGNcYspMgY0q7CPbe5WhMvxcdTAwMTn2fFx1MDAwN9Voz36i2Ws0ot3XrDx334vShGpDn0v+XG7bZK/fjqhb+IReu+I+KVx1MDAwNihqXHUwMDE4Y4aD0eGYNPzmTfLxjVb5ZoIudVx1MDAwM7dcdTAwMTNs+s2K36zFXHUwMDA1e9b0YUPWOqe504bc9k6Kev3ojFHVPdy7XHUwMDFk9attdKvcs1Jiv1x1MDAxMlx0lEpcdTAwMWNcXKlBRS6puW0rMXM0lYJRjYJcdTAwMGJcbpSNtdxrVmZL1N9uwn1cdTAwMTfyhYErZG29eqf2+u4kicAhXHUwMDA0dUpcYq1x2FxyyjYu05hcYlxyt1x1MDAxYmy1bm/9XHUwMDAw+/mo5TeDZH9cdTAwMGU7bsNive65Y4ONTYjWJUmhbe9cdTAwMThyiP1cbn/7XHUwMDFhqt7wj9Hvf/5r4tXTlTnx8S/R/5/b+lx1MDAwNvpcdTAwMDLBksUj+jKUScOkXHUwMDFjjfdM+mqeqvY1O39o+oesdrd/tlksn92lm764ZI5cdTAwMDIgikpcdTAwMDVKSlx1MDAxMWcvpXBcdTAwMTiUkUA0o0RcdJFcdTAwMTBscfRcdTAwMTWKNWIrKqnDXGIlWjGtXHUwMDExgJGHP7FcdTAwMTcwZZWERWhcIl30XHUwMDE1Ktf76SuJwdk0cngszr41ztSefDzLtfc3S9w73JhEI9xcdTAwMDFpXHUwMDE0XHUwMDAyXGZcdTAwMDeeoVx0m8BcItzRUlx1MDAxMkGVNlrY7l5pWoldvT6mX2+kXHUwMDE1XHUwMDFjU28yq2ieLFx1MDAxZbFcblx1MDAwM1x1MDAwNFx1MDAxNFdkfqfo1FxcVNuFhnt0cFC/Ov5RODs86bXSxirgXGJFkCjQ1VGGayNC1nyiXHUwMDE54VCGOoaKRI2JcKq9IVPcYYpcdTAwMTmQwihcclx1MDAxMlx1MDAxMoIukGVwwFx1MDAxOWUoXHUwMDAxI2C4QO9nXHUwMDAy71jbg5ggyHvccFx1MDAxZfHZnnhcdTAwMDftkjFIPin1mphZKu3Eb7ZY9MfqXHUwMDE2XHUwMDBi/ekjb7/GxnxRXFyA3uA0LkBKVVrgqM1NXHUwMDA195f6cnOLdlXxZmPn/tTdpff95lxuUlx1MDAwMVx1MDAxMVxu4yFJXHUwMDEwQizJXHUwMDA1gjiSolx1MDAxYVNcblx1MDAxYyT6JyknXHUwMDAzxVx1MDAxOVNcdTAwMDSlzcggI4NZZMBksnjkXHUwMDE4WJ+AISZCL3dcdTAwMTZcdTAwMWJcdTAwMTQru0fX59fnXHUwMDFi2/1mv1Sst3ZcdTAwMWZUb+XYgDlcdTAwMDIrjSBKYVx1MDAxMELjXHUwMDAxXGL6XHUwMDBijsAhMoyi31x1MDAwNJQvMVx1MDAwMFlcYlx1MDAxYlBDtVBRTk9cdTAwMTVcdTAwMWLwcIAyNlx1MDAxOF3wWWwgp4ZcdIYwjLa4np9cZsqc/8i1db5Z+pFvbt5cdTAwMWOvXHUwMDBm9lhhXHUwMDA1yYBpZWdcdTAwMWKM5lLqXHUwMDA0XHUwMDE5XHUwMDEw5mCsyrXWVPHUR1x0XGYjXHUwMDA0QyGtUUJGXHUwMDA1k67+LCowU6NcdTAwMDSQXHUwMDE4JeAjYf4wQbZcdTAwMWI7opcnXHUwMDE3vcFWo1bKMX0+uFo5LuCOrWNcZrhcdTAwMTCg4lRANXFcdTAwMDCdXHUwMDA1wjVYPkh7kFx1MDAwMMoyutFpjVx1MDAxMjIymHT1J5FcdTAwMDGjU9dUNaVKUCrDoG5cdTAwMTZcdTAwMTdcdTAwMTTOW53L3EXne1W324XB8V3LvzxfQS7gQtpcdTAwMWGJoI9M91x1MDAwZrlASIeDXV3lzEZYOiFo6rhcdTAwMDCF5JRcdTAwMTKZcUHGXHUwMDA1M7lAq2TxyDFcdTAwMDCDaFx1MDAxMWb+9cmthjnyj7dcdTAwMGL7+3nYvYR2w1xcsouV41x1MDAwMuHYXHUwMDE1XHUwMDA0LqlC34CEaFx1MDAxZnJcdTAwMDHjXHUwMDBlVWBcYlx1MDAwNSlcckDaY1x1MDAwNFx1MDAxMETYQIeGhJ5xQcZcdTAwMDWTuSCqP1x0LmBGgTT6XHJ+QX0/V3qsuU335/rV7u4pN1vlXHUwMDAzuXJcXCBcdTAwMWQ0pYriaFBFRJxcdTAwMGI4Z1x1MDAwZY6OtOlXaG2pWV7u1aKCXHUwMDA0jmNIo63MyCAjg8lkIEAni0eOXHUwMDAxyiDQTX5cdTAwMDNcdTAwMWJ4vT5s9utn/n6he9mv1MW5e9VfOTbgjlx1MDAxNEQzQ5lmXFzzRC5cdTAwMTNlNlx1MDAwNUEwjddIXCIjXHUwMDEwTSlcdTAwMWRQgvFcdTAwMGVIldFBRlx1MDAwN7PnXGamriVIYZhcdTAwMTLiXHJcdTAwMTlHt1suXHUwMDEx+dv14LGvz/JwLVx1MDAxZVx1MDAwNv2TtLFcdTAwMDFzgIMwNu9WaKNMZH50yFx1MDAwNoY4YJdcdKRkylx1MDAxMkKMXGaYkVx1MDAwZdj8XHUwMDAzZFx1MDAwYiBcdTAwMDCpd1xyXHUwMDA0NlbZtmZcXJBxwSwu4FNdXHUwMDAzg3bPZrHP71x1MDAxObRcbnJ/62L76HhwUMzVbq5cdTAwMWGVzvZgxbhAXHUwMDAwc6QhinLJmKQqkXFkhINeXHUwMDAz4TZYQKDRtC8mKE4pV9FcXIiMXHUwMDBiMi6YMmcwfYODXHUwMDAyKlx1MDAxNFx1MDAxN3x+v+C6f7RTvLhVvVx1MDAwYrJXWt/gSt3cpC7haFx1MDAwNlx1MDAxNzBFXHUwMDFjLrWg2M1U82SKgVFcdTAwMGV+XHUwMDBijlx1MDAxY2q0lKmPXHUwMDExXHUwMDA0RjpERJuRcUHGXHUwMDA1U7ggsnCWnDKgaPpcdTAwMTil8/tcdTAwMDVXV/JcdTAwMDctXHUwMDEwWtLd6ma1fE1V/fuq+Vx1MDAwNcwwRysl7YSBwkA7vnVzyFx1MDAwNXbLJjdMcKl06slcdTAwMDCbIVx1MDAxNCWZY5CRwez5w1eCXHUwMDA0XHUwMDAxXHUwMDFhlHnDwmJQvcjT4HFbbv/crfUuvp0076+uV4xcZjhIR1x1MDAxMKxXUisjqU5GXHTKUUZzJvBcIuyftCdcIiPuiNBSZ1lcdTAwMDZcdTAwMTlcdTAwMTnMJlx1MDAwMzV1ZZFcdTAwMTKMNTFu5vO7XHUwMDA2l7R4dldrXHUwMDE271xy/3nSfTBcdTAwMDc/XHUwMDBl696qsVx1MDAwMccwQSnQnFx1MDAwMzBrVFx1MDAxM2ygXHUwMDFkXCJcciOSgCRSRMhcIqV0YFxiaIIjmSVcdTAwMWFkdPBMXHUwMDA3gTdcYibRgVx1MDAxNlNdXHUwMDAzLZVcdTAwMTJgXCJcdIqzyOD1zegpIYPEmVxiSjtC2elcdTAwMTEuQVwiXHUwMDAxxqBPXHUwMDAxXHUwMDFjKaVcdTAwMTJcdTAwMDY73yhBlpdvaFx1MDAxY4ZumEZnhFx1MDAxM8o4m3Ciy8RDXHUwMDExqEYnZVx1MDAxMVNcdTAwMDKxijFIj9TtV0Qp5zpcbiOmhk9cdTAwMWL+RzV/vejuVMLAXHUwMDE4R6lIsPZcdTAwMDbCqLaawan/+GTYYqXf3Fu/8Vx1MDAxMNOZIT7+sKNcdTAwMWUr2mj4tebQnHrVOH5cdTAwMDK/7DZG1UGrXHUwMDFk1pbxXHUwMDExLprfzniHtzp+zW+6jVx1MDAxZuOPs1x1MDAwNnv3ZajBiVxmdsntekNzjuX6nSifmlko0M1FWtHzo/z1k2tSiXLBOfr7imvDpJCKJZKH7LlNNtlYMWbPoFlcdTAwMWHGkU0sw5shwCO7XHUwMDFjXkM4jlxmxHeEfFx1MDAwMsJfP6srpoLvRLiI4mCpXGJcdTAwMWZ8LMJcdTAwMDdcdTAwMWaD8Ghq8Nh8XHUwMDFmJYRcdTAwMDMl80Oc5c1Ds1TrPTxcdTAwMWWui1xc++T7Xm8ndSlCSUNOXHUwMDFjJSigh0lccjrrXHUwMDEzzmZjwNGJXHUwMDFmbjdcXN6yXHUwMDFmINOANeRcYlmJMcV8MFfc5jXCXCJcdTAwMGU3elx1MDAxZOXpwWHhY3FY+CBcdTAwMWNOt7R2lobyyFTcTFx1MDAxNF4+dvPyIXe3WS/lc/dbe1x1MDAwZu1qN+Uo1OhOXHUwMDFim4YjwSZcIiVcZi1GMVx1MDAwMkHKjDRgXHUwMDE1fnlcdTAwMTNrwsFAXHUwMDEzYVxiiHcuWPRAsdesrZ37QMiaXHUwMDA1pOH9PVx1MDAxY8qoti5cdTAwMTWH8LE4hI+yh1wiWVx1MDAxYZ6+IYhUhr7B5a3c0cNcXOl6L5/zXHUwMDA3j+qiQ+VVOXVcdTAwMWLuXHUwMDEzSESXV3KK7iNGiMBcdTAwMTUkkuJcdTAwMTRz0ExqLbU90Fx1MDAxNMTysuLeXHRFbbfQXHUwMDEyXHUwMDA1XHUwMDE5XHUwMDE0V1x1MDAxY4ps+tFcdTAwMTd2XHUwMDA1htnM57mReENcdTAwMDfC5FqlQvnoJlx1MDAxMPXeRVmU9tKOROJcdTAwMTipMOZcdTAwMDPUfp3c3I69bYBcdTAwMTNJJY9m8S/cL6VcdTAwMGVcdTAwMTPGXHUwMDFl7GjBPidcdTAwMDapklx1MDAwNj+1iInkv4dBXHUwMDE11dSlYlB8LFx1MDAwNsXHYJDyqWdOKK05Q1x1MDAxM1x1MDAxMV4w8+Tu3N2dqOQ7XoltdIotn9Q211N35ERcdTAwMDKDXHUwMDA0rZDVZC2I0kDixpCDdsBcdTAwMDCzJ1JcdTAwMTJcdTAwMDTh8naSolx1MDAwM8xcdTAwMTGF6Fx1MDAxZNtVZ4Oon1x1MDAwYodcdTAwMTi1KoJSf7ot/DhcdTAwMWOu049cdTAwMDVi9HmLQGK1g2P3csT/i6gva7B6+n4uXHKaQiz5f1x1MDAxNlx1MDAxYzfvr0/Pz6tFtvt4clG/fyiY/UrqTn1InkQtXHUwMDFkXGZcdTAwMDK5PetGoOGL7MlcdTAwMThcdTAwMWFFXHUwMDAzXHUwMDBlQS/dUEGJXZdZXHUwMDFhXHUwMDFliUNIZLNMeHh+vHx0XHUwMDE2rM1cdTAwMWNfxCFP70Xh31g/XfBqZbR/wpLwc19cdTAwMTKfn2cl1r/tNbC5R1x1MDAxZOykXseqTdDpRVrwXFz+1Eevom9a9lx1MDAwM1x1MDAxM1PDQmkpTqv5XHUwMDEzobzqj0Pfpcf5zbxXRJa5Zlx1MDAwMaiU41x1MDAwZVxyXHUwMDFkszlcdTAwMWX2VVx1MDAwMopcdTAwMTBcdTAwMTODXHUwMDFkelx1MDAwMVx1MDAwZTGaXHUwMDFiITE0NCwp1+JgJ4nDid2aouzWTbtcdTAwMTd6XHUwMDFjgkCNI6WhVDNiIJb2/Fx1MDAwMkcmUeVcdTAwMTjNUiBXJ81hndpccjjEXHUwMDEwJVx1MDAwMN1OiL/swdZyirTPODI/1kbPaZ9yw+m6NKxcdTAwMWVXo3GOelx1MDAxZpVE0JbMnFx1MDAxMFx1MDAxOOhxXHUwMDEzUcxZXFzi06I6MtfbN+z4oH9y8P3+Suxdrlx1MDAwMJfY10VoeyhcdTAwMWKhiaQpzVx1MDAxY86FMMJcdTAwMWWBL+TyTDiOv5BcdTAwMDLQbdecK61gQspcdTAwMTRQbbeAXCLnXHUwMDAxmOF7VMZcXGxcdTAwMTRRYWiQbbpcXCEywWiKMkNcdTAwMTH6VEpcclx1MDAxY2IpU+uUOfZcYlx1MDAwMUmMQZOH7qSadcPpujS84bhcdTAwMWG9kUveXHUwMDE5XHUwMDE0IHtcdMLfclx1MDAxMpzPSm3vNL/z8+C46Fx1MDAwZVTJo0ffdPr5XHUwMDA0PVx1MDAxMklcdTAwMTRcdTAwMDNcdTAwMDZcdTAwMTJcdTAwMTIp2Zo6xlBO7Dyy1NHp/U+OXHQwhkFcdTAwMGX8xFx1MDAxObIsJpgvJpg6Nyanb5VcIkBcdTAwMTDlb5mgZkf0vMaPz3unbHC8vVdg91x1MDAwN81iupHHhHHsS5+40EQpXCLiM9RPuLRrSMS6WHqJb7XDqFx1MDAxZszwJUX4XHUwMDFjqmGuyTGthibgM1x1MDAxMfg0N6bfg8D3zY3xXHUwMDBmnlx1MDAxYos871x1MDAxM+fG0Irb91xuzb+H2d/X+3fFzW87h95B88q92szdXHUwMDFkpnxmjEntSPQxqMFcdTAwMDBJXHUwMDEwXHUwMDEyt4J2YkxcdTAwMGJUNfRrOJdLjNDfZlx1MDAwNEExXGZcdTAwMDDQRfl0M/iul0hmZtD2XCJMnVx1MDAxYbPLtEbJNyRMvP6+zUUgr9KynbVQ6DGJdGannG2ObnRB7OFcdTAwMDWYRIJAKyllbDZq0flcdTAwMTJob1FcdTAwMDBqNDFCXHUwMDExNlx1MDAwMYVcdTAwMTOsIEYjXHUwMDFj2Fwijlx1MDAxM0xzmvDH2dh/rNN/f4V/fqyhXHUwMDFke+ibrO2X5/5bc9vt01x1MDAwMHtv7WUuXHUwMDAylcGvPHdBKMBa3/fuN8e187fq8MuOzpBELFxch8zy668vf/1cdTAwMWbg0q7KIn0= yxO115-2-4(-2; 1)

    Mažiausia funkcijos reikšmė y=1

    Mažiausią reikšmę funkcija įgyja, kai x=2

    Didžiausios reikšmės funkcija neturi

    Funkcijos reikšmių sritis E(f)=[1;+)

  4. V(5;1)

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daVMjOVx1MDAxMv3ev6KD+bJcdTAwMWKx1EgppY7Z2NjA3Je5mjbNxlx1MDAwNGHs8lx1MDAwMb6wy1x1MDAwN0zMf9+UaVxc5TJcdTAwMDab8VHs2t1hQFJVqaR8LzOllPTHl69f14LHhr/229c1v5fLVsr5Zra79lx1MDAwZpfe8Zutcr1GWdD/u1VvN3P9kqUgaLR++/XXarZ571x1MDAwN41KNud7nXKrna20gna+XFz3cvXqr+XAr7b+7b7T2ar/r0a9mlx1MDAwZppe+JB1P19cdTAwMGXqzedn+Vx1MDAxNb/q14JcdTAwMTbd/T/099evf/S/I7XLNpv154r1k8PKcWVVPDldr/VrXG5cdTAwMWMkWm5cIiXKrS16WODnKbtAXHUwMDE19sNcdTAwMWOXtMYy3yFzlD492Wvd+NdcdTAwMGbKtG/yxfC5hXKlclx1MDAxMTxW+nVq1elVwrxW0Kzf+5lyPii9NFokfdxVzXq7WKr5LffufJBab2Rz5eDRpTE2SM3Wiv17hCk9+ksw4WlcdTAwMDNcdTAwMWGNYVxcW65cdTAwMDe57nqhwWNMIdOa8lx1MDAxNJhYvTbrXHUwMDE16lx1MDAwNarXL9x3/8Ka3WZz90WqXi0/KFx1MDAxMzSztVYj26S+XG7LdV/e2HCPXHUwMDBibVx1MDAxMCxYjXJQoOSXi6XA1dtTzHJmJChcdFKhXGar2vL7XcKFQmWl4GHzuSo09vN92fg97IgmSdW+u6TWrlSirVnL/2zNXHUwMDE3XHUwMDE5XG6lXGJ+pvxcdTAwMTm+oyu/XHUwMDFkkb7wXHTtRj77LCdcXINcdTAwMTVCWINChvWqlGv38cdX6rn7V0SrXHUwMDE1ZJtBqlxcy5drxfglfi1cdTAwMWbmRKr8XHUwMDEzXHUwMDEy/VdcXLvcKWTUwVVVXHUwMDFlXHUwMDFl136cd2vVh8fu/aBcdTAwMDdcXHPUc21Xf/BAgrCKg7JaXHUwMDBigSpSqJhtuLdBXHUwMDBmkUmkbK2ZNFKNtEol21xuNuvVajmgXHUwMDA2OK2Xa0G81v032nCYLPnZkV6gd4rmxcHbcHdcZrHuPuFvX0Pp7v8x+P33f7xaepzU9S9cdTAwMWWRt/BuX6I/f776XHUwMDE0rMOQxZNfWMfhXHUwMDEw3NfEpNPunnQu73s9eVbml2cqvb2db20knHSk9Fx1MDAxMFx1MDAxNFx1MDAxM4Lolf4jXHUwMDBlsVx1MDAwZSHYo5ZcdTAwMDclXGZabVx1MDAxNcYqNjvWXHUwMDExnlx1MDAxNFZcdTAwMTDPXHUwMDAzk8qAXHUwMDFkZVx1MDAxZG7BM4DWSimkVmAjlXlmXHUwMDFkK5Ug5oxwY7JIR8yVdIZv9omgvz6u7/uZo90+Jfiprf1Xsc+tjSe/YN9KcFx1MDAxZMYmx36js1/cqf9IVZuFqsxcdTAwMWOzdHDcSidccvvcQ81cYsZcdTAwMDKUtpLQXHUwMDFlKu5nMlx1MDAxMJ7hjFx1MDAwYub6wajwtn1cdTAwMGJEXHUwMDE4T0tcdTAwMTRcdTAwMWNB0i2EjlV0dlxcwDyyhUj90VNcdTAwMTi3krTcK0ZcYoDHOWrSXGaKS1x1MDAxMo7QNlx1MDAxY9ggXGaN1kaFXHUwMDE3r+hgNnQwlDdTLnij691npNNnxVx1MDAwNVx1MDAwMDqe/MJcdTAwMDWKZJ1rxid3Pnr3qaeSr7ZcdTAwMGa+X+fT2XSrpi93tj4hXHUwMDE3KLJcdTAwMGUkXHUwMDFhRawrWMxcdTAwMWQh85MxRmxhXHUwMDE0Wlx1MDAwM/GaJo1cZlxmXCJyQl6YseKCXHUwMDE1XHUwMDE3jOFcdTAwMDLk8eTBSFx1MDAwNNFcdTAwMDBHXHUwMDFlsTDf44LTO/ag9HFh9+GKQelq80Trx8qn41x1MDAwMmpq6lx1MDAwN1x1MDAwYkK691fDTlx1MDAwMljuXHUwMDE5clLJfyDzTMTqmTQmXHUwMDAwLrnVZFx1MDAxY6zMglx1MDAxNVx1MDAxNbxLXHUwMDA1eqyLIJCTXHUwMDA3oSb3XHUwMDEwSqLQSXfPRLZ017nb7Fx1MDAxZGLjKH/66ZiAe1ZJQYqfbFx1MDAwMlRcdTAwMTBjXHUwMDAyZTxcIkdjtCQ3XFxcdTAwMWKc33jBjHxcdTAwMDTLkdxKXHUwMDE1aYlkkUH4UisyXHUwMDE4XHUwMDE0WFx1MDAxMlx1MDAxOUj1hl3AXGZyaeTkdHB+gNnjdn6jVzmupWpHhVx1MDAwYvmU3/x0dCA9S11cdTAwMDBMWnJcdTAwMDMwrEp/8JBcdTAwMTnPeU6kb7kwhmHSTVx1MDAwM1x1MDAwNEmeXGbR14pcZlZk8Fx1MDAwZVx1MDAxOaBcdTAwMTDx5JBcZoziXFxF5eg9Mlxidnah22z37vcrcm/n8vw0XdrY/nRkIDxcdTAwMDCNQiFcdTAwMDNwUzlDbCCM9lx1MDAxNPGE0Jx+gIxVNHFcXKBcdTAwMTFcdHMmqV7Cilx1MDAwYl4pvSQuoC5cdTAwMTnLXHUwMDA1RlhmpqGCnfTuXvVwM/C3q53rk8ytrfv7qaRRgfDIi0ZcdTAwMGJcblx1MDAwNVx1MDAxYatJv1x1MDAwZlNcdTAwMDH5XHUwMDAxTu8renlOTlRs7FAxXHUwMDBmyTBw09ZgwEZGVpPJXHUwMDA1XHUwMDFjLJCvXHUwMDAzZuUlrMjgXTJQb1x1MDAxOFx1MDAwNpxrVKgmZ4NWqnlcdTAwMDXlx/V671wi1eMs07zIV1x1MDAxM1x1MDAxN8f0XHUwMDFlXHUwMDFiWPDIZJDAKVx1MDAxM7mOTSui9SRKKVxyd8aFmV9g04zIQGpcIjSpVVLJIDS7VmQwKLAsMrBjh1xmXGa5mlSPyangOHXKj3cytZuqbZ/dnqvdm5Q4+2RUQCaBK8ClkuQlIUTcgGcuMJ5cdTAwMDVcdTAwMDDFXHUwMDE5XHUwMDEwypiN1TRpXFxcdTAwMDCWaUGMn9RcdTAwMDGDXHUwMDE1XHUwMDE1vFJ6WaOHfKyTwFx0XHSIdpr45sYt3oirR9G9XHUwMDEwu/Jky298q+TlZyNcdTAwMDPhND9TSnKmtFAyRlx1MDAwNuQmgJGWLtOSXHUwMDFiSPpcXFx1MDAwMiAnXHUwMDBih0FSR1xmVmTwSullkYFcdTAwMWNcdTAwMWJuJEkzuj6bnFx1MDAwYva6XCI4KNb2dze633c6T7ep1F7m22fjXHUwMDAyXHUwMDA1niFcblx1MDAxNFx1MDAxY5EzjExcdTAwMTW8UFx1MDAwMTfaXHUwMDA1XnCrjUg6XHUwMDE10EtcdTAwMDB3fvnKMFhxwbszXHRcXMaTXHUwMDA3hoFlkryEaKzKe2RgSpWj4lVabVZcdTAwMGVvfzR6XHUwMDE1udtg15+NXGZcZnrSXHUwMDE4slxmXGaSbcRCXHUwMDE0vZBcdTAwMDFlXHUwMDE4I4Sx0uqkj1x1MDAxZWpcdOTxmMRcdTAwMGVcdTAwMWWuuOCV0sviXHUwMDAyOZZcdTAwMGK0Mtqq6Fx1MDAxY/t7VFCDR//gXHUwMDFl9s9PTaGrv6naZa+S+WRUgMz5XGKW+lx1MDAwMjVCiK1cdTAwMTdcIrCoNFxuy5ggyyDxZlx1MDAwMddMSSZXTLBigneZYPzIoeZaXHUwMDAx01OEXHUwMDFl5uRGUMlcdTAwMTbJXCKoplx1MDAwZW/T23W2d7D/yZhAcOsxXHUwMDE0xnDlmICPjFx1MDAxNoAnJdNMKqXJNpBJXHUwMDBmMFx1MDAwMGZcdTAwMThcYkBM6lx1MDAxMulcdTAwMTVcdTAwMWK8UnpZbDA+9JBsYNBDc9PvLk8qZjK59u7N48Hefeq4fH3Qqn5P3FLF9+xcdTAwMDLhukIyklW01mLMMkDrWSs501x1MDAwMumLmcRbXHUwMDA2ZMtIJTQk1TRcYmu8XCKDQYFlkYFcdTAwMTk/k4CSg5CaT+4l8Ka5XHUwMDE0R93q/lm9pXYwkzs6fax9NjZA6Vx1MDAwMVlcdTAwMDWWKdL80UnVwUSCktatXHUwMDA1JidcdTAwMDEh6XHIRlx1MDAxYUlXi6RaXHUwMDA2KzJ4pfR8ySDwe8FrZGBcZsRTXHUwMDA3XFygSTe68PvJQ1xm1GW6d9F+3Px+bS826l120a11S0njgthcdTAwMDYmpOpcdTAwMTlcdTAwMTn/oFx1MDAwNFx1MDAxOFxysT1cdTAwMGJAKs8qZYWRgrjRzC+gwHpCWzeFXHUwMDBiksx6KcJGXHUwMDBmcT+yYVx0V0pqhTCLXHUwMDE1XHUwMDA3Q1x1MDAxOVNAXHUwMDFh6Zt++1xipFx1MDAwYvVacFF+elx1MDAwZW1cdTAwMWJK3clWy5XHoU7tS/BvrluGkjYq5WKtr+78wrCEXHUwMDA35VxctjLIXHUwMDBl6o0wN0ePyJJ6bI42Sb1ZLpZr2cq30cc5hbo32E3Gi3THbbbl99Wtm4v/XHUwMDE4XHUwMDBlx1x1MDAwZtxxRVx1MDAxZSuJJptcdTAwMWOHb+9cdTAwMTOVSFx1MDAxY1x1MDAxMrd5XFxcdM4kXHUwMDE53oqp2Fx1MDAwNJ4xlKvIXHUwMDFld2rNzlFcdTAwMDNz6li3VLlcdTAwMGZCXHUwMDFkdvFbKDScoCvELIzvt1E4IP1QLVx1MDAwZvr87Vx1MDAxZOuGhPB5M55Bzp8vXHUwMDFhJDFcdTAwMTjvLVx1MDAxNuO9xWBcXPGxutZIJCGaYmx+pygu9nKVa1PKXaY2Ljr+yfXJQ7JcdTAwMTEuJOk4UlWir0/JkI5ccsBp7qblNENEXHUwMDA2hs1x7S+XXHUwMDFlcqdsXHUwMDE5+c3aXHUwMDA1XHUwMDA2TFx1MDAwNHNBLrZ14dfLVrZcdTAwMWZa4f8hIJ4sXHUwMDE2iCeLXHUwMDAxXCLqsUCU2rWylZNPmFx1MDAxN84zW/5WTt2s23K3m707uPNPRcKRqLRHUiSENForXHUwMDE5W3YrXGbZvFIpQa6wcOp4bjhEj9xUwiFXxrqNwWBcIlx1MDAxY2qlXHUwMDA1mUOzmFx1MDAwNfssMOSLhSFflD5cdTAwMWO7dyYnl8zt5Kkn14j6prDXPNz8cWx+5NKNZu6qmy7vJFx1MDAxY4cgPCD1ozVK6944ZvRcbuO5ZjCkXHUwMDEwyVx1MDAwN4hcdTAwMGVaJVx1MDAwM4lcdTAwMWNBuNrNYJxphcRn6VlcdTAwMGVcdTAwMTKj/Vx1MDAxZLdMwZLTNcVcXPFZXHRRb66r/M1p7b7eSZ/escJBsnEoUZP8M0FcdTAwMTiz5G0zXHUwMDE1W29KXG6RM1xyyOiDXCKy/mzmhil4ZHy4MVLkQ5vjvD1cdTAwMDZcdTAwMDTClZ5B3PhfQ+GHVpF+XGKFuFhcdTAwMTTiglAoxo9cdTAwMDFp8lWsmmJ7mNxTa/v4buvuvKevLu5vvj9cdJntJFx1MDAxY4aceVxuXHUwMDE5QVCSPnTRajFcdTAwMThKj7SNRCRRk1x1MDAwMsX8XHUwMDAyN7nwXHUwMDE06UNNSDTCmklHY61cdTAwMDaG3PClO4iLQ6JYLFx1MDAxMsWCkFx1MDAxOJmiXHUwMDFhOUvCzdMonGJ9xcZm81BcdTAwMTRvXHUwMDFinaO902y+U2hvXHUwMDFlXlx1MDAwNsmGoiBcdTAwMDRcdTAwMTi33allIFx1MDAwMUxsqIZymaB2QOH21ddz3ICBy+mHY0lcdTAwMWZcbuM82/9cdTAwMWZcdTAwMTjCYmFcYktXiO7QXG4ho338XHUwMDFlXG5/+HdcdTAwMGaV4nbhYKdzd1i937/2g2+XSUcheFIrSZJkwfDR/ZA09I0/bcHiXHUwMDFjrVK3kzNZpZKoz6CdXHUwMDE0hmTEKkXKeune4YdcdTAwMDJcdTAwMTE/XHUwMDA0w/VcdTAwMDW7h+sz9lx1MDAwZlx1MDAwYk3qu5eTn16qOjjqZOy+JFxcMVx1MDAxMlE+zZrDwrr5waoy//T00C11t0vbZ0+YuF2KYuapXHUwMDEynpuXkFx1MDAwZZJuXHUwMDBismE4WkNtXHUwMDBlKFxy4Vx1MDAwNLiZZ/gwuaHhK0ROVVx1MDAxYUpcdTAwMGbdQ1LTnC9cdTAwMTOGz1E/Oiqqk8JwxjE20Vx1MDAxNlxuU8LrvsSunyR+qFxcbVfodU+b1EjtppOboNmOvMHP9Oc2+phcdTAwMWVk41x1MDAwM/ZcdTAwMTRwXHUwMDA0zqdcdTAwMTig2a60tiuiXGKbj409zo62eafL8smGXHUwMDFlMumRNyaZ5FxcK2biwVx1MDAwMcojQ1SRXHUwMDFkKrUxwOd3slxieajaxVx1MDAwYrttXHUwMDA3jCBdOJljaFx1MDAxOFx1MDAwMC5cdTAwMTeDi1aFerGaUC/IXCKN7NxcdTAwMWY/8odsJE7+/+Q6cF/cnaWvuqXm+Xb+NF04rzw1j1x1MDAxMreDb1xmiEB+IZOKa1x1MDAwMYysu1igrEHPXHUwMDFkvqZcdTAwMDThlFx1MDAwZs2izlx1MDAxY4juSWSTamf7qlx0Z/BBXCJ5rLD88ZnFwdAsXHUwMDE2hma2MFx1MDAxY1x1MDAxN8JOVth4hSgtgpOJiXEotva1aKT2zc1OW931clx1MDAwZun11Emycei2u1CEQe2OznEnZY7YolxmXHUwMDE5XHUwMDA3zUlDaTnHcDl0I0FkXHUwMDExuz15XHUwMDA105FNjcNz9yR6KJlbh09GoDWRnnnRj0xcYlBWsaRud/Eh0/V/PGB93a2gUlx1MDAwMqjvyftj5OxcdTAwMGZcdTAwMDWsr0vhkWAy7c5yIGdcdPW7N1x1MDAxYytL/dxRMVx1MDAxYTXbP0QmWozdS8fZ1ShwiuN6jp5MXHUwMDE18aTduWjkt/ybdEm3N1x1MDAxMrc2bpRLSJczLvt77Ju3/VozP+NaWVx1MDAwZsBcdTAwMDDrn1x1MDAwNGS4eZVLwLNk6lx1MDAxYlLjbolpJIZwYGtrdzxPclx1MDAxN7+EsrTikpdcdTAwMGZBW0iQ0jKGbveqcPrFfdbdoTHM7d1EzrqQZD+9d7+xktS/3ahcdTAwMTBNySRjXHUwMDAzmsbHMyluuNBqilx1MDAxOP5bXFxcdTAwMGY2ZObsMv1wf1x1MDAxMWxlbi5Nb7Zb+ufrTi5mXHUwMDFiSGE8RTrBdSFcdTAwMDfJh91cdTAwMDN3nodhllx1MDAxOTDUXHUwMDFjOMfDgFF5wK1cdTAwMDVpQWnU5pXRstfie407mJTP4mCvv+ZcdTAwMWV8aH3ch9yDv+E/XHRcdTAwMGZ/X6yTMPLQqVxchS8/Ub+WbTQuXHUwMDAyar1cdTAwMDFRU3eV8z+bIKzAWqfsd1OjXHUwMDAy9Euh/3HLIPo4d4jqXHUwMDBm0v3x55c//1x1MDAwYtzgVEMifQ== yxO11532-178(5; -1)

    Mažiausia funkcijos reikšmė y=1

    Mažiausią reikšmę funkcija įgija, kai x=5

    Didžiausios rekšmės funcija neturi

    Funkcijos reikšmių sritis y[1;+)

Parabolės lygties rašymas iš brėžinio

Jeigu parabolės viršūnė yra koordinačių pradžios taške O(0;0), tada funkcijos bendrasis pavidalas f(x)=ax2

  1. f(x)=ax2

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daXPbOFx1MDAxMv2eX5HyfNmtXHUwMDFhcYDGPVtbW77jQ77kxLG3plK0RMm0XHUwMDBl6qAsy6n8923QtkhRUSRlJIfaopM4XHUwMDE2XHUwMDAwkk2g3+tuoFx1MDAwMX999/79Rjhse1x1MDAxYn++3/BcdTAwMWXLbsOvdN3Bxu+2/MHr9vyghVVcdTAwMTB97lx1MDAwNf1uOWp5XHUwMDE3hu3en3/80XS7dS9sN9yy5zz4vb7b6IX9ilx1MDAxZjjloPmHXHUwMDFmes3ef+z3XHUwMDEzt+n9u1x1MDAxZDQrYdeJXHUwMDFmUvAqflx1MDAxOHSfn+U1vKbXXG57ePf/4uf3779G31x1MDAxM9K53W7wLFhUXHUwMDFjXHUwMDBiR1x1MDAwNTHp4pOgXHUwMDE1SUolXHUwMDE3XFwrSemohd/bwYeFXlx1MDAwNaurKLBcdTAwMTfX2KKNYuuuXzuFwedL9/hcZsyxe7zvXcTPrfqNRilcdTAwMWM2XCKZelx1MDAwMb5KXFzXXHUwMDBiu0Hdu/Ir4d1rpyXKp13VXHL6tbuW17PvXHUwMDFli1x1MDAxObTdslx1MDAxZlx1MDAwZW1cdTAwMTkho1K3VYvuXHUwMDExlzziJ6aZQ42mwDXTUpL4LvZ6TqnDhDCUSVwiqJE8Jdd20MBRQLl+o579XHUwMDEzS3brlus1XHUwMDE0r1VcdTAwMTm1XHS7bqvXdrs4VnG7wetcdTAwMWJcdTAwMTNwgKFcdTAwMWMgJYBhetTizvNrd+GY4D0vXHUwMDFhXHUwMDAyXG5U419K1KjGPrJ9UIl04a+447uoRVx1MDAwN/aSVr/RSPZeq/LSe686XHUwMDEza1xyvJR8i9/Jtt9NaFv8hH674j7rXHUwMDA1VSg944QzbuJhbPitevrxjaBcXP+OKvVCt1x1MDAxYm75rYrfqqUv8VqVuCYh8lx1MDAwYlx1MDAwNKJX3GjwrtgqlC67pYP7vbtSMPz4XHUwMDE0no963HZHUO5HXHUwMDFh41BcdTAwMWNcXM1cYihcdTAwMDY4wkYmXHUwMDFh1dx21ERcdTAwMWGutNKcXG4usMP5RK803F64XHUwMDFkNJt+iFx1MDAxZHBcdTAwMTb4rTAtdfRGm1x1MDAxNoN3njsxXG74Tsm6NFjb9o4xtu1X/NP7WCmiXHUwMDBmo5//+v27radqWerqd8n/X151flbRRqVLR6RcdTAwMDKEaZCaxS1mkYreqnO1eVRtn3Qv9pvh0Vx1MDAxN9Cknm1S4Yo4RHNiuNFIokTEb1x1MDAxYrGKYo6QjEhcdTAwMDNcdTAwMDBcdTAwMWFVUKUkW1x1MDAxZa3Eco1oXHUwMDA0OHdAXG4wVFx1MDAxM6lRQFx1MDAxOT/9hVdcdTAwMThVSlNU+2zyil4tr4zfbI3QPda6MDnOXHUwMDBi4lx1MDAxYvvW+67TQIxOXHUwMDE3j/DNXHUwMDE1Z4RxNT++t1x1MDAwN+fNXHUwMDBmd/KwvdNcdTAwMGXvzm6KXHUwMDE3l5efKlnDN3WEXCLKSFx1MDAwNlJcdTAwMTmuTVx1MDAwMrKvgFdaUM6YYpJLXHUwMDFkY8rekSntgFGUg1x1MDAwMkYoNSlJl4h3XHUwMDA3e1x1MDAxZphBSVx0NVxcXHUwMDEwXHUwMDFluywxXHUwMDAzgEOpUNbgUW74JFx1MDAwMYCQQkpFRY7/JeN/rG654J8+8vZrYsyXRVx1MDAwNlx1MDAxNGS6OEFcdTAwMDaUacEh1vdZZHBYKHf6pNW5Otv+1Ny6d0+KvVp5XHLJXHUwMDAw+5lj2GA4xlx1MDAxNzFZRlxcILgjXHUwMDA0SKxgxoZcdTAwMTUyJWnWyIAxXHUwMDA2IHJfIOeC2VxcIEi6eMRcdTAwMDVGXHUwMDAxmr8kVmZxQWfvXHUwMDBiKVx1MDAxNq9cdTAwMWaCnaPtRlCof/Srpd1141x1MDAwMmlsX1x1MDAxM4S5XHJ6XHUwMDEyXHUwMDEzXGJcdTAwMTFcdTAwMTcw6nBcdTAwMTBAUZtxqPTqplx1MDAxN5ZEXHUwMDA1wiCda85yLsi5YFx1MDAxNlx1MDAxN6ipQVx1MDAwMlx1MDAxMIZ0IFx1MDAxNuGC8vUluS3q3V54e1x1MDAwN1x1MDAxZO+6dn9wdLR2XFygXHUwMDFkgzZcdTAwMWYo1mH/jFNcdTAwMDFRjtRcdTAwMDRjXHUwMDA0g86BUDQlZ9aowChcdJpwlYdcYjlcdTAwMTXMolx1MDAwMiBTQ1x1MDAwNFx1MDAwZVxcXHUwMDEyLlhsUWYxwek9u7jWbVG62fE2Sfsh1I/Fp3VjXHUwMDAyjFx1MDAxMCiaUW5nXHUwMDBiqFQyRpG9I2juXHUwMDEwLVx1MDAxNMMggqBXkJY0a1xcoPBCodGDybkg54JZXFzAeLr4lVx1MDAwYtBcdTAwMDFG91x1MDAxMtlgbi64O+z0/OJZi1x1MDAxZVx1MDAxNHXnuDi40MPi2kVcYnatgGiJ7pCQhmhcdTAwMThcdTAwMGZcdTAwMTFA4khxu2CD1ZyByfp0XHUwMDAxUMpcdTAwMTRoxeL+ydkgZ4Pvs1x1MDAwMZNTJ1xmgKA3bCgx87tcdTAwMDblQuu8XHUwMDEzsENFKlx1MDAwZsdf6vdHpdJF5tJcdTAwMGZm0lx1MDAwMXU0djFjXHUwMDFhmE09XHUwMDE4p1x1MDAwM86Vo6XW0jCtQGR9IYFKapDcMNzJySAng1x1MDAxOWSA1m1cdTAwMWFcdTAwMTlQxFx1MDAwMUO2gPlzkY5Ydcc7rZ77519qzY+P9ERcdTAwMWU+kbUjXHUwMDAz4lx1MDAwMFx1MDAwMcGNXHUwMDA2bUxqVZGDcqjA6IFLZFx1MDAwYlx1MDAwMiBSkmaNXHKQzlxyhlx0+fRhTlx1MDAwNnPEXHTTc1xmjLDZWnr+OMFcdTAwMTPDu/uDXHUwMDBmO5vbXHUwMDA2blx1MDAwZYef6rf7n0+yxlx1MDAwNcyhXHUwMDFjeVx1MDAwZVx1MDAxZH0mtEGsxDCJuMBcYlx1MDAwN0mCKlx1MDAwNaC0Tk7CR2RAbMpcdTAwMTGzkylUXHUwMDAyUVlfSkCqo1KzPMUg54LZXFwgpzpcdTAwMDZoNVx1MDAxNYbOZP5cZoP7p6BcXFx1MDAwYq7qpTO5Jbr7N8WL/un+mnGBoMZcdTAwMDFcdTAwMGWcXHSwi6oqfvtoKcFcdTAwMTiHXHUwMDEwXHRKXGJNXHUwMDE5V7DC9MLlRFx0IEBcdTAwMTmUMyeDnFxmZpKBmTplgJZR4IDJ+cmgflx1MDAxZZryXHUwMDE52662vXa/1pRneyXor1x1MDAxYlx1MDAxOXBsgIG2MFxuuZCOu1x1MDAwNcxohyuOIbhASuAm625cdTAwMDHgtVx1MDAxYTCqyWOEnFxuZs5cdTAwMWVcdTAwMWGRLn6lXHUwMDAyqYVEX3iBbVx1MDAwNm6ndXx9fDzoXHUwMDA0hbZcdTAwMWU2KOx93r5aMyqwlp+D4Vx1MDAwNEyUwD++rMhcdHVcdTAwMDBcdTAwMThcdTAwMThKJJGSyawvJUhlXHUwMDEzSNGNybkg54JZk4fTY1x1MDAwNGqojLbbzD956NWvOy39qfXIvuzdXHUwMDA3LFx1MDAxONTdo9qakVx1MDAwMce+JtjVTIPSab/AcoFcdTAwMDIqJcWOYUplfeqQomNnh5HFvl3OXHUwMDA1OVx1MDAxN0zhgukhXHUwMDAyylwijVHzryn2r8LrbnBy/vlINlx1MDAwZrybQlFXL3bWjVx0uHRcYmhtMFx1MDAwNlx1MDAwMFx1MDAwMlx1MDAxMIvySlx1MDAwNcaAsHmJXHUwMDE0ZOY3J1x1MDAxOc3t1tWcXHRyJnhlgtB7XGa/x1x1MDAwNJpOTTxUimpNXHUwMDE2iFx1MDAwZkRz8On2KFxmxcHDba1cdTAwMDPH2/Wbm8xlIKe2IWvtoNVcdTAwMTTS7jCwXHUwMDBl/1x1MDAxOO6B2bNccozNSCZcdTAwMDJcZvDVTVx1MDAxM1x1MDAxYYcpY7SRgKFcdOPfO9wguXj5avKZXHUwMDAx4HRcdTAwMTk7j8YqXHUwMDE2QLTNweRcdNFcdTAwMTZAdDVohSX/6TmVZax0z236jeHYqEZcbvynXHUwMDFkl7GizYZfa0WmzquOK3jol93GqDpcZtpxbVx1MDAxOVx1MDAxZuGiaexOdknQ9Wt+y21cXE4+zlx1MDAxYdNcdTAwMGavg4FxokhcZnbPi0wtluufgqHSU3P+hMEoXfH5Yfjjw1x1MDAxZDJcdEOhqaNcdTAwMDU6r4owu14/vlx1MDAxZpBThm46UYRcIu8pTlfniVNcdTAwMWNWpGBcdTAwMTNBMOHx/1xig2hmkVwilrJk/2NcZo5cdTAwMTg/tsmjMf/xsTJjKvi8vX5U8+3VfMxAuEziYKVcYn98W4Q/vlxywkXikKB09K1cYqFcdTAwMThhyvmX60F1rtjF1mFp90Nx56G3VyFBZTPbXHUwMDE450paXHUwMDE3R0dcdTAwMWW2QMdcIoVxXHUwMDBiPSVcdTAwMThD7MlcdTAwMTVm7VHuXGJqLS12uURcdTAwMGZnTpRrgr6/ULBylGdcdTAwMDeHp2+Lw9O3wSHXLF1cdTAwMWGfvIPeXHUwMDE3RzKfXHUwMDFmh1x1MDAwNV9vetdcdTAwMTVP7nfc5nHvXHUwMDBlemfXNOM4NMzRUlx1MDAwMv6T1u1N2VqwS2VMgd12o8GsbpOdcDji0GBcdTAwMDCiMdxhXHUwMDE05jS3XHUwMDAyiEQyXcKM999cdTAwMDOiSqrrSoFI31x1MDAxNoj0jVxm4vRz9ZhWSLaMz79KvTMs1Oj1g969//jFfCo81Vx1MDAwNlx1MDAwNLJuXHUwMDBmXHUwMDA1cajBqI+gXHJSyVx0t+fzcJRjqKJcdTAwMTSMMoIrtrrQ8+eAiE4vXHUwMDE3li1zXHUwMDFjrjdcdTAwMGXV9J2nhnBmXHUwMDBmZZhcdTAwMWKGw9b2lV9/etw7cJt00FRnzbO966XCsFx1MDAxMtiJvKXGnlx1MDAxNFx1MDAxY2xcdTAwMDU2S44yolJcdTAwMDfRXHUwMDAxcewysV1cdTAwMDWyXHUwMDE2c6WO6cKxJ1BigC5h58i6QFx1MDAxMN5cdTAwMTaC8DZcdTAwMTBcdTAwMDQyNZPbMI30P/+y7Ofj6r1cdTAwMTmCXHUwMDE5esfbm+posFx1MDAxZHC+nXFcdTAwMDRyXHUwMDBljqLMbmRjdi+HXHUwMDFlT8pgRDpC2+OglDU6enWWXHUwMDEwmUBZS6iUXHUwMDAxI+dcdTAwMGVcctEjJdz8+tBQJ5V1pTDkb1x1MDAwYkP+NjCkZHqCXHUwMDA0krJmelx1MDAwMVN4dbLbXHUwMDFkXm53Trt91jmshkd7x7uXWVx1MDAwN1wipVx1MDAwZbd8riVIo0V6M5WFXHUwMDA3uorAXHTT3KxcdTAwMGWH+CBcdTAwMWKGK0lccsaphiRcdTAwMTJXflx1MDAwNERcItCHVeLXh4ZvXHUwMDA3xMJcdTAwMWJcdTAwMWLEwpItYrWLY/d6JPyrqK9wnH7uumJGaVSR+Vx1MDAxN0WKctc982u759Q9J1x1MDAwZu3BUF92elx1MDAxOYejoMqhSjEh7Fx1MDAwMYNEpPYwUG0zXHUwMDE5XHUwMDAxXHUwMDE4XHUwMDFhRsJXekSyQ0ji2Pf4uPXx8pFBlJpcYslXv1wiMivPgCV1dV5cdTAwMWMueVU/2UNxSXzdu9T182Qs+M1+XHUwMDAzX/esi53U71rFXHS7/cRcdTAwMWK8lD/30Vxu8Ge32lx1MDAxMkpcdTAwMTfYUkRrhDWbl4Oji93BTf3m085DgXYyXHUwMDBlPztcdTAwMTVcboJoyYBqkkyUeIafcuzB+FxiPmWXXHUwMDAwV7qdcCH4USm4VHJcdTAwMTlbhXL4ZVx1MDAxMX5A0Dezp5bPb/5Kj+qyL0tHcFg91HXR2tu/uPazjj977Fx1MDAwZvpTSlx1MDAwYlwiXHUwMDE1gZQ3SoljZyCxmoJcdTAwMTKMrDI/d1x1MDAxMfyhW8KlML/SXHUwMDBizeE3XHUwMDFm/Kalx4KculZvt5JcdTAwMTK9XGL0wspnuYUov6Y3J93Qa7f8m1x1MDAwZrdcdTAwMTlfmpDKQXsnMFxmJEwyqX5cdTAwMTXyhEJcdTAwMGKMoSZQQ1x1MDAxOLFMMIlCyuwvcaDoXHRcdTAwMTNcdTAwMDbWIZ4wiEooqlx1MDAxMZRZPZ/7p4D6f55cdTAwMGVbYOh8aaY4UGFcdTAwMDQ1go2lw1x1MDAxNlx1MDAxOMHQyGZxXHUwMDAwcFx1MDAwMUJcdTAwMTg2847TlSmqntCjSZb6KTJhPzqzXHUwMDA3pJTc6Pnnd1X7tOiKgWz2eztyc/PplN4pmXE2sXZcdTAwMWOZhGi7rGtcdTAwMThNXHUwMDFicpubj72ukFtZMlx0asVs8p1cdTAwMTTbXHRcdTAwMWSYIFx1MDAxM1RHLJeQc8n6cFx0o1x1MDAwZfpjgMaKgP2FfXLsd3pcdTAwMTXAOERQwVx1MDAxNFxiZs+d1rPuN02PortNqtCCPDJ1nXb6L1x1MDAwZcBI1aaoL3BcdTAwMGVgW4VcdTAwMGb0w4G/3zr9sFs9u926vPUzd1x1MDAwZeDkbJjilCvN0Vx1MDAwMVOpQ0BcdTAwMTlE+3ol9oTkODQrZlx1MDAxMWNcdTAwMDGnqFQmsVwi/KO5aa41KCDL4I2/NzdcdTAwMWSLu+q56X/Av97zf77t/HT6mVx1MDAwYs1Rv3tB/IbbbpdC7LtcdTAwMTFJ42D5lZdcdTAwMGWIn7/x4HuDrUn1+a1cdTAwMWF92Vx1MDAxY+tcYuRcdTAwMTZOUTjy9du7b/9cdTAwMDOfNF09In0= yxO1124-2(2; 4)

    (2;4)

    4=a22

    4a=4

    a=1

    f(x)=x2

    Ats.: f(x)=x2

  2. f(x)=ax2

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da3NcdTAwMWE5XHUwMDE2/Z5f4fJ82a1cdTAwMWFrdKWr12xtbdn4RZxcdTAwMTi/8CNbUy5cZo2NXHI0aVx1MDAxYb+m8t/3XG7bdNOYXHUwMDE4Z8Bp70BcdTAwMTLHSGpaLd1z7kNX4s9cdTAwMGZcdTAwMGJcdTAwMGKL8V0nWPx9YTG4rVaajVpUuVn81ZdfXHUwMDA3UbdcdTAwMTG2qUr033fDXlTtt7yI4073999+a1WiqyDuNCvVgF03ur1Ks1x1MDAxYvdqjZBVw9ZvjThodf/jf25XWsG/O2GrXHUwMDE2Ryy5yVJQa8Rh9HCvoFx1MDAxObSCdtylT/8vvV9Y+LP/M9W7Slx1MDAxNIVcdTAwMGZcdTAwMWTrXHUwMDE3J51cdTAwMDMlbbZ4O2z3e1xuiIaD4EpcdTAwMGVaNLqrdLM4qFF1nTpcdTAwMWMkNb5ocaXmQtE1VdNVW1x1MDAxZstHq2Hj7uYguW+90Wzux3fNfp+6IT1KUteNo/AqOGrU4ounQUuVj7sqXG5751x1MDAxN+2g659cdTAwMWRcdTAwMDalYadSbcR3vozzQWmlfd7/jKTklt5J65jUXHUwMDFhjVx1MDAwMYFKSKdcdTAwMDbV/lx1MDAwM4TlTNMoXHShuZGgIdOxQtikaaCO/Vx1MDAwMoH/k3TtrFK9Oqf+tWuDNnFUaXc7lYgmK2l38/TIXFwwJThYXHUwMDE0nIMxPFx1MDAxOfaLoHF+XHUwMDExXHUwMDBmdb1cdTAwMWL0J1x1MDAwMSRXXHUwMDFjJZdJr/09O8VaX1x1MDAxYf5Ihj5cIjkq+kvavWYzPX7t2uP4PUlNXCI34rHkW/JQvv1aSt6SO/Q6tcqDZIBcdTAwMTFOSmXoaZRcdTAwMWLUN1x1MDAxYu2r7O2bYfXqXHUwMDE5YerGlSheabRrjfZ59pKgXUtqUl1+XHUwMDA0Qf9cdTAwMTFcdTAwMTc7n/Dg+vLLxeG2Pi1E3VKldbB7Mlx1MDAxOHI/XHUwMDFjYbXXl1x1MDAxOYbCOmG40EZcYnCoUo3OK1x1MDAxZGqiSDxAWWMlcmFQjlx1MDAwZUqz0o1cdTAwMGJhq9WI6fl3wkY7zna6/0DLXHUwMDFlhFx1MDAxN0FlZFx1MDAxMuiR0nVZtHb8Jybg9q/kt4VEJvpvXHUwMDA2v//x67Otx0tZ5vJcdTAwMGbp/1x1MDAxZp91cl5x2mVLXHUwMDA3tKJcdGRO2ERiX2KVvbXlbvGgW785Oe7sNs/3vnRv2jLfrILGMrDCXGJcdTAwMDRpUOFcdTAwMTCnXHUwMDEwXlx1MDAxOVx1MDAxMtFIY6RyXHUwMDAyM72aXHUwMDFlpSR9XHUwMDFhMIhcdTAwMTCKOVx0wpFcdTAwMDQg2tQ0PTGKXHUwMDA1XHTKgU7o5+/EKMNcdTAwMWb2joA91HppZJpfXHRsXHUwMDFh2uBZe1x1MDAwMWA8sC1aITyNToxsdbxhdH3/XHUwMDEzYmupfFpqVa5sq5A3ZFx1MDAwM1OGXHUwMDFipyXpXGKH1ikzXHUwMDAydWtcdMtCXHStdEpt9+1cdTAwMDc0TCmtXHUwMDE0ibBcImTp2YGdkVx1MDAxOeCpVUvuXHUwMDE1XHUwMDE5x4RYUvBnXHUwMDAwymjuNKBDTHXnXHUwMDAx/lZzZeDvak/MXHUwMDEy/UN104X++Jn3r5E5n1x1MDAxYVx1MDAxN6DJXHUwMDE2P3GBXHUwMDAyq7xum1xcyVx1MDAxZuyV4o83jVVTO75oXHUwMDFkrd6WdnbC5jukXHUwMDAywy0nOkCSWSMyXFwgJLPkUKGRXGJouTSZruaNXGZcZlx1MDAxMG9cdGlcdTAwMTLQzclgTlx1MDAwNs+TgbA6W/xEXHUwMDA2llx1MDAxMOOQZm1yMliLgnXYbTVMb+OscL3VXHLsXfzuyMAxquLoyC5CkzVcZqSWjNwwa0nZklx1MDAxYkBcdTAwMGVmzslcdTAwMDCkIMvAirlpMGeDXHUwMDE32UBcdTAwMDJmi5/YXHUwMDAwUVnHnUvk/SU2uFgx+3eXQmzerlx1MDAxNXVcdTAwMTTY7UJpeedcdTAwMWSyXHUwMDAxKC7JQ9BOQIZcdTAwMGKkYz60ZLRW0nDMu5NAZoFz0jo5N1xm5lTwXCJcdTAwMTVYyFx1MDAxNj9RgUZFf7mZnFxuesu75frGtTzr3cfl9ep162Z//T1cdTAwMWFcdTAwMDZcdTAwMDRcdTAwMWauyUPQQjuZ4KtPXHUwMDA2YFx1MDAxOFlTwliPMJN/u0BcdFx0TjmZXGZPrshAJ1x1MDAxMzQng0GDn0RcdTAwMDaYWkxcdTAwMWNcdFx1MDAxZlxuIagzZnI34XJrXHL2ujb4wvVe/eTyXGb2ovP3x1x1MDAwNpbmXHUwMDAywFhnwUHSk37EwGmGoMGQt6DIbEgtTuaUXGa04j7E4eZkMCeDXHUwMDE3Q1x1MDAwNmr8Wlx1MDAwMipF/1AkLV5cIoPy1XmMp5+j3Yj37k8r963q59swb2QgXHUwMDE5IFx1MDAxMJLJzicvyLiUI+DJgFx1MDAxY1x1MDAwNGaMsVxcS8stXHUwMDA3m0lG0I5JpEmSXG6sXHUwMDE0ZnbJXGJTilx1MDAxZlxuazhcdTAwMTdqTlx1MDAwNnMyeDl+ONYyXHUwMDEwnPxcdTAwMDTr9CtcdTAwMTKR1lx1MDAwZuOwtW2CrbXrW7tcXFu+bLvNq/dGXHUwMDA2wlx1MDAxMNqBa5TGgMvEXGaEtsyvN1pUVqLWLvdBXHUwMDAzXCJzv1x1MDAxOG1yXHUwMDFhP5yzwXOtf1r8cGzQwKAlW9i+wjKQtVx1MDAxM2hcdTAwMTYuXG4rXHUwMDFmS637267+atot9d7IQFx1MDAwMVx1MDAxM0DOgnWcK6GHM4rItWBGSnRGcWG047lcdTAwMGZcdTAwMWFYXHUwMDFmXHUwMDA0NVokXHUwMDFknZPBnFxmxlx1MDAwNFxyYOzSYn+BWvHXrC3un1x1MDAxZK9s7m3Xj9xutVApf113K3LjnbFcdTAwMDFyw5SwNFx1MDAxYiC5kdxl6MBwhpZ+cq59XHUwMDFjUeY+bCBcdTAwMTRaTU8791x1MDAxNOZ08FwiXHUwMDFkjPdcdTAwMTQ0XGKDhIbJbYPi2eXKVVx1MDAwNLdcdTAwMWJhZ6fVuWxufuHl92ZcdTAwMWL4fGJQXHUwMDA0XHUwMDFmg1x1MDAxMrxtkPFcdTAwMTSIXHKcXHUwMDA1briWgkyEbE9zR1x1MDAwNs5IR5Oc17SjOVx1MDAxOTzX+ieRgVx1MDAxYe8oXHUwMDEwVIT0r4nJIDxcdTAwMTXh3cZy9WuvXrld/1jufZF8972RgUJGLKhcdTAwMDQ1QifV8OKiMORGKJogXHUwMDAwlNLmPlx1MDAxZNknUGkl5jGDOVx1MDAxNTxRQVx1MDAxY9zGz1GBXHUwMDFkz1x1MDAwNKCtdFxckp8wMVx1MDAxNXzF7Vx1MDAxM1uILqWs6lpz5WKt2v66kjcqyOw5copJJFhzXHUwMDAxXHUwMDE2VWprT1x1MDAxZvlcdTAwMDBcZrXWaJVyRlx1MDAxOZidXHUwMDE54Fx1MDAxOOluZ51cdTAwMTbIhcTUXHUwMDBl01x1MDAwNPgpj+Rp5ZD7PXYwjTSCoYpXYlx1MDAxYcxcdTAwMGZhulx1MDAxZbbj/cb9Q7h6qHS90mo074ZmtS/Cv/t5XHUwMDE5KlpuNs7bfW1cdTAwMTfUh0U8blQrzUF1XHUwMDFjdpLaKt2iQtoxXHUwMDFhXHUwMDFkkjBqnDfalebB6O28Pt18mlxmr1x1MDAxMlKT3Vxy+trWXHUwMDA3aX5cYojGjV/jJzYg1lx1MDAwNDk5XHUwMDEwv7+VM5dAJDFiXHUwMDE2jeBOXHUwMDEw60DWObeKOaNcdTAwMWRcdTAwMTAvXHUwMDAyoSO1qjFtIFx1MDAxMuQ9XHUwMDBmuz5cblM69DswXHUwMDE0XFyhkX4r7KxhOKD9RDEvTLaPfEhcblx1MDAxZvbUXHJqvj3pkFx1MDAxN0BcdTAwMGVpKMxcdTAwMTTkt29cdTAwMGLy27dcdTAwMDG5kuO1rSTlrv0+0olBfrh7vdstlJaWWlfnq/fNYnOz6o7yXHJytMhIvSFcdTAwMTngRpKhnVx1MDAwNLKfjlxyQL/rQXChzCyT+Fx1MDAwMFx1MDAxOdnzpG05SG3ATlx1MDAwNnOwXHUwMDE2hTFyXHUwMDFhXHUwMDE5vH9N275cdTAwMWRcdTAwMTBLb1x1MDAwYsTSXHUwMDFiXHUwMDAxkY/NtCf7W7n0Vs6XYLh29vlMf9z5LIK73s3hYa93Wv96l29cdTAwMTgqXHUwMDBlTFvSqSgsKJXehfSQQEfeiLOGk9FrjZ6du6tcdTAwMThcdTAwMTJcblx1MDAxZHnUllxcXHUwMDFlXHRiMlx1MDAxOHJUllv101Eo0rI6U1x1MDAxNMLbolx1MDAxMN5cYoVibCqbk5b0g9CTm7yFi3hrdfXL1VVYa1/L/ZP1z0snNt8wJDFmwlx0f6iIsFx1MDAwNnhGXHUwMDFiomFgNFx0mlx1MDAwN4g2M1xcnv5BXHUwMDFjXHUwMDAy9UwoO3urd1x1MDAwZcTZXHUwMDAyUY/VhlJcbtQ8nWb2Yji4XG5LrmrXPlx1MDAxN4/2w/2KvC2UdnOXUZpRh0KQ3emUkJxcdTAwMWM5cJl0cuvIZiU9aFxyWaZOm9mtXHUwMDBik1n6WtfTIffhq2ks+7xcdTAwMTdcZoq3xaB4I2U49kg5JHPNgZ1cXFx1MDAxNa5cdTAwMTZcdTAwMGbKa+H+fvvTzid3JKNcdTAwMTJcdTAwMWVcdTAwMTUq+YYggmZGaEQtnFx1MDAwM0emZ8ZcIlx1MDAwNeb6IVx1MDAxNi2VmOFWT89cdTAwMDTKOaPBaVx1MDAwMj7XyVx1MDAxMHwv/kOdolx1MDAxOdJTyMv6ayCUaVGdKVxil95cdTAwMTiFS29cdTAwMDTD8fsuXHUwMDA1XHUwMDA3JTmmd+m8XHUwMDA0xJutWqN0KcFcdTAwMTbqV9VINOPDznHez2BDySz3XHUwMDAxVudcdTAwMTNGXSZnUmryXHUwMDFjgYxSQdY5jYXNdGyKSFx1MDAwNEa051xm6UG05KvCREhcdTAwMDRhiD4k/q2giG9cZkWcLlx1MDAxNOtcdTAwMTHN3dNcdTAwMTmwT119hOP4w5LIXTF+tXTybdBnXHUwMDE3xfPTi0/Xa3Z786TbsdvRynnO0eh3M3Cfq0lcbslnbVx1MDAwZWPRXGLGqYVzkqxAx+Us81x1MDAxMjjnyd2To1WHy1x1MDAwN6uShnS5wmlcdTAwMWN68ldAyPVcdTAwMGbFSae8rp9cdTAwMWWhpCS57kPm+klyXHUwMDE2XHUwMDFhrV6TXHUwMDFldyeiQepFXm7iqJd6gsfyhzH6YfCpsW6h33jLJXn+k6Pv7pTv1lfE2eft86KO7jvFg2L5Ot/oQylcdTAwMTm3mvucII1CZ45cdTAwMWMwkoH1wUiFSpPHllx1MDAxM/RcdI5OWs6nsUtgjr6fh76UwZNFn7BouN/+PjH6Nky082lb75a3xUEnKlxcn1x1MDAxZG9cdTAwMWXXco4+Y5lcdTAwMDBlNSk+Y9BmojLGMetdLq3ISZvhXHUwMDFhxStVn/OhXFxSxVM4XGJ4XHUwMDBlvtmCb1xceqxcdTAwMTDjkackckDziuM2XHUwMDBlir3qvTi8Kt61T3mjeNoun5Yv8448w0iOrJ8sZ7XK5MRRrUVcdTAwMTSoXGZcdTAwMDK3coaKT2lcdTAwMDaS+1xitOzHX1OBn1x1MDAwMVx1MDAwZUE6soK1z8s1XHUwMDFhXHUwMDExR1xcQrqMU3kq0TFf2bA/XHUwMDA01P/zbNglsryElUJcdTAwMTPWuFx1MDAxMCSKOn29XHUwMDAyRqPXT+BAXHUwMDFhQ6le/LzxkuRfIzI0SlE/xCRyfL6PRVx1MDAwN1KJV+zOd93tXHUwMDFiW9Jl+LqztXRWr+rodn8v50RigTlN9rHk0lx1MDAwMFiV/ZpcdTAwMTBggFxck3pX1rnUXHUwMDFhxtSJxOdcdTAwMTZan+DLubVkyz/HI4aR2nZ+XHTUgT/+fUS3c5SI3Li85tXPmWS0tVx1MDAwNGZpiJQ0/myYJCzoX6iYdjTjhETDqdWLNDJWjPxrVICmxFwiIL/zdUPUeX9ExCtOXHUwMDAz7Ja3XHUwMDBl96GA96XK1jlcdTAwMWXrtZ17c5w3XHUwMDFlmeA0QJpcdTAwMDJ0yDn9jplccjuk7Jkk50Cgs9z4b2yZoXswld17RtJDgs3rMcFzanmu9c865kOP3dlPXHUwMDFkXHUwMDAyLcwrtuxcdTAwMDSrq5foVrC4ilx1MDAxN+0zWNopY+k9foNcdTAwMDBcdTAwMTmLlvt0JCVh2Mogg495V8WfcGu44rnf1m8lN8ZJNeeCOVx1MDAxN7y4oWCsYWCt4D6TeXIqWC9tnNzuys0rXGbV/saSsNeHcTFvVJBZXHUwMDFmQ8FcdTAwMDRKQlxmOVx1MDAxMVx1MDAwMk0mQq9cdTAwMWMjI407kl4jZnnyn1aMzFx1MDAxMEczTyBxXHUwMDEzpm6BP5KQzMS/01r1P8S/XHUwMDE2lvCfb7tgPXLTV61af3hcdTAwMDT9YqXT2Y9p9Fx1MDAwNrxK09WoPVx1MDAwZUHSgcXrRnCzMipAv9T7L7/rqlx1MDAwZnNcdTAwMGaofpjyz29cdTAwMWa+/Vx1MDAwZjZCXFzKIn0= yxO112-2-4(2; -4)

    (2;4)

    4=22a

    a=1

    f(x)=x2

    Ats.: f(x)=x2

Jeigu parabolės viršūnė yra y ašyje, tada funkcijos bendrasis pavidalas yra f(x)=ax2+c

  1. f(x)=ax2+c

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da1NcdTAwMWHLXHUwMDE2/Z5fkfJ8Pfbp7t3PU3Xrllx1MDAxMFx1MDAxM0yi4tt461x1MDAxNDXIXHUwMDAwI49BXHUwMDE4VEjlv9/dozDDKIq5omNdSOVhd1x1MDAwZtOPvVavvfuRn1x1MDAxZj5+XFyLRj1/7e+Pa/7NuddcdTAwMGVqfe967U+XfuX3XHUwMDA3QdjFLFx1MDAxZf88XGKH/fO4ZDOKeoO///qr4/VbftRre+c+uVxuXHUwMDA2Q689iIa1ICTnYeevIPI7g3+7P3e8jv+vXtipRX2SvGTdr1x1MDAwNVHYv32X3/Y7fjdcdTAwMWHgt/9cdTAwMDd//vjxZ/xnqnZev1x1MDAxZt5WLE5OKseUlNnknbBcdTAwMWLXVFNlXHUwMDA1XHUwMDAzI6ZcdTAwMDWCwSd8V+TXMLeO9fWTXHUwMDFjl7T2qX5ZXHUwMDAytru341xy94phsL+r1mkzeW09aLdcdTAwMGaiUTuu0iDEliR5g6hcdTAwMWa2/JOgXHUwMDE2NSd9lkqf91Q/XHUwMDFjNppdf+CazqapYc87XHUwMDBmopFLo3Sa6nVcdTAwMWLxdyQpN+5NXHUwMDFhiNRCSyWAWy7sNHdcdTAwMTTnSqJcdTAwMTS1mlsmQGSrVVxm2zhcdTAwMDZYrT+Y734lXHUwMDE1q3rnrVx1MDAwNtauW5uWifped9Dz+jhSSbnru1x1MDAwNjMridUgjVx1MDAwMWBcXFx1MDAxYlxy01wiTT9oNKOZilx1MDAwZvx4XGKYXHUwMDA1fFx1MDAwZaRN6uXe2duqxabwT9LxfTSiLfdId9hup3uvW7vrvYnJJEbD71J+JY1y5TdTxpa8Ydirebd2wbCvXHUwMDAw0G604Um92kG3lX19OzxvPWBKg8jrR4WgW1x1MDAwYrqN7CN+t5bkpKp8h4C4iWtcdTAwMTe+/lx1MDAxY1Tru1vfKtXy+KQtv7eKctrlrjvC86GrPyXSXHUwMDFhJVx1MDAwNNWcU6Oo4alCXHKv51pzr1x1MDAxM9reICqGnU5cdTAwMTBhe8th0I2ylYxcdTAwMWKw4Vx1MDAxMNf0vXudjk1I52Wh2XPfmCDZfZJ/fUxsIP5h+u9//nyw9Hyryjz+If33XVtcdTAwMTcnXHUwMDExq+dyXGLDXHUwMDBlNlZQvjiJnJxdfLu5KMBcdTAwMTFcdTAwMWb6X4Lda7t5XdzJN4mAVMRoS1x1MDAxOVOKU8qTb3HPg9VEUqkloIWJXHUwMDE0w7w0iSSVmnJcdTAwMDbWhjCtjFx1MDAxMVIoK4VJRmpCXCJcXHIwXHUwMDE0RDJC+VwikYRcdF+TRFx1MDAwZXl4Ve1cdTAwMTe3eHnrvL9D259rV8e9h0hcdTAwMDSINkZi14JCNmZAZarQXHUwMDFkiVx1MDAwMKHaXGJrXHUwMDE4TiOgXHUwMDEwiO+aVWZKr9+3sGfSXG6Oqv+gNGFcbrLJXHUwMDEzWrFaKFx1MDAwMyox+KdI5XDv5OrsvF25PN3v2q3oeKehz8Z5I1x1MDAxNYZKhGqrgCtthbFSZ1hcdTAwMDZ5xFCqKJWM0ZQui6WK4ERRnMg4XHUwMDA1zmSKkl+cZlxi4CvAYkUps0LSXHUwMDE0dSTEw1x0w1qgdlJMWCFUlnekXHUwMDE1XHUwMDFj4aCTjP8n2pn9spdcdTAwMDX/TN7LXCJ//si7z70xfzEmsCybPGFcdTAwMDKlNSp3mzKjp6jg6/mP+pfSzmBcXNzbqo/229H3zWD/XHUwMDFkUoGgXHUwMDAytDSaIfNCYq0xXHUwMDE3MENcZlx1MDAwZVx1MDAwNHZcdTAwMGLyMVU872TALLJcdTAwMWFzUnzFXHUwMDA2KzZ4glxyXHUwMDAwaDZ56m5wXHUwMDE0IUxJvrgy2Pn07bp0qdnR92u/NOrvj/e7I//d0YEhOPVcdTAwMDNo/IW+XHUwMDE2m6WDOFshSzBU+WCYUZmq5o1cdTAwMGVcZkNKZyqvZJA0aUVcdTAwMDbTXHUwMDAyb0VcdTAwMDbSzCVcdTAwMDPtYlx1MDAxZVSYpMRTZGC9gadLpahCb65/qD6/ql1Udt9cdTAwMWRcdTAwMTloYoRSXGJ3XHUwMDBiWrFMMFx1MDAwMlx1MDAwNFx1MDAwMVx1MDAxN6NQVlGd8lZzSlx1MDAwNYJqbKXSeVxyca644IHSb8RcdTAwMDWCz49DXHUwMDFhrVxyo+xcdTAwMTnCoFKte+v74fDz7nFpbHs38uSbvn53XFxgiDJcdTAwMTYklZRcdTAwMWGmRdJBMVx1MDAxOTBcdTAwMWNcblxyllx1MDAxYmRcdTAwMDP0J/KuXHUwMDBiUNmhq8eMzWvQYMVcdTAwMDZcdTAwMGaUfis2sDqbnLhcdMKgXFy2YvFVXHTqXHUwMDE3y+XjautYXHUwMDA2o4N+rVX/1q1W31x1MDAxZFx1MDAxYihiXehUSXRcdTAwMDfQ4Z4hXHUwMDAzblx1MDAxOUHnybh+4VZoXHUwMDAzmZrmjVxyXHUwMDE00lx1MDAxYVx1MDAxNTQl71ZksFwigzluXHUwMDAynbuWYLRwS/9qcS/hprOxuVlvdivljejU61x1MDAxNTZcZnwv5I1cdTAwMGKAMMGk5ThlSmO1TcVcdTAwMDRiLjCcXGItqFx1MDAwNUslXGJrZ5VcdTAwMDFX6CZcdTAwMTijXHUwMDE0lsMvyDtcdTAwMTUwqlDEuM+KXHUwMDBiVlxc8Fx1MDAxNFx1MDAxN/C5wlx1MDAwMGc+41x1MDAxNs9cdTAwMTZfTVx1MDAxOO7cNNTpYGP/qPZcdTAwMWTCT/tcdTAwMWItu1l7Z1xcIKhcIlx1MDAxNDRIZqlzXHUwMDA3Mlx1MDAwYotcblxiMIaWbCxcdTAwMTVcYjORqWneyMAqXHUwMDE33FhxwYpcdTAwMGJcdTAwMTZcdFx1MDAxZs5cclx1MDAxOUiq0T+mqcjTU1xc0Fx1MDAxY52cNrc6tE072j87qnh2/4f33riAW2JcdTAwMTmjWlx0jj0gsrKAXHUwMDEzjc+gd0DxWWHzXHUwMDFlPmTo7Fx1MDAxOI6/87qWkHTgilxmplx1MDAwNd4qYqDmLyxKhmh51sLiXHUwMDBmPtxrXHUwMDE1il4h2lx1MDAxZehtOv66vVc/fGdswI1cIpxcdTAwMGJg2HTJtaWZfVx1MDAwNkpcdTAwMTLJXHL64aAsMlx1MDAwMs+7n6BRwFx1MDAxOFx1MDAwYiqv0mDFXHUwMDA2XHUwMDBmlH4jNpDz3Vx1MDAwNE6t1XJmz+xTbHCst497lS/jRqOyfnDUrmyURyfwzthcdTAwMDCo21bEpcR5Xz2gXHLQi+BKc1x1MDAxN1OQXHUwMDFjWKaieeNcdTAwMDJhgKKCWXHBilx1MDAwYp7mgkfcXHUwMDA063bZsWeEXHUwMDBmt89cdTAwMDSNms3j8udTc10uVYqN9YPGe6NcdTAwMDLgxHAwjMUrXHKQUOWEXG44MiQ6XG44RDT3e5ExV6GC4SsnYUVcdTAwMDV3VFx1MDAxMPk30UNUYFKxwayP4I5cYjL9nFNcdI9cdTAwMWUyyVx0XHUwMDEzZI46KUusRPHjOIGBgaQ7YuRTTpRGR1x1MDAwMWW2XHUwMDEx7mDl0qBvXHRoi69RXFxQXHUwMDBlXHUwMDAyXHUwMDEyXHUwMDAyToB/77RcdTAwMTOWx0nfvMQ+45mMe5CemtvPlFEudMJtxlxmb8/xTHN+TWx3LmGgyUuqkl5/XHUwMDA2YdTDbnRcdTAwMTCMb1x1MDAwNe5M6mevXHUwMDEztEczNlx1MDAxM+PjbzfoM0lcdTAwMWLtoNGNp1K/PoufKDj32tPsKEzZ+Tm+wsOpt3+/w8N+0Fxiul778P7r3GRdmow0I6mxrnpcdTAwMDM/nsrdvp/fQznMRTlOh4wzRVx1MDAxN0f54+dRc4lyoYBohFx1MDAxN2dAqZLoNs+iXFxT4jbrO1x1MDAwMaCchl5cdTAwMWHIXHUwMDE5XHUwMDBlLHK8jVx1MDAxMZ7SXHUwMDExj0BcdTAwMWNcZjKTxbnhLSH++En4XHUwMDE5XHUwMDFizD3Eb15cdTAwMTfiN69cdTAwMDNxqedvXHUwMDBmQlx1MDAwMzKaXHUwMDFhsbimr13VwsOz7snu6VG/Wzo6Yp1a8STfXHUwMDE4XHUwMDA3xDhO01opXHUwMDE3u1x1MDAxMyxp7OTmXHUwMDAzKTh6XHUwMDAwKPXNMrdcdTAwMDYyQSRzXHUwMDEzOWWgNHb8YiiX3FIq4Vx1MDAwNXZcdTAwMDI+jvKncGjS1rpUXHUwMDFj7r4uXHUwMDBld19cdIdSZFNcdTAwMTNBbY1h7uqChXF4UPykT4fjrUZ1a8xGhUahWbgo5lx1MDAxY4eGXHUwMDEyXHUwMDE0XHUwMDE0WnNtXGZVVmXCakZcdTAwMTN0wKVULuJo0PCWhkRJXHUwMDA0XHUwMDAy0eKcbqw7LcRcdTAwMTdCXCKTVDOs3vI1dX6gyF5cdTAwMTeK7LWmxEf2z3NUgkI+I+Ldv9gxjcuwXrXb2+Voo1x1MDAwNFx1MDAxYoXtnMteXHUwMDAwRZByNEW4XHUwMDAxlyYzJVxuTjjnaHHcXHUwMDE4ZflcdTAwMTJcdTAwMTe/f1x1MDAxM4lMY9XdXVxmKyS+bySy+SdZXGZcdTAwMTPGWtRkXHUwMDBiXHUwMDAzMfp2tD4s+YXtg+aNLOndg3XvR96ByFx1MDAwNTqYWuJkaNFcdTAwMGJVbDa+XHUwMDFjXHUwMDFmf1eKKtSvgFxu1SxcdTAwMGaJnFx1MDAxMYpQRGdYXG5juElpkceQiO4neqwvsevkf1x1MDAwM6JNm+tSgbguXlx1MDAxN4np9y1cdTAwMTOK8yNBUmiBaHzGXHUwMDA2sdHloFx1MDAxNFV24eBcdTAwMGJcdTAwMTRcdTAwMGZOimfV7a0vlZwj0Vq35mtcdTAwMTm10p2lzYR7UZziPOhmS0WZkMu721xuvcTnXHUwMDA2gqRiXHUwMDFjMfD/XHUwMDA0Qv66XHUwMDE45K9cdTAwMDNBM3/xVVxiUFxcPeN2OV4pjs+p3Dos74z3ypde5bTVXGbzXHJBbjXRXHUwMDA2hVx1MDAxZMo7K3RaXHUwMDFi3GJcdTAwMTDVokZFXHUwMDAwlEsl2Vx1MDAxMudCTkS83M2s4sZStdhcXGi01VwiLVjeXHUwMDA2hpqmjXW5c+Er43D9hYFY7+PQTa6ynVR1XCJN5+6RVOh5WJa+jfQpMFx1MDAxNlufKPverzRLZVx1MDAxZvZa3eCYjnK3RTKzMkJcdTAwMTFtXHUwMDA21Z1Q8Y1+2ftiXHUwMDA1QYeNuaiqlFx1MDAwNlx1MDAwNcLSwEhcdKWpXHUwMDEznMktsbPpk1x1MDAxYlXAyviE1NuB8HYrw28tW7zwxoF0XHUwMDA3JSnJc1x1MDAxZjLPL7IpXCLoXGbb2NxyXHUwMDFmO2nYd3ZcdTAwMTP1h6lcdTAwMTbcpd/20Vx1MDAxMsDHXHUwMDE4WEpcdTAwMDWji0+F7ZOL0f7x3mVkv7bExa6IQiOP840+oDhcdTAwMTVqSsFcdTAwMDVKmbFcIrPvSEtcdTAwMDLUXGJcdTAwMDDtjnjDMvdcdTAwMWQ9XHUwMDA3fVxcU1x1MDAwMGBs6UuSK/S9XHL6ODVaWpNejnoyKrNdbl9cXFx1MDAxYd4q+KdfW351+6jx5Sjn6JOKoNpWgLakqVGzvqDbXHUwMDE55K5cdTAwMWYwOM1wXHJpUf626EOnXHUwMDExXHUwMDFk9Vx1MDAxN7knYIW+5aJv7lx1MDAwNtz5e/FcdTAwMTXnXHUwMDE0nZ5nxEO3qiVDv7To2Y68KHry5Eo1x5d5R54mTDN331x1MDAwNWpKgCzyNFwij1vu9sJpy+VcdTAwMTJcdTAwMTcmNHHXXHUwMDA1aYlKgzJtXHUwMDFmXGLEMGAkvmlQWlx0XHUwMDE2OcNkXHUwMDAxyaxQXHUwMDFjuExplVxc7bdNXHUwMDFkXVjtt5181nFYrZJKclx1MDAwNCN1gbj04+tcXJP4wKiSXHUwMDAyZ1x1MDAwNlx1MDAxMJo/+YVzbSnOvW9G90nq97jEzN/By63F5nFY3IXVO58748JBb3S4t1m+KNj1I1x1MDAxY8+8k4khRrsoqpBKQ+a/PHFkgpxqXHUwMDE1XHUwMDAwV+jKLpNMXHUwMDA0qnVkbkGZU1x1MDAxNOaBXHUwMDE5nVx1MDAwMSdcdTAwMTSsRcEvtHb4vDe7XHUwMDAzt4JpmdNcdTAwMGJcdTAwMDJXXFzyQOmXppK5hlx1MDAxNH/ffVx1MDAxYprHJFx1MDAxZu7esOb1elx1MDAwN1x1MDAxMVx1MDAwZebUKNCogtpdXHUwMDFjMOmXtavAvy7ct/o/6vHHbeqMLcfRQCx/fv768Ou/XHUwMDExNLevIn0= yxO11-42-2

    c=4

    f(x)=ax24

    (2;0)

    a224=0

    4a4=0

    4a=4

    a=1

    f(x)=x24

    Ats.: f(x)=x24

  2. f(x)=ax2+b

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da1MqSVx1MDAxMv1+f8VccufLbsTaU1mV9ZqNjY2roqioKD6ubkxcdTAwMTgtNC9cdTAwMTFcdTAwMTBaUSfmv29Wq3TbiKIr2uzAfVpVdD3PqcysrOw/vn3/vlx1MDAxMN52g4Xfvi9cdTAwMDQ3Zb/VqPT8wcI/XFz6ddDrNzptyuLRz/3OVa9cdTAwMWOVrIdht//br79e+L3zIOy2/HLgXTf6V36rXHUwMDFmXlVcdTAwMWFcdTAwMWSv3Ln4tVx1MDAxMVx1MDAwNlx1MDAxN/1/u7+3/YvgX93ORSXseXEli0GlXHUwMDExdnr3dVx1MDAwNa3gXCJoh316+n/o5+/f/4j+TrTO7/U691xyi5LjxoHmLJ283WlHLVx1MDAwNSFcdTAwMTTlXHUwMDBiXHUwMDEww1x1MDAxMo3+XG5VXHUwMDE2XHUwMDA2XHUwMDE1yq5Sg4M4xyUtnO/3w92t3HkhX1x1MDAxOKyFcFx1MDAxOFxcXHUwMDFlit243mqj1SqFt62oTf1cdTAwMGV1Jc7rh73OeXDUqIT1x0FLpI/7Vq9zVau3g77rO1xmUztdv9xcYm9dXHUwMDFhi7vnt2vRM+KUXHUwMDFi+klo6Vx1MDAwMVwip4FcdTAwMTBgWfxcdTAwMTD3dWGYJ1x1MDAxNLfKXHUwMDE4MKBRpJq13GnRJFCzfoHA/YpcdTAwMWJ25pfPa9S6dmVYJuz57X7X79FUxeVcdTAwMDaPXHUwMDFkluApppXkUlnQXCKuqVx1MDAxZTRq9fBJu/tBNFx1MDAwM6BccldcbpWKXHUwMDBiuyq765VoKfxcdTAwMWWPe49cdTAwMTbRuvtK+6rVSlx1MDAwZV678jB4j0smXjT8IeXPuE+ufC6x2OJcdTAwMWGuulx1MDAxNT98aFx1MDAxNLdCIChltFx1MDAxYea3XHUwMDFh7fN09a1O+fyZldRcdTAwMGb9XrjUaFdcdTAwMWHtWvorQbtcdTAwMTLnJJr8gICoi1x1MDAwYuvQKK33TWGvt1RSYVmXxPZJbjjibjg65atowXiMS46otFx1MDAwMm6YlSpRqOZ3XZGRQWj5/XC5c3HRXGKpv8VOo1x1MDAxZKZcdTAwMWJcdTAwMTl14IdDXFw98EdcdTAwMDadupDMS0Oz655cdTAwMTgj2X3i/32P10D0w/D/v//j2dJjXHUwMDE3Verb35L/PnR1clx1MDAwZbFcbtKpQ1xu4cIyi1xcyYkppL5z45c7tlDbqLc32tc/oLnTz2ebQtBcIq0kLuiPRYFcdTAwMDTKJyRcIlx1MDAxOfc401x1MDAxYY01ilx1MDAxYlx1MDAxMNNjXHUwMDEx5lx1MDAxOVx1MDAwMClcdTAwMTjTQrtcdTAwMTlXdpRGXGKbXHUwMDFlMmqmkEZqaeNcIlx1MDAwZrRi0Fx1MDAxYaG0jVx1MDAwNyNbrKKnyipPXHUwMDFmNkNgXHUwMDFmP/fuszgy7W+EP4118KxcdTAwMDTBQaaTXHUwMDFm4W+lsVx1MDAwMrmYXFyAsIc3naN+qzbIXHUwMDBmXHUwMDE0tHYuS9f8vJM19IMnNdNWXHROKCFUy3hFPtJcdTAwMDGJTUIyZVx1MDAwNEqUT+lAoPZcdTAwMDRDsNpcbmlcdTAwMWQnTJFcdTAwMGVcdTAwMDRcdTAwMTNEwdRUXHUwMDA2XHUwMDE2JUNcdTAwMWPlXHUwMDAzzj1aN1ox4nFqOiaac89cdTAwMDeKoWagISaKOVx1MDAxZnxcZlx1MDAxZjzJ+2AyXHUwMDE4O/PuMzLnXHUwMDFmRlx1MDAwNlx0XHUwMDExOS1cdTAwMGJYhZZkkcSe9Fx1MDAxYVx1MDAxYuzs5fP1o91ybmWzz7Yu7667cvtyXHUwMDA22UCiVkpJXHUwMDA3+lx1MDAwNFlGZMCFJ6VVRFx1MDAwNZIoI/NcXFx1MDAwMEaSXCJElJ9V4cDMyWC09FeRgdLp5EcyXHUwMDEwXHUwMDA2XHUwMDE5MMsm11x1MDAwYn5cdTAwMDa+hWNcZvYuy0XIt7tbxfbR4cxxgfCYXHUwMDE0XHUwMDFjuNVcdTAwMDZcZqaMXHKMeSg41yQzWG7UXHUwMDE0rVxyXHUwMDFmRFx1MDAwNtRNXHUwMDEyY0jSmZPBnFxmXiNcdTAwMDM7Vk1cdTAwMDCwwkhlzOSSXHUwMDAx6NpuJeef9IPq/i7Xt1x1MDAwM7MkZo9ccrhH0qvkRpNcdTAwMWHAMc51XHUwMDBm5Fp5Trgl0ZtkJiEh82ygpGWEvVx1MDAwNOnP2WDOXHUwMDA2z7NcdTAwMDHVOZZccrg2gqrkk8tcdTAwMDbHcLVbWDkr7Vx1MDAxNC9cdTAwMGaq1+X1XHUwMDFj9zc2Z45cctBcdTAwMDPOpVx1MDAwNIbSailiXGZGdCBJdLA0NMrZeFx1MDAxNE+3NGtsYJHTl43IqtEgbtecXGaGXHUwMDA1vopcZuT4XHUwMDAzXHUwMDA01JRLe2FcXOI1Mmiu1zbb7PhcdTAwMThloZpfPq5cdTAwMWT3Lu9WZ45cZoRnUVx1MDAxOeV+a5A2RVx1MDAwNtx67pzBOCsvklx1MDAxZZV1s4FEhVqjzaqiMGeDZ0p/XHUwMDExXHUwMDFiIJh08tBqQFx1MDAxYiPHt1hcdTAwMTAt32zmmjvVn6ZYboc/g6WNYlx1MDAxMMxcdTAwMWNcdTAwMTmgpylVIbijXHUwMDFko1KKXHUwMDAy01x1MDAxZWdcdTAwMWOMkEwyI1x1MDAxM1x1MDAxNsZsklx1MDAwMVx1MDAwMDfSMMMz6rZg4lx1MDAxOZqzwbDAV7FBYv2k2IAzXHUwMDEwTErCxMR0sLp2V1x1MDAxMYf5/iqEi/l9WP/RzF1mzj9pXHUwMDAyOlAgaNOyblx1MDAxZWzK24B4wEOaXHRtgVx1MDAwM4qEXHUwMDAwnlE2MNJcdTAwMTKrQVaPXHUwMDE352zwXFzpr9JcdTAwMTRcZk8nx2ZcdTAwMDOmXHQyRk7OXHUwMDA2tTKzhdWLi+714c/Fu2LdbC39aM5cdTAwMWNcdTAwMWJIz1x1MDAxOVxiuWFMXG7N4j3VPVx1MDAxMFx1MDAxNfe0UpKT2GRcdTAwMWNcdTAwMWRknFxmNJfGcqEzqifMueC50l+mJ4z3XFy2XGZBqrdwwfaNYlx1MDAwN2tF+/Nqq1x1MDAxZf4oXHUwMDE1XHUwMDBli1x1MDAxYnuDmeNcdTAwMDL0rCGpgGhSXHUwMDAx0ynJXHUwMDAwhXVuivTbKHSMkXEyoJYycKcjczKYk8FrZKDHu1x1MDAxYTC0gMnD9te4YNDNh/XmdemqetMtXHUwMDBldtfPj0+Pb2aOXHUwMDBipGcoXHUwMDBmXHUwMDAxhFx1MDAwMCVUSjBcdTAwMDDlXHUwMDE5LS1HxVx1MDAxOFx1MDAxNyrzWlx1MDAwMjDDnLdBVrWEeNrmZDAs8EVkINGmk1x1MDAxM65cdTAwMDaojUE9uUvydtkv5lx1MDAwZfV6abBcdTAwMTOa05tcdTAwMTVcdTAwMTBH58szx1x1MDAwNuhcdTAwMDEyLTWpUIalyEBYRTqEMGBcciptXHUwMDE4YKqlmWNcdTAwMDNDvZBcZrLqajBng+dKf9np4vj7XHRWcSVcckyuJlx1MDAxY8na0eLK/qE8OFx1MDAwYje3Nvr1fb+ZOTVBXHUwMDEw1oH2diVcdTAwMDWp09omXFyHXHUwMDFjXHUwMDE5SLCeXHUwMDAyLVxmSndTRKW8XHUwMDEwXHUwMDE1aVx0lil31GLBSJH141x1MDAwNEMzzG1mz1x1MDAxNudcXPBcXOmv4lx1MDAwMj1eMrDunq9ib5BcZlaOi82cYDm7q8vn9YqARvHyZNbIXHUwMDAwqVx1MDAwMElcdTAwMDTIpUBm0neVlPFcdTAwMTgpXHUwMDEwgmRcdTAwMGJcdTAwMTRcXGbd64hcdTAwMDNSV3nyovacXGbmZDDGZsDG2lxmSLLU4PTiyY1cdTAwMDZn621cdTAwMWTu9Vx1MDAwZVbvUPo1qWVj+7g2a2SgtMeIXHUwMDExlGZSI2dPXHUwMDFkXHIo2UNcdTAwMDOAgrRcYsV11lx1MDAwZlx1MDAxMyy1lCRcdTAwMTk9N1x1MDAxOcy54FUuXHUwMDEwY5VcdTAwMDR3sEafN0RBqe817/DnQWF552717Fx1MDAxMFerXHUwMDA3y+dbs0ZcdTAwMDXWRT5cdTAwMTHOVILCmVBH5Fx1MDAwMoPCaGSKSWEybz7UoKyxkNmDxXim51xcMCzwVVxcYDCdXHUwMDFjm1x1MDAwZlx1MDAxNUmXgDi5XHUwMDA34tnh2qHvr9349mj7slhcdTAwMWVcdTAwMTRtxZ81i1x1MDAwMc2BZ6VB5MaRgVx1MDAxMin7oaap4to4XHUwMDFmXHUwMDAzw5Bl3nxIylxmMmkho5eY52zwXFzprzpMgLEuR4qjg4OZXFxJuFq+28mt9ptcdTAwMTdccuXDYMc3J6WTzFx1MDAwNTR4hVxmkFx1MDAwYpJcZrRcIv3IaJW0XHQ8clx1MDAwMaeZQqcgKFrOXHUwMDE551x1MDAwMmtJpWEqs0rCnFxunin9VVTwkvWQae7O0ydcdTAwMTdcZo5cdTAwMTbzV8GaOLC8XHUwMDAzZn1RbPut21mzXHUwMDFlXCJKzzrJQErSXHUwMDE0RlxmXHUwMDA2xFx1MDAwNZpIXHUwMDAylFx1MDAxM1x1MDAxYqRM3HDOJlx1MDAxOThcdTAwMTdSLkmUmVx1MDAwYlx1MDAwNnM2eI1cctRcdTAwMGLmQ1x1MDAxNsWTfItk0DnFXHUwMDAzXHUwMDEz5MJB5aZgcpcn3dr+amPW2ECRmqBcIsMpgOE2ZTMgNrCOLLSQJENYk/WDRVx1MDAxMOg8KURWY1x1MDAxZJl49OdsMCwwXTZcYoOb8Dk2MGq8zVx1MDAwMLVcdTAwMDZjzVx1MDAxYlx1MDAwZVx1MDAxNvdF4XC/Wb1kzetS77S3ccmqe/tZI4OnMVAlSFx1MDAwZlx1MDAwMY1cdTAwMDDSiVx1MDAxNGOpS0mOXHUwMDE5XHUwMDE4oEJOWjdLWlg+XHUwMDFh+9ZcdTAwMTPaWmNJOSNcdTAwMWVCXHUwMDExeznHyE8wz6NDXHUwMDExklx1MDAwNMeJt/53qD/JeFx1MDAwM6ZpVUraMt6D6WqnXHUwMDFkllx1MDAxYXf3l+KepK76XHUwMDE3jdbtk1mNlvBvbl6eJP1oNWrtaMNcdTAwMGKqT5d42Cj7rWF22OnGuWWqwqdccrI3OiSdXqPWaPut/dHq3Jaaf5xcZvBcdTAwMTLTceb3g2jDdVPyPiDqsYZ8YSTtS8JOvim/XHUwMDFjSTqTOCT51YVcdTAwMDZgYDRKiyy1XHUwMDA3XHUwMDFi5ilt3H0gZbWW09uCgeaVWNhGXHUwMDE4TMzJiyBcdTAwMTRcdTAwMTg17Fx1MDAwM4z0L4NwSPrxtjyc85dD2D9Zg/fRfIc5fz7uIK9A/F3BXHUwMDA23lx1MDAwNfGbz4X4zedAXFzx8Wo4485cdHbynba5tjwotPTKYLPaXFxWXHUwMDA1rVx1MDAxNnmhkm2ES8Y8Trq21IJEXHUwMDFkXHUwMDEzb1x1MDAxOI9cdTAwMDDnpJWTqiiUmqZfP6AnwW20XGZcdTAwMDTJ/GZCjEtSXHUwMDFmtDVfv9F+XHUwMDFlXG53Plx1MDAxN4U7n4PCZOD4kVx1MDAxN4eQZFxyRk5cdTAwMWXAK8ixdmlry1xm7lx1MDAwMErN3Z2zLXaSuUOytMBcdTAwMWLdoCFcdTAwMDWDI2idXHUwMDEyeEnKoFxcwqDm91x1MDAxN5OnZ/pycjdttFx1MDAwNpQhfUdcdTAwMDCfXGKIgklOejh+gFx1MDAwN/2s4Fx1MDAxMD5cdTAwMTeH8Fm74VgzlDakXHUwMDAyvUnxbPnLjd3lXm1cdTAwMTD8zG/uXHUwMDFjLXHJ6ibbOESNXHUwMDFlXGK3XHUwMDEzXHUwMDEx4yiGNmWDRuVZQqgyYLnkcnpOa+/DIXXQXHUwMDEwXG65nLrQ+1xuXHUwMDEwXHUwMDEzt6nnQHRJb1x1MDAwNuJYXHUwMDFjXHUwMDFhd1OJJaOMvfpcdTAwMWWtZq/dKS7l/MPzXHUwMDFhXGJ9kdtcdTAwMTbdzN05S+FQcY85eylIjMLWPlxyWecun5NUapQhwmJiilfMOO28zv4njXuj12QoNFx1MDAxNqRwmupfXHUwMDA3hIvic1GYrG+qXHUwMDA2oLHR49zVT0Bi58mve3Wvz6ts/Vx1MDAwN+7ZjVqunVfbx6tcbrKNQ9pcdTAwMDM9jc78TdtcdTAwMWQpZ2m5lHlcdTAwMTKBW85sdKljajBcdTAwMDThuevapOtJgqOZ0Fx1MDAxMCukdIdcdTAwMWJ/pd3wk3H4STBcdTAwMWNvhlx1MDAwNeNOXHUwMDAwaPFNbofdLfZOK+3r091uIVxmN6s9u5ZfbmVcdTAwMWKGhDFPOM9cYiu0USxh77iHofAkMVx1MDAxMWdcXJOmrKfnJfWe3TCKspm8XHUwMDFk80VcdTAwMTh811x1MDAwNYm/5GZY7dHM9fznX/E6NkxcdTAwMTJHXHUwMDE3dk+/IZzqaa2g7cHR3V739rZcXF4r3q02QGdcdTAwMWOIXHUwMDBlakJxg0q4VzSm4qqjXHUwMDA0wqlS7qYzrTsx1eipjCXeL1x1MDAxYr/X9Wn6o2JcdTAwMTjFgtf2I64svFx1MDAxN4b3blx1MDAwNjK5VCeF4Vx1MDAwN1x1MDAxZuonRyhOib/3LfX9SVx1MDAxY1x1MDAxNlx1MDAxYVx1MDAxN1ct6m6xR4N01XMrJ+xdJXrwkH4/Ri/Cb6yP0Es2Ui7cVdU33CTY3Fgs9WvXx2H/9mI9OF3u7e/uY9bB5+KO0I7PuDKS86+CnjaeizrMNItcIlxm2mfersyF9oRyXHUwMDA2JJJWjTaCp1x1MDAxMSmVNtxk9m3L78Pp/7k70FwiR89w5d6qYSQzysaiVpQtmOde7c00olx1MDAxNkwwhq8+cexauq9vZFx1MDAxOY2S1Lu4RLBcdTAwMTferGgtclx1MDAwNmbyXHUwMDAzl5uaPDxr2f7tVqm7f77brIdH+cw5XHUwMDFmP7OR01RGXHUwMDBlRkQpKUMvovWkNpozSVx1MDAxM0OjMb1cdTAwMTNcdTAwMTdaXHUwMDAxXGJSulx1MDAxYoVMkYpcdTAwMWLX9IRNoju+nN/fPExcdTAwMDRbfPQuXHUwMDE0XHUwMDEyxcechM7p5JPohCuPRe8mXCJcckXy5NS7XHUwMDBmgd+jmeaKK1JvaXbNq2wydik9PC+9it5IJu/TXHUwMDBikHHgqO3k50a1leuq3ls/3LBqY3tnu98/h5tCtulEgvGsMkQlJHooSMdKpZmWmjFFXHUwMDFiXHUwMDAzTaia5pXGN2lcdTAwMDXuLFx1MDAwMT/mZcxzrWC6WsE401x1MDAxOL5wb8C611x1MDAxOeBcdTAwMWLiXHUwMDE230Jlpb5elVDdlqaT27nW23v5jCOPa1x1MDAwZqmPnJRcdTAwMDKmQacjk1o3i9ZcdTAwMTJcdTAwMWRKtIpNTyuQxqN6LLfGjXvSRveCcYwzXHUwMDEyI0nA+IhcdTAwMWKDs2JcdTAwMWX7XHUwMDFi/JM2o79/ro1spNKpnlx1MDAxYb1cdTAwMTBLXFxcdTAwMTlGS/Vcct5MUGtcdTAwMTc3j05O6v1tsThcYoJry7f2so1JVOBcdTAwMDKEknLLLGFzNFiwe1x1MDAwNZuLI8zRTvEl5Zx7KElcZlIuXHUwMDFhm1x1MDAxM4niXHUwMDExeOn0XHUwMDE26Vx1MDAxN0j71T6Fn2mw5p9ssObvxOG3h+13we92SyGN2VBdoUlqVFx1MDAxZTpcdTAwMWXXvXDdXGJcdTAwMDZLo8vml2r0cd7WXHUwMDExtlx1MDAxZIqiTfiPP7/9+V/61DpzIn0= yxO11-33-3(1; -2)-2

    c=3

    f(x)=ax23

    (1;2)

    1a3=2

    a=1

    f(x)=x23

    Ats.: f(x)=x23

  3. f(x)=ax2+b

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daXPaSlx1MDAxNv2eX5HKfFx1MDAxZPRu395f1dSUV7xcdTAwMTDHiXdPTbkwXGKQXHJcYoOwsV+9/z635dhcdTAwMTKyXHQ4MUTUyKl46ZZQL/ecu/Tt1l9cdTAwMWY+fvxcdTAwMTTd9/xPf3785I9q1XZQ71fvPv3Tld/6/UFcdTAwMTB2qVxu479cdTAwMDfhsF+Lr2xFUW/w51x1MDAxZn90qv1rP+q1qzXfu1xyXHUwMDA2w2p7XHUwMDEwXHLrQejVws5cdTAwMWZB5HdcdTAwMDb/dt/3qlx1MDAxZP9fvbBTj/pe8pCSX1x1MDAwZqKw//gsv+13/G40oE//XHUwMDBm/f3x41/x91Trqv1++NiwuDhpXHUwMDFjM1pli/fCbtxSxkFbYzSw5yuCwTo9LPLrVN2gXHUwMDA2+0mNK/pUN/3IRJ3Nk2PWO9u827rw91x1MDAwM548t1x1MDAxMbTbXHUwMDA30X07btMgpK4kdYOoXHUwMDFmXvsnQT1qPVxyWqp80l39cNhsdf2B63vSzLBXrVx1MDAwNdG9K1x1MDAwM3gurXab8WckJSP6SzDmXHRUXG64tJaDTYbD3c8teFx1MDAxMqRkyoBiUiqRadha2KZpoIb9g/nuX9K0y2rtuknt69afr4n61e6gV+3TZCXX3T11XHUwMDE5mGdcdTAwMDVqa1x1MDAxNf1nnMnnS1p+0GxFY01cdTAwMWb48SQwzrlkXHUwMDAypX2ucc/sbddjafhvMvR9kqNtd0t32G6nx69b/z5+T1KTyFxyfi/5O+mUu34jJW/JXHUwMDEzhr169VEymEbLuWDWokwmslx1MDAxZHSvs49vh7XrV4RpXHUwMDEwVfvRatCtXHUwMDA33Wb2XHUwMDE2v1tPalJN/lx1MDAwZYK4i5+qo4vgXnbZ2lx021xiOmtwc3P69eZ5yN1whLWhaz94SGMnwXBFXHUwMDAzLqnNqYua1Z5cdTAwMTNcdTAwMTBcdTAwMGY1ZyCNXHUwMDA1ySX9eDEo7eogWlx1MDAwYjudIKL+74dBN8o2Ou7Qilx1MDAwM2HLr76YXHUwMDA06lK6LovWnvvEXHUwMDA03O4r+e1jXCJcdTAwMTPxXHUwMDFmz7//95+vXj1ZyjK3f0j//N7XN/Bcbo3VRF7RXHUwMDFhXHKQfMzOK1x1MDAwN/e1ta87XHUwMDFiXHUwMDE49G8kflx1MDAxOXVcdTAwMDc7UZhzXpFcdTAwMDCelqiEVaAsYvJkd7+Q2lx1MDAxM0Cix7ii2eA80673o5WkVc8sgkZ5QkqttdX0XHUwMDFkXHUwMDEyonliXHUwMDE1aZBZXHUwMDA0mXQ9V6xcIvRcXFll/MOWXGLcY1eXXkzzXHUwMDFiwU1D67+KbdSYLX7CNjKaJFx1MDAwNkLOju2VXHUwMDEyq1p7JEZ357KyXHUwMDE1nq5cdTAwMGZqXHUwMDFitbxhm3lSkzWkOFx1MDAxMm1cbmNlXCKBT2AnXHUwMDFjM6okpEuTICo2XCJcdTAwMWPYhdJCWuRWs5Rmf3e0e1x1MDAxYzg9hFpcbsxcblx0XCIxWFx1MDAxMvyjR23QioxcdTAwMWQmLLUsi3+lXHUwMDE5cM50XHUwMDAx//eG/1jd+2J/8sy7r1x1MDAxN3P+XmTAU2jJKnoyNiSZXHUwMDFhMpH3aWSwI5tcXOw091cvgVx1MDAwN9hcdTAwMWHsd7Y7elx0yUAoJVxm11x1MDAwMm269zFcdTAwMTlw7mlAXHUwMDE0TFxu4CTOOedcdTAwMDJGLpBGwXlOPYyCXGZeu/p3kVx1MDAwMYps8bNlIC2BRojE0p3GXHUwMDA1eH24e3O42lx1MDAxZpyXL643O/ffLvpnV0vGXHUwMDA1wlx1MDAxYc9qXHUwMDA0XHUwMDBlZFx1MDAxY1hjIFx1MDAxM15gQPdcdTAwMGJDNlx1MDAwM9f0XHQ609LckVx1MDAwMXVBXHUwMDEwXHUwMDFiqKShXHUwMDA1XHUwMDE5XHUwMDE0ZDCBXGbkRDeBaS6MXHUwMDE2kJKjaWxw++2gXHUwMDFk7nZ7R9ulzaP1rb2NlSBcYpeQXHJcXK1QwF1cdTAwMTBEjZtcdTAwMDbOYTM0V8wwyVx1MDAxNVN5d1x1MDAxM1x1MDAxODGbRTJcdTAwMTCShlx1MDAxNmxQsMFcdTAwMDQ2MFx1MDAxM/1cdTAwMDRcdTAwMTIhUitMpILY09jA3O+XrsXm8e394CxqbFx1MDAxZvqn0X20ZGzg/Fx1MDAwNFx1MDAxMIwrg6RUtU0so5hcZlx1MDAxNPeQSyfKgoHgMu9sIFx1MDAwMI2WJq8rXHUwMDExXHUwMDA1XHUwMDE5vHb1b1wiXHUwMDAzXHUwMDAxZqJpXHUwMDAwXHUwMDE2SOwtn51cZla2zKi58lx1MDAxOVa3YLV+bVx1MDAwNXSal3LJyEBY65E9oIhcdTAwMDfdcmMqLFx1MDAxMJNcdTAwMDG3nrBg0EVyucU5Llx1MDAxN7yPZeBWPFx1MDAxOLk1hZ9QkMFUMtAyW/xEXHUwMDA25Fx1MDAxMUuJXHUwMDFjZndcdTAwMTPWkVxyK7WtXHUwMDExjIKTh+3t1sVm63y0ZFxcXHUwMDEwL1x1MDAxZILhhjQ/Sk2WwDhcdTAwMTkw7XEhNKdp4KDy7yZcdTAwMDDjmoPUhWVQkME0MpAwOW9A0mRcdTAwMTEk1OwhxPLR8Oxsb09cZkfdnajCWvvBZbhsQVx1MDAwM8dcdTAwMDaS6sjZ5pwzjuNswCz3XHUwMDE0XHUwMDAwqVqynFx1MDAwNJPIMk3NXHUwMDFiXHUwMDFkOE9cdTAwMGatMkk3XG42KNhgXHUwMDAyXHUwMDFi8InrXHRcXFvNXHUwMDE1vCHRwN+84sdbXHUwMDA3p1x1MDAxN/V7vX+Ma+1B2Vxml45cZpinJVx1MDAxM9JwzazS48tcdFx1MDAwMrVcdTAwMDfMReilMc7+zrufoMiCkYpcdTAwMTeJXHUwMDA2XHUwMDA1XHUwMDE3TOVcdTAwMDJcdTAwMDVcdTAwMTMzlSVcdL606YzZaVxcsDk04e56p3K1tstPeK/jr1b9wdJxXHUwMDAxeCCpVHCtXHUwMDE1XHUwMDAzzJBcdTAwMDEominFlTZcXFB93t1cdTAwMDSpLIBRRcig4ILpIVx1MDAwMzZ5aVx1MDAxMblcIlx1MDAwZlm9wTA4aWy3vsJNd9ffvb3W5dbx+fpuJ29kwD3qtbSoJJfGastcdTAwMTLdXHUwMDFlk1x1MDAwMUryXHUwMDEyXHUwMDE0XHUwMDAyIy4gZkg+9v7RWPLIe0DQmmmm1Fx1MDAxY7cxvFPMwKCUwlwiXHUwMDE0XkLBXHUwMDA2U9mAT97DRG2RLlx1MDAwZnH21YRcdTAwMWF0jtVRsFVcdTAwMGWbh1E3ZLJcdTAwMWX2ysvGXHUwMDA2wnpgaVxurEszMDaTgqiNx6Q0mv4hmVxiebdcZphcdTAwMDHJQaTzplx1MDAwYjIoyGBcdTAwMDJcdTAwMTmoiSFcdTAwMDNcdTAwMTZcdTAwMDNCXHQ+u5+wz3bM11x1MDAwYrV+eHZcdTAwMWFcdTAwMWNcdTAwMGVcdTAwMGarx1x1MDAwN3f93OUjTyNcdTAwMDONntWcXHUwMDE5XHUwMDE3dkNcdTAwMTSZXHUwMDE0RK09RTaTZVx1MDAxYcjHMirT0LyRgeVCICtcZoOCXHUwMDBiZlxiXHUwMDFmKpstflx1MDAwZVx1MDAxOUhcdTAwMGLG6cCZqeDw81x1MDAwM7DjlZPRZvOk17o87OH9xsOSUVx1MDAwMTGAh8btOHQ7XHUwMDEz0Y5vSuSGJorsXHUwMDA1K1AxYoq8b01Alz3FZTpcdTAwMWSi4IKCXHUwMDBiJoRcdTAwMGYnO1x01rhjXHUwMDBl0mI0jVx1MDAwYlrr10ZtlIXc3Ng4gupmz5TX28vGXHUwMDA1knmWzCWFXHUwMDA2NaaF9YlcdTAwMGKMZui2MVx1MDAxMcjSK1xy+SRcdTAwMDMppVx1MDAwMl1QQUFcdTAwMDXTqWCyi4BgOGqj9Owuwsb29XBwsdb7XHUwMDEynpvyWXBdvosuS8vGXHUwMDA1WnrGSMuslKA4N8lcdTAwMDA9klx1MDAwMaP7kXHJXHUwMDA1XCIylvfwobJaXHUwMDAyV8U2pYJccp7YIPJH0WtsYFNcdDNcdTAwMTkyXHUwMDEwXGacwyxcdTAwMTPxmsZcdTAwMDU9tueznUq4OjjrN/n28Vx1MDAxZYeV3C0rZs4pQeZxUvDCKINcdTAwMDIy0Vx1MDAwMWbcXHUwMDFlXHUwMDA1XHUwMDAxXGZRk8NEbsHckG/J97BkiilqXHUwMDA1csGTXGbxXHUwMDA096+dVKJJaJC9Q27hWMVcdTAwMWIgTULpjrP5XHUwMDE5SDfCbnRcdTAwMTA8PGqesdLNaido34/NaizBf7p5XHUwMDE5K1ppXHUwMDA3zW6s7/zGuIRHQa3afq6Owl5SW6NHVEk/9l9cdTAwMGVJ2Fx1MDAwZppBt9o+fPk4p1G3niaDeanpuKxcdTAwMGX8WN86kfk5XHUwMDFjpsj6xZJcdTAwMWV5q4AmJcvTgPjjXHUwMDAzoHJcdETFtDtDRIJlTn2Z8TS/2Fx1MDAxZUdrXHUwMDAxaSjAzvHYXHUwMDAwRlx1MDAxM0ssbGNcdTAwMTDqV1x1MDAwZSF7XHUwMDA1hZZA+D5L9z9cdTAwMDbhM+cnWvl5yn989tyYXGY+nsHzXFzz95NcdTAwMDKZXHUwMDAycZlcdTAwMDbCXFwhPlosxEeLgbgyP1inM9olg6nZId45OHtoXHJH0Ph8JDrR11K5oTeCfEOcbGvPxdi1kIpsbZZdl7NkXHUwMDAzkdPN4yi9W1x1MDAwMp9cdTAwMWbIhec2XHUwMDE5XHUwMDE5XHUwMDBi9DTNzGw41y6fyIj3SN39NWW7OCR+WSxcdTAwMTK/LFxiieJcdTAwMDe5dNpwhmx2o/cy4u2LXHUwMDE1fy889VdkdPHtsttcdTAwMWRcXOZcdTAwMWOIKDxcdTAwMDB35oaW5G1k02hBkiY2oFxiXHUwMDFkmlx1MDAwMDk/b1d6zlx1MDAxZrSGKUNcdTAwMWVcdTAwMGZccvtMMJREluRcdTAwMDDNX93mXHUwMDA3hmyxMGSLUoiTXHUwMDAzUUJZoyBcdTAwMTWpmlx1MDAwNsPtK787XFyv4s79w+6gPyzVrap+yTdcZoXzLiVcdTAwMTgmXHUwMDA1kpNJXHUwMDE4XHUwMDE414dSe6BIPSmXXHUwMDAxQr/lXGaHTFrpzjV4j7XoX1x1MDAwM6JKi2tcdTAwMDHEt1x1MDAwM3GyYSrJXGZTXHUwMDEy7ez60G7vXVx1MDAwN9eRqTxcXG2Uu1fD0lH1+C7nQNTCc0FcdTAwMWVyPJXiMlx1MDAxYv51R2Rr8ks5cEGkNMe1IMY9RUjU1pBcdTAwMDNszYxRIOVy3O27XHUwMDFjPbEsOOSLxSFfXGZcdTAwMGX5XHUwMDBmToxCRoIn3+AgslGN11x1MDAwNv1vneapqFx1MDAwNUdrraP1I5N3XHUwMDFjgkeCxEizXGJcdTAwMGKY0YdotGfcIeVcdTAwMWPdKoye3+4uhp52+lBr67Zqzlx1MDAxOFx1MDAwNVx1MDAwMstcdTAwMDG1+n9Sh2KxMFx1MDAxNIuBoZh4IEO8XHUwMDAwyDCF06np1CcrK1/PrstnhyzUx1x1MDAwZqO9zlG9n3dcdTAwMTQqT1wiKCBcdTAwMTByxoXMwNBcdTAwMDVqmVx1MDAxMNxcbnTW6/zcQ+aOkLcuj1x1MDAxYpTh0s64JkI9XHUwMDA0g+lcdTAwMTOjflx1MDAxM1x1MDAwZX9qmfOncKhcdTAwMTeLQ70gXHUwMDFjTnRcdTAwMGZcdTAwMDXJplx1MDAxMMokXHUwMDAyMVxyh3v89us5e9hprFx1MDAwN62Ls/PBym6zkrujXHUwMDEwMlFcdTAwMWHBPUHGp0W0UqFMOvtcdTAwMTilXHUwMDExXHUwMDFlXHUwMDE5XHUwMDA1RjEyXFytnePKJFx1MDAxM29eXHUwMDEx0Vx1MDAxMlDQt99cdTAwMWWiWVx1MDAxY1x1MDAwNHGxXHUwMDEwxMVA0Ey2SMGtSzJcdTAwMGKzh2iGXHUwMDFid83R+tbN7Xal+TBonNzwjepuvjFIXHUwMDFj47nzSklccoJggo+rQlx1MDAwMdxDMCDceV9j2JiHY0hcdTAwMTg0ZPxcdTAwMDI5erMuTLpcdTAwMTVTUp/vsXNoWXBYWnCIprSgXHUwMDE4zeRYqVHCZanK2Y3SPfA75ng9qmzog8p5t31+py5Xclx1MDAwZUTB3HtcdTAwMDOMIf9cdTAwMGa4zWzwXHUwMDE1gJ5cdTAwMDLHR25cdTAwMWSeyfmlXHUwMDA3IHqCbFKtmFVoLKhkXGJ+XHUwMDA0RO7OKMhDno5JXHUwMDBi63yBuGCNWHpnldjo09w9vdDwqalPLzWc6CEyo12MQr/h/M7b9Vx1MDAxM798XHUwMDFjcrnzrdsx5fpNqXR8kW80urM3XHUwMDE4V3HIQ2qdfeFcdTAwMGaCZ6RcdTAwMGJWcVx1MDAwMolNn1xc8v75spDe7J+8KXC8/OmMXkktck7t70PhLyTAvnO6aXqAkpLkvlx1MDAwZpn7Z0mlXHI6wzZ1d79PgzTsO7mJ+sNUXHUwMDBmvpc/jtFcdTAwMWPQp1x1MDAxNTHy2Ins08BXiUp9OSwxl1x1MDAxMlx1MDAxNVSOsNE1XHUwMDBm5/lcdTAwMDafW61cdTAwMDBrJCgrXGZcbpONz1hFtqKUXFxYupLDPLexvVx1MDAwNXxMW7ffXtnfqFx1MDAwM1x1MDAwYvT9OvpS7PlcIlFcdTAwMTXJI1wiX2n2s2d6vVx1MDAwM1HyxX6rXHUwMDEy7rc/m16jvNrI3dnV2eRcdTAwMTnpoZJcdTAwMDJJzVx1MDAxOatl5nRaqz0pOFx0unCJNXyeW0Xegj4tUCH/rWuEXHUwMDA1+Oap+iRcdTAwMWHQLnt6ZuyVv1T0Tqk1XHUwMDFh4unV6GiPV7/Vj3L3XHUwMDEyiWxI1HhSXHUwMDFiRr5cdTAwMWVw6mzmXHUwMDA1Mkiaz+Vik9nJXHLHOS5NvFxyfJxp7d5r81x1MDAxYsOhXHUwMDA1+OZcdD7G0JK42dmdvtJXzWtcIji5+lxca9X6JX511tpn+Vx1MDAwNlx1MDAxZnlPXHUwMDFlM4BCkDw743I5wOfyvFxyaePC7sw/+ia/c3niSSbuvYLKgNWzY29Uu9zbXHLbp1v2onJ1e99YqTz0eznHnjWeQrdcdTAwMTCITFwiXHUwMDE5cplTjFx1MDAxMDyUXGbcSafgXjM5v5VcYmk9XHUwMDEyZ8nIwLU6nSf/XGZDhtpt8yBcdTAwMTJQQHYys+ZcdTAwMDUkjZDGundB/zoki1xyylx1MDAwYtqgTG6Pe20htzLO/GBJmpH7KrlccsrAlJFcdTAwMWGdXyTQTPvASZJcdTAwMTR/3EsheslRP0cl/EcvYtNWXHSY/SCU3kll7eFL/XKv0YnOXHUwMDBlj7/x1tHVat6ZRHuaXHRcdTAwMDBFVGEsZkO3zGPSxnuKhVx1MDAwMDW/4JE0nuDcUVx1MDAxOVx0lDGvnXPAuPBIOpxlhVx1MDAxYyyk31x1MDAwZvs981x1MDAxNZAskeJN7cvEIyXkXHUwMDFlJ3i7SKCQNFB87KCDXHUwMDEyXG5cdTAwMGaRXHUwMDAxSiGMUZKqp37iRFmKa1+K0SQq+fD9XHUwMDExn6q93kFE8/ksXHUwMDE3JFdB/ftcdTAwMTJYMjSfblx1MDAwM/9u9aXg/6NcdTAwMTF/uS22sfA4XCKIzZ+//v7w9/9cdTAwMDBjxr/FIn0= yxO113472-1-2

    c=3

    f(x)=ax2+3

    (1;4)

    a+3=4

    a=1

    f(x)=x2+3

Jeigu parabolės viršūnė yra ne koordinačių sistemos pradžioje ir ne y ašyje, tada funkcijos bendrasis pavidalas yra f(x)=ax2+bx+c

  1. f(x)=ax2+bx+c

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daVNcdTAwMWJJXHUwMDEy/e5f4fB82Y1Y1VRW1jlcdTAwMTNcdTAwMWJcdTAwMWKAwFxiMGBu2JhQNLrQoFx1MDAwYqklXHUwMDA0XHUwMDEz8983q23UrVx1MDAwNiHhkaCZXHUwMDE1dnBUd6vryPfyqKyqPz58/PgpvOtUPv3y8VNlWFxuXHUwMDFh9XI3uP30L18+qHR79XaLLono71673y1Fd16FYaf3y88/N4PudSXsNIJShVxy6r1+0OiF/XK9zUrt5s/1sNLs/cd/31xympV/d9rNcthl8UtylXI9bHe/vavSqDQrrbBHn/5f+vvjxz+i74naXHUwMDA13W77W8Wi4rhyoFCni3fbraim4FBp6bTD0Vx1MDAxZPVenl5cdTAwMTZWynS5Slx1MDAxNa7EV8pRL7Q2Nrdr/P5I3O2WwrXN1UO4PozfW603XHUwMDFhh+FdI6pTr01Nia/1wm77unJaL4dXXHUwMDBmnZYon/RUt92vXbUqPd92XHUwMDE4lbY7QalcdTAwMWXe+TLOR6VBq1x1MDAxNn1GXFwypL/QOKa4RmNQXGL65kZX/fNcYpqB1OCkk0ZcdTAwMWFuUvVaazdoXHUwMDE0qF4/QcX/i2t2XHUwMDE5lK5rVL1WeXRP2FxyWr1O0KWxiu+7fWix1FxmXHUwMDE1XHUwMDFhJaVxXHUwMDFhRPymq0q9dlx1MDAxNY5VvFeJhlx1MDAwMEBoiaiUXHUwMDFhXfGv7Fx1MDAxNMqRLPxcdTAwMTZ3fJekqOBcdTAwMWZp9Vx1MDAxYo1k77XK33vvQWZiqVx1MDAxMd9L/ozb5O9fT0hb/IZ+p1x1MDAxY3yTXHUwMDBiMMIhSoGO27hejXrrOv36Rrt0/YQo9cKgXHUwMDFirtZb5Xqrln6k0irHV1x1MDAxMlX+XHUwMDBlgaiJn05PjzZKK/Z3dXFsXHUwMDFhrjlo31x1MDAxYl1cdTAwMTj1uO+OdqlcdTAwMWZJXGbjqJVQ1khH31xc3Om+J4OO71x1MDAwNCa1XHUwMDAyqbRFa8FcdKtcdTAwMWb1SiPohWvtZrNcdTAwMWVSXHUwMDA37LfrrTBd66hFK1x1MDAxZYNXleDRKFCbktfSYO34T4yx7b/i3z7GQlx1MDAxMf0x+v23fz1590QpSz39Ifnze1NnZ1x1MDAxNesmkopcdTAwMDArpFx1MDAwMVx1MDAxZEvGNE6pSd69WL1f7Ve277dWN/vF3crgXCLbnKKAM8clgEVtnEk01j8vOTKpwFx1MDAxOM21s1xcXGK5MFKJqzVcIlx1MDAxMeSGaaOsZzWSXHUwMDAzdFx0SvvGKpbqZJ0zcdv/n0hl/MPeXHUwMDExtMfuzj1cdTAwMWXmXHUwMDE3gpv6tvKkxVx1MDAwMMDTxSOLwVxuMESWYnZ0XHUwMDBmkPPzhty62Nz8UqhcdTAwMTRO1nO49TVr6Fx1MDAwNqZI9TuNguAsrVMxZlx1MDAxZeBuXHUwMDFjatSkJVx1MDAxMIRcdTAwMWSDu7CCXHRcdTAwMWFcdIfOgVx1MDAwMu1SXHUwMDE1nSPaXHUwMDE5ciSIUEU5WSyKy5hZRvhcdTAwMTeCXHUwMDAxKOJcdTAwMWWifzJqZMzUXHUwMDBmRoXm9N9SlZf4nzP+x67NXHUwMDE3/JOH3n89XHUwMDFh9LmRXHUwMDAx2nTxiFxmtNHCKoBcdTAwMTgs08hgv9hsdfMlfjI8qOHmXHUwMDExXGKe18V3SFx1MDAwNlx1MDAxYYwjXHUwMDEy5JJLZ8aVP1x1MDAxOZtMIXWb09xYnTTds0lcdTAwMDdE6ZKas7RcdTAwMDaWbDCdXHK0SFx1MDAxN4/sfqmUMFx1MDAxNmcng9+3K9WV0vnN6XZT3rn9z9VcdTAwMTNdlO+NXGa4YyBQOuuM5SSwcSglXCJcdTAwMDNUjLxcdTAwMDFnuObSXHUwMDAy4uLCXHUwMDBi8yFcdTAwMDMniNWIXHUwMDBilqbBklxmppKBm+gnSK6MlUmwTCOD8249WP18UV+/Py61aitcdTAwMWKVfFNcdTAwMWW9OzKwzElDLplx1ljhUmRcdTAwMDDAtHJSayE8k0K6qlkjXHUwMDAzwZV/XHUwMDE2dNyOJVx1MDAxYizZ4Gk2XHUwMDEwMNlRXHUwMDAwLtFKaWangzCvN0zuOH8/zN/erfWClfWLk8J7o1x1MDAwM3JcdTAwMTR8QFx1MDAxOVxyl8piYlx1MDAxZSb6QGtcdTAwMTnXUlohSJCtyzpcdTAwMTnQ8CHxQWL6JFtcXFx1MDAxMFd4yVx1MDAwNaNcdTAwMWLeilx1MDAwYuTE6Vx1MDAwMW1BXHRrXzDlWDP14fGNu1x1MDAwZepXwUnxXHUwMDA21ttcIt97h1TAwfima62MjKtcdTAwMTJ9oJZcZsE5QzaDdGhcXNZDXHUwMDA2dIVcdTAwMDNgZr2EJVx1MDAxNzxx91x1MDAxYnFcdTAwMDFcdTAwMDKmi0d2gSBzWJCnXHUwMDEw65RpZMBcdTAwMDe1g/rxVb5ePav2dlx1MDAwZipd2N3aeYdkYJWzZFlcdTAwMWLUQo8nJICkkTBoiVx1MDAwNTTXZFYtcPJwLmRgjCNPULisxlx1MDAwZpdk8MTdb0VcdTAwMDZcdTAwMTLSxSMyQM9cdTAwMDVcdTAwMTZfkDgwOCrc2kvTO+vnzodrcuNrp9+Hd0hcdTAwMDbaSiAmdFx1MDAxMnVqMlx1MDAwMcAySaJsXHUwMDE0XHUwMDE47TS3WZ9btEorpZ1Zelx0SzKYSlx1MDAwNlxcpYtHk1x0XGJcdTAwMTY0KZWZueDqtCw3v7TXXG6H3YI7xObNYHPXvjsuXHUwMDAwxqnVwlmhnFbjXFyAXHUwMDA2mSMqXHUwMDAw61x1MDAwNCcmyDpcdTAwMTVoJzRSXHUwMDEzl3bBklxuplKBmTivXGJCSrT4koTCwll3f+f0LDeoredcdTAwMDY3N4el3t3pl3fIXHUwMDA13qpcdTAwMTZcdTAwMDZcdTAwMTC5gFTWslx1MDAwMmal0YJcdTAwMTNLXHUwMDE4nXVcdTAwMTfBZ1x1MDAxY1x1MDAxMfLM0ixYcsFULpBcdFx1MDAxMXvEXHUwMDA1XHUwMDAwkozlXHUwMDE3XHUwMDA0XGZcdTAwMDbDzdWraunkPreyXHUwMDEybPSHV1x1MDAxYvlB7t1xXHUwMDAxZ1wimkRcdTAwMDG0WktcdTAwMTV3UERcdTAwMDZcYoy8J1x1MDAwNYpcYlx1MDAwM7lcdTAwMTFZXHUwMDBmXHUwMDFmopLeMkistViywZJcciZMJajJychaXHUwMDE5QZCJUTbVMLjn/cb1gSpcdTAwMDZ7VT1cXN1vXHUwMDA11/uZm0pAXHUwMDA2kqAstEJlyZNOxE8jMkDFtDXacL/KQ8lcdTAwMTRcdTAwMTdwSS6EIDYwZFx1MDAxZsBcIldcdTAwMWXMxzKQQnNtXHUwMDE1Lr2EJVx1MDAxN0zlXHUwMDAyM9kykMonXHUwMDE4KDs7XHUwMDE5XHUwMDFjXkC9WGtdl44+m4PGxbFrr1xcXr03MlCO+YQ9QVxiQidxfGFcdTAwMDL5XHLMTzNcYm0l/Vx1MDAxNEKnapo1NvBN8eHOJVx1MDAxOSzJYHr0cGLIQDpcdTAwMTIkLWangrVcdTAwMTa/t0fbXHUwMDA3573jwlnvfJtvl9aD90ZcdTAwMDWWblx1MDAxMJKucjKLknOqXHUwMDBmVCCVsOiMdqBk5lx1MDAxM5HBgc+mzm4m8pJcdTAwMGKeuPvNwocuXZzY41x1MDAwMJ21Qs2ecFRcdTAwMWTsrfVcdTAwMGIuaOxd5yqbN7Kew63hO2NcdTAwMDNcdJpxYY2wVlwiaDmee0hcdTAwMTTBhHNKcGtRaZN5L1x1MDAwMcjPMy6zuyAsueCJu98qfJhcYis9XG5cdTAwMTg4bTVcdTAwMWE5u2VQu7z5fH6/W1x1MDAwNHN5tmaD06Ozrerue+NcdTAwMDJ0jFx1MDAxNL51mlxiQVqUqXlFT1x1MDAwNlxc+MVLwlx1MDAwMXVQ1sOHRPd+icUyfLhkg+ls8EzIwPk1XHRo9eyTXHS6vXHZz9+eXHUwMDA1otFeXHUwMDBiuytfzmSQuVVcdNPYQFx1MDAwYsa19tm7ZFx1MDAxNlx1MDAxMSs8Zlx1MDAwM8O5XHUwMDA0YclsspmfS1x1MDAxMECtXHUwMDE0SFx1MDAwM7lkgyVcdTAwMWJMYVx1MDAwMzU5Zlx1MDAwMEorvybPzO4nuFxy11x1MDAxM1x1MDAxYsL1LZyf6E6psNU4KL83NrDkJ6BB8lx1MDAwM4B0f1wifPpAXHUwMDA2zlx1MDAxMFx1MDAxNaDkzujM72xcIrWWRFtLLlhywVx1MDAwM1x1MDAxN4SVYfhcdTAwMTRcdTAwMTdcdTAwMTj1TMiA0KK1NXE0fWr24ZfdOjTLK5fn60PMXHUwMDFmX6zmzlx1MDAxMbNGXHUwMDA1qS3MXHUwMDEwmIx2byHdKVUqXlxiXFwya1x1MDAxMDRHXHUwMDAyXHUwMDE1JtZ2zlx1MDAxYvmOoXHOOyeSk1x1MDAxZU9MYcS4T1x1MDAxOCFcdTAwMGYugFx1MDAwMJJcdTAwMWHl5lx1MDAxMFx1MDAxMVx1MDAxOLvwXHUwMDAySCtcdTAwMWZJxVx1MDAxZoJ0td1cblx1MDAwZuv3XHUwMDExq/Cx0o2gWW/cjVxyaiTBv/hhXHUwMDE5K1pp1GutSNtVquNcdTAwMTJcdTAwMWXWS0FjdDlsd+KrJXpFQNqx+7hL2t16rd5cblx1MDAxYUePX+f16ebDYFx1MDAwMEtcZsdl0KtE2tavZ/0xXHUwMDFj2onLhlx1MDAxNVx1MDAxMYNcdTAwMDPhZofh8/tCZlx1MDAxMobkkzNcdTAwMTJkYcgz10LblDVcdTAwMGWaaS6M35xSSqXU4lwidUBcdTAwMDNLLOxcIlx1MDAxMCaWITyDQlwiZSRcdTAwMTdiXHUwMDFljvjzIFx1MDAxY3F+rJVHY/78jrRjMvhtc77RlT9cdTAwMWZcdTAwMTTIXHUwMDE0iJskXHUwMDEwXHUwMDE2XG7x4etCfPg6XHUwMDEwV2KiXHUwMDBm7jdcdTAwMGJ1MjmVN1xy4rmz/eHJ7tnX4+1LvNktXHUwMDE1dkr7ncxcdTAwMDXk0puFaoZ+kyD0mbxSjy/+JT+cXHTyPKxcdTAwMTSOfi5cdTAwMTDgkinwmpaT1jJgZ8O4t71cdTAwMDRZXHUwMDAxi1x1MDAwN/k0XHUwMDE42qSwLlx1MDAxNIZ7r1x1MDAwYsO914GhtJNDYdTNfvfrhHqZmldb+lx1MDAxY+5sXHUwMDE3+b066Mj27253eNPL3E5+aYtXMnLzLfnDfpYgnVKPnEljXHUwMDA0XHUwMDE4biVcdFx1MDAxZCwuWUYxSUB0llx1MDAxY25yeIhcdTAwMWFmQ6IwZJFbJd9cdTAwMWOJLimvXHUwMDBiRVwivC5cdTAwMTLhtVx1MDAxNOIzqSvc64nZcXh6/iVfbVx1MDAwZrcuvpaLq+1cdTAwMTW3un7XztwmeuM4pDb6XHQn4Vx1MDAxM/l9Jvi4Plx1MDAxNFx1MDAxNph1ymoppOVKYOZwaJSzmlx1MDAxZZjDYpa/hEPJk9K6xOGLcVxiOFx1MDAxOYc8Olx1MDAxYlx1MDAwM2b3PVx1MDAwN2Vp2p+/mqthozc4cUel65OTzO1MkVx1MDAwMqLiPmVcZpyfXHUwMDBiXHUwMDEyyVx1MDAxNaWRQlx1MDAxNIpZMv2sQsvJ/eSYqthcdTAwMWOPxvDJac5cdTAwMTlccn6O2vGEifxcZlx1MDAxMK1cdTAwMDBBqnxcdTAwMWVZIX9ccoeQlNaF4jAnXlx1MDAxN4jJ9y1cdTAwMTKJeuJKcOBSk1xmklx1MDAwMzIzXHUwMDEyd0/PO0W+2lWbwXbty15ja2fnOOOmKdnmpPRcYmJoXGbpPpta1CEsU1x1MDAwMiR5y+SLLTRcYoRMI2lEXHRIuHczxoFojIg8OMc3R1wiJqV1sUh8ZZWYeyWdOHmDZ1x1MDAxMFx1MDAxYdFcdTAwMWZcdTAwMTb1XHUwMDAyJG7dXHUwMDFm799sfD7Nh+LkvH/QKMrVavaRSKIv0U96kiZcdTAwMWHXiX4/Z6GFXHUwMDA3qT/cRSwui9oj0W9cdOessuinNGeaXHUwMDE3IbNZOXD2rV3ExOztooGIr4tDnC9cZqtdXHUwMDFhuIcz5Vx1MDAxZWr6YJ4+s/LRcalcdTAwMTTOnqtwV3VcdTAwMDeDZqt2ppvtr+tcdTAwMTeXxZBcdTAwMDcr2UZitOrZz1x0a1x1MDAwM4J043hcbrM/54qQ4fdX9aeZXGK7uFx1MDAxOUrOOOdxXHUwMDFi4tPaxsvjqUnN3VtcdTAwMDZpvuVcdTAwMWH80KzFnGf2k/1cdTAwMTOXxM99SD0/S9ZCvdlvUHP3u9RJ/a5cdTAwMTebsNtPtOB7+bc+Wlx1MDAwNPaoi5VQ+lx1MDAwNXtcdTAwMTNt9TY2Lm5rhzflm7CQ3zs54lvtjINPamCGPFx1MDAxYklWneBKju9kjlx1MDAxMpiPm3ApjOTJ85DeXHUwMDE4e4ZrJaWex16ES/QtXHUwMDE2fVx1MDAxM4Ojk9P3wW9cdTAwMTZKTr+eXHUwMDE5ebhZKpf46lWzXHUwMDE4XHUwMDA0pTW72Ti4v9vOOPK4Zn4/TT9cdTAwMGJhyNZMrdxcdTAwMTHG71x1MDAwZWpcdTAwMTRqXHUwMDFm+3CLM0BcdTAwMDUw7lxyUH+UpLXCwkwxXHUwMDE5n0OoXGbYt1x1MDAwZo6+nlx1MDAwNZqTr+xcbsr52qCT0mXFZCRcIvdH/djEXHUwMDA2ftOQeLF3RphcdTAwMTnuXWKhqFZMvjNs3TazjUR0gkmJzlx0iUabdFCGS1x1MDAxNnnEZFxyXGJcIqVFZso/gTzJlDCKXFxEa7XhmGDNXHUwMDA3JFpDatrpeVx1MDAwNGVcdTAwMTaSXGb7Qyry755cZpu8+/FcdTAwMTg/1t0/XHUwMDA27Gc23lx1MDAwNH80pDMvOLlcdTAwMDeUub4pmjV1dVtZy9c2XHUwMDBlu/rLWbaRLTVnqLU0YFx1MDAxY3dgUttmSMEs91x1MDAxYuz4gKuT6XrNXHUwMDBm2EYyXHUwMDFm3KbxUNGmnk+pWFCMRlx1MDAxZaOcXHUwMDA06ThPXHUwMDA0f0cr5Vx1MDAxMUlAMrvR5lx1MDAwZiXu/M2BjiRiXHUwMDE2gStukfysOJLjv3LjV8HaaVx1MDAxZjdRkKKPeyxDc1wiXHUwMDEywGfcZNRkrstcdTAwMTecXHUwMDA3eFM4vW1cdTAwMTXWzs5V62ZnpXpqd1x1MDAwZu72s04k5Fxi+zPAUfsztXnaRpDIUCpjhPI5R3ZxqVxmXHUwMDA2mHbKKfLIrVx1MDAxNDxcdTAwMTF+SjCJZsRpXFwhXHUwMDE4qYWyiW76vpM/Mb9PxszqwtolkTy+O4fIQJEh6ldrON9L40xiXHUwMDE4mYFcdTAwMDa4UWA50cPUz5soSdHVx0L0QiqZ5PbbZ+aduJD0JjV7LsbR17zY+b1ze3VcdTAwMGZFnb9o9Yv7+8fZZlx1MDAxMiWIo4XkXHUwMDE2fHquSq3KXHUwMDE1XHUwMDExkVhjnc+bMmZxJokyTDlyeZzlTpHR+UTs7Vx0r1x1MDAxZshL4lT5OSy8+2te/1x1MDAwZp1cYvhDXv8/+K9cdTAwMWbxn6/r+affuciJ4ISyenycn597MrMnKeqGsUHr67CZPy1cdTAwMTYr98d6rbozyDZcdTAwMWXRWVx1MDAwNtznXHUwMDA3cr8kMVx1MDAxMVH+tv+2Y1xu/Mk3JPTGLHBcdTAwMDNcdTAwMWSto6PByMkyfuvj2aaByWp0Wph5nNX3buCYXHUwMDEzv37MwWtcdTAwMDPy0VtfXHUwMDA0yVx1MDAwZt/V8Keg0zlcZqn/RpZcdTAwMTNccli9/L1cdTAwMTPiXHUwMDFhfFx1MDAxYdQrt6uPJeinavTllzZFMPeIimLwf/z54c//XHUwMDAxf1xiXHUwMDE2uCJ9 yxO11-2-13-4(0; 3)(-2; -1)

    (2;1), (0;3)

    {a(2)2+b(2)+c=1a02+b0+c=3b2a=2

    {4a2b+c=1c=3b=4a

    4a2(4a)+3=1

    4a8a+3=1

    4a+3=1

    a=1

    b=4a=41=4

    f(x)=x2+4x+3

    Ats.: f(x)=x2+4x+3

  2. f(x)=ax2+bx+c

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1d+1NcdTAwMWI5XHUwMDEy/j1/RSr3y13VMqtuSS1pr66ujFx1MDAwM+GNeYUkV1uUweNcdTAwMDf4XHUwMDE1e4xttvZ/v5ZcdTAwMDNcdTAwMWV7wMFmMVx1MDAxZdfaW7BBo/FopP6+fqgl/fHu/ftcdTAwMGZRv1x1MDAxOX747f2HsHeVr1Zcbq1898Mvvvw2bLUrjTpfwsHf7UandTWoWY6iZvu3X3+t5Vs3YdSs5q/C4LbS7uSr7ahTqDSCq0bt10pcdTAwMTTW2v/1v1x1MDAwZvK18D/NRq1cdTAwMTC1gvgha2GhXHUwMDEyNVo/nlx1MDAxNVbDWliP2vzt/+O/37//Y/B7pHX5Vqvxo2GD4rhxQMoli1x1MDAwZlx1MDAxYfVBS1x1MDAxNTpNaMFcdTAwMGUrVNpcdTAwMWb5WVFY4KtFbm9cdTAwMThf8UVcdTAwMWbMRbb7XHUwMDE1lYJm/9pcbnfmXGZSJn5ssVKtnkT96qBJ7Vx1MDAwNr9JfK1cdTAwMWS1XHUwMDFhN+F5pVx1MDAxMJVcdTAwMWb6bKR80l2tRqdUrodt/+owLG0081eVqO/LhFx1MDAxOJbm66XBd8QlPf5LXG5cdTAwMWJYY0iAtVJcdTAwMTg1vOhvl1x1MDAwZVx1MDAwM+eMVc5cdTAwMTBKXHUwMDA3iVZlXHUwMDFiVVx1MDAxZVx1MDAwMm7VPyD0/8Xtusxf3ZS4cfXCsE7UytfbzXyLXHUwMDA3Kq7XfXhfjYGw4Kx15IQzKm5HOayUytFYu9vhYFx1MDAwNICMU8ZcbkXDK/6Zze3CQFx1MDAxMn6P+73FMrTtb6l3qtXRzqtcdTAwMTfuO+9BYmKZwfuSP+OX8vU3RmQtfkKnWcj/XHUwMDEwXHUwMDBiMOikVEjOiFiyqpX6TfLx1cbVzVx1MDAxM5LUjvKtaL1SL1TqpeQtYb1cdTAwMTBfXHUwMDE5afI9XHUwMDAwXHUwMDA2r/ghs7+3u+lUWZ5+XHUwMDAzVz3oX37ur8dD47ujcdXx7Vx1MDAxN1x1MDAwMbfUXHUwMDAxXHUwMDAyWmNR27i9vifzTf82gVx1MDAxNaBRak1cdTAwMDQkXHUwMDA12ke9Us23o2yjVqtE3Fx1MDAwMblGpVx1MDAxZSVbPXijjEdgOcw/XHUwMDFhXHUwMDA1fqfRa0moNv03xsj2n/hf72OhXHUwMDE4/DH89++/PFl7spglbn83+v/7d52eVLhbJ3GK1lpcdTAwMTirZSzMz3FKPbOVvzs57razmfX85zOttrJcdTAwMTmbck4xJmBeMVx1MDAxNjRcdTAwMDCyfI2zilwiZlx1MDAxNemMRtLohEq06/VYJW7VkET4eYFkkZckWVx1MDAwZaRcdTAwMWV5+D2pKINAzHYx66eKVCB+qXmQyviXLVx1MDAxMbTHaq89XHUwMDFh5lx1MDAxOaHNXVx1MDAxYj5pLsCIxCSgXHLIkmO9ppxcdTAwMWHb7W/Z9v7lrs2v5crlbve0/O00d5k2bEOgjTCOJHp9a502j8DOjIqOf0hro2NtPDAhtFx1MDAwYrhntLJWkJJcdTAwMDZloqmvXGJ3Jlx1MDAxZMlmXG43VYBTWjxlRSBcdTAwMDY8iGzvOFx1MDAwMuXUiO1wT1x1MDAwMFxuUWkt41tX8H9cdTAwMWT4j117XexPXHUwMDFleP95NOSvRlx1MDAwNlx1MDAxNpPFI2TAVrPTNpavZ8kg/N5cdGtcdTAwMWZrN253vXewmz/f6X+tLSFcdTAwMTlcYkRcdTAwMDJNrEdcdTAwMWRcdTAwMWJcdTAwMDDjZCB1INnNUIpRxmaQoURT00dcdTAwMDaO+GvcilxyVmzwXHUwMDFjXHUwMDFioKBk8Vx1MDAwM1x1MDAxYlhcdTAwMWUzvu6mjyRcdTAwMTRO892zncbN9U5+PWxsitOTg4+9pSNcdTAwMDNcdTAwMWRotEDofUwnTKz6XHUwMDA3ZFx1MDAwMFx1MDAxOCA7lqhcdTAwMTU4I2XauYCskkzocYemi1xu4ldaUcGwwqKoQE72XHUwMDEyiJHkXHUwMDAzKnGN57jg8KpcdTAwMWFtXHUwMDFlNC6Oi83o/FMhs0/5TnFcdLlAalSGL6KQME5cdTAwMDVobaBcdTAwMDGYJoQkYVGm3UnQYFx1MDAwNb9NWiOPKzJ4qvaiyIAmelx0Ulx1MDAxOa//ZohcdTAwMTjktnvf+7ftz+fu3NRcdTAwMGL4tbB93uwuXHUwMDFkXHUwMDE3UKCd0UKAdWJEoVx1MDAwZaiAVOCYJKXxLCncXHUwMDFjo4Ovwlx1MDAwNNxQrVx1MDAwNKTVQYj9r1x1MDAxNVx1MDAxMVxmKyyKXGKcSFx1MDAxNlx1MDAwZq1cdTAwMDItXGZYXHRi+nDBzi65rU6j2umJOm25bme/eL18sUNcblx1MDAxNFx1MDAwMrtcYoKdI8Tx0CEqXGLAgL9ZOqu5Vtq5QGgx8PTSalx1MDAxNqzY4InaXHUwMDBiYlx1MDAwMzmChSRcdTAwMWJcYu0sqVx1MDAxOcJcdTAwMDXVq6Mv4cbFzuntXHUwMDA1XHUwMDE2d1v7rWgjs7N0ZGBcdTAwMDLW/lx1MDAxYaRcdTAwMDSyRidcXFx1MDAwNHCBQFx1MDAxZphnhaslqrSTgbGKLJrUxlx1MDAwYlZcXPBE7UVxgdXJ4lx1MDAwNy7gR1x0Yqmf3jDIZrepcrR9eHP8afuumu/s337ebSwhXHUwMDE3XGJrLTq2r1x0dJxJM/hCp1x1MDAwM7Qg0DlcdTAwMDfWQrKhqaNcdTAwMDKy3GSFaaWCuMErKlx1MDAxOFZYXHUwMDEwXHUwMDE1KJg4i1x1MDAwMEqhZlx1MDAxNTiDk9AtXudoo3x1VNoobFx1MDAxN65uTlx1MDAxYqFVS8dcdTAwMDWWx8JoJ9BcdTAwMTBcdTAwMWExblx1MDAxNyi0XHUwMDAxOeczXGaM8CH6lHNcdTAwMDGQklrzm8b9sFwig1x1MDAxNVx1MDAxOUwgXHUwMDAza5PFXHUwMDBmZIDAhjArXHUwMDE1Pb2TsO5stbFlbK71KVx1MDAxNIfF67vCN1tfOjKggO1cdTAwMDGGOlx1MDAxYlx1MDAwME64XHUwMDA0XHUwMDE5XGJcdTAwMTM4a4C/gUWaOcEkWpo2NkA2/awz0qQ1frhigydqLyx+OHFWUVx1MDAxYVx1MDAxNDRTxOBEfCnV7kpccjq1mZK+3f2izzonaSNcdTAwMDNcdTAwMTmwPaRcdTAwMWSyXHUwMDAzpFx1MDAxOSZuZNqwN4A7XHUwMDA2wqGUkqywbFx1MDAxZcRwXHUwMDFmJFx1MDAxOFhcdTAwMTE4UMKHUzyhpJ5cZoTVmOJko1x1MDAxNVx1MDAxNzxRe1FcdTAwMTFcdTAwMDOYaFx1MDAxOViwJFx1MDAxMGD6XHUwMDA0g5vaJ9XrnDbqWX2sjOuHXHUwMDE3hZvSsnFcdTAwMDHqgLTWXHUwMDBlyFx1MDAxOLBWJ7jAuMBKYkecadJcdTAwMThMe/SQgMCQSW1cdTAwMWHyilx1MDAwYp6ovSguUFx1MDAxM0NcdTAwMDaKXHUwMDAxw/7mXGZZyOtcdTAwMDfNy+9240B86nRsrWg/6sODi2XjXHUwMDAy5Vx1MDAwMs2yXG6EQrBKfUxcdTAwMDU+XHUwMDA1mUfIssOg0m5cdTAwMTaA4Fx1MDAxMUSglV2w4oLnucBMzjxkJ1x1MDAwMVx1MDAwNTdn+rWHXHUwMDA2dvLlg+1cXK4no7utjY/99S2dXzYyMMia31rJP8R4XHUwMDFmn0rwPlx1MDAwMlx1MDAxMXeMclI4S6l3XHUwMDEywFwiuzxcdTAwMWH0Kn64YoNn44diYuohO5vAbbFq+tzDtY2N3FphP7Nt9blq9/v923J3bdnYwFGAylxuXHUwMDAxUlxudlx1MDAwM55cYlx1MDAxOWiWYkXSkLZL4CegtpqMS+tq5bh7V2wwrLAoNqCJW52AsaiAR2162+Brb70jO+W1Qq5yeXd+t/YtXHUwMDFiXHUwMDE1Uze1+FxmXHUwMDFiaPCbn1x1MDAxMEpcIlx0XHUwMDFhddI2gECQXHUwMDA1b3r7oUr/XG4lXHUwMDAyx1xyTmv24YpcdTAwMGKeqL0gLtCT44doXHUwMDFju1x0pKengtDe7Int47XWZq/a3jvcPbg+bYZLRlx1MDAwNVx1MDAxMm2g/MyjMp5cbpIxXHUwMDAzi4HWKHxskW1cdTAwMDS0aV+WgNKvppKQVi9hxVx1MDAwNU/UXlx1MDAxNFx1MDAxN0yOXHUwMDFmkiAkctNTwafyx81vO9/Kx02Zq5dva/21/cbxslGBxkApXHUwMDE0XHUwMDFhlFZOYtIqwMBcIksy/1LELkLKmVx1MDAwMPhcdTAwMDVcdTAwMTX/pDZgsKKCJ2rPl1xuorBcdTAwMTc9RVx1MDAwNVZM3LiMnyWkpVlyXHUwMDBm3VZr7yjzJXd3m1x1MDAxMTs7n203f9FKXHUwMDFiXHUwMDE1JDYucybw+ThWaEsmuWFcdTAwMDGwP2BQ+V3NXGK0XHUwMDBmyc9ccvoukMY561xilUCpRjYji4FcdTAwMWanjFx1MDAwZlNcdTAwMGJcdTAwMDecpF5jMeLYhVx1MDAxOSDNQumcelFcZrDYqEcnlbtcdTAwMWbBqbHSzXytUu2PjepAgn/z4zJWlKlWSvWBslx1MDAwYovjXHUwMDEyXHUwMDFlVa7y1eHlqNGMr17xI/KsXHUwMDFjW4+7pNGqlCr1fPX08eO8Ot16XHUwMDE4XGZcYkaG4zLfXHUwMDBlXHUwMDA3ytaLzMtwXGKTPXXndy/06a5TXHUwMDAz8edcdTAwMWJCplx1MDAxMoiaMDBcdTAwMDRcdTAwMDBK+X1cdTAwMDRNLP9cdTAwMGbbklx1MDAwMitcdTAwMGXtpzTAyDluXHUwMDE3XHUwMDAwPLJMw26AQlx1MDAxM4/xT2DI7WG6XHUwMDFlTdCYXHUwMDEzXG6HpFx1MDAxZqvl4Zj/fCfaMSH8sSvf8MqfXHUwMDBmXHUwMDFhJDVcdTAwMTjvvS3Ge2+DcU0/ye31W4vJ0Vx1MDAxOd9nV1x1MDAwM1dcdTAwMGXCiq5ufr5xgFv4WVZvvqcutzehbNmQ9qm6gtjlVqNcdTAwMDL1gHF2t510IIyYZ14/qEB7VnU+wmfATodysjw8wspXsKqXRddcdTAwMWW+LVx1MDAwZVx1MDAwZt9cYoeTN+vlXHUwMDAxZlx1MDAxN1x1MDAwZmbYnuPw68VGWFnr7Ee94+rNzv75zf5xyjdcdTAwMDBXwk95XHUwMDAxu1x1MDAxOKSNRJFYhK+EXG5cdTAwMTiAykqGqZrnflx1MDAxYzpQXGZDZ4EsezxcdTAwMTJwKlx1MDAxY7JRLrWQ5jVcIl1/XHKIL/JjX1x1MDAwNER4WyDCWynEySvfjJCCnDDTXHUwMDA3om539dpe50r0S1iprXdazahw/jXdSJSaXHUwMDAydrB9XHUwMDA0XHUwMDFhrVx1MDAwMUgoRG1cdTAwMDOj2OZ1gpDNufklqrxcdTAwMTCIfkVcdTAwMGVcdTAwMWHxXG6LXFxXOPwhO4vB4eRoMPhcclx1MDAxOJRflj01XGYtlI++bZ/R95I5KuX2zvZq2nxPN1xmXHUwMDE1MNDIM1x1MDAwZSs8rXB8XHUwMDBiW69cdTAwMGalZcfUSVx1MDAwNax65ncmXHUwMDA226Wzup6glWF+gL+TMsS3XHUwMDA1Ib5cdTAwMTFcYiFZOEzpNsyxTuL0gVi7I4tnXHUwMDFiO6W7y5o5uexcXNcvXHUwMDBlytV0Y5BNulx1MDAwMHzEWSo0ipRL7FxmhVx1MDAxMChcdTAwMDeaXHUwMDEwnVx1MDAwNlx1MDAxYc3ienVcdTAwMTSKwGhGodKCrNRuylAsXG6DbFOLV8jF+GtAtKPiOlcgmrdcdTAwMDWieV0gXHUwMDE2WzxyXHUwMDBmp1c9tPRhhnTyvm2OTTJiu3SGXHUwMDA1XHUwMDE25/Xr6sXZV7W+3yjC/nk31HI33Wj0a6vYxTJOk2R/XHUwMDE4XHUwMDEyWzAwXGJcdTAwMDOGoPDuI7HlSPNMjlx1MDAxMELEL1x1MDAxMZ9ccjVeXHUwMDFlr65GXHUwMDFmiV2kTfpjjvNFKHzlXHUwMDE5xdFcdTAwMWWKS+L73iXun2a2tFLrVPl1cy3upE7LS07U6oy8wX35jz56mVwinLgzXHUwMDEySPaDkFxysemdwiy1Ple1XFzbvOhu4+VRoeeyXHUwMDA0KceeUoEzZJGBhSjteDLCIDrjQFx1MDAxMOsmVk5zdFxuQVx1MDAwNlx1MDAxZdvGb8QonZ12Slx1MDAxMsjvx+BcdTAwMTbvXHUwMDE1vp1cdTAwMWWUb6tcdTAwMDfl21x1MDAxOKQ/OfdIod+vT86wrujg1pWquto7uq2fl28/fZG0V9TpxqFUNlDonDZcdTAwMWElKT3uXHUwMDE1+q1KXHUwMDExfZxcdTAwMTRIsZloXHUwMDEz7XpFXHUwMDFjYmB8cIa1MTqacrKC8YfC55IsXHUwMDFhhS86XHUwMDEx8UUopLdFIaXBXHUwMDFhJVT+VJ1cdTAwMTmmXHIvji56Z8d31+1mO7u9uXfZxZ1s6o5cdTAwMTlJKER2XHJZXHUwMDEx+vCL3yc8cdyYP+FRKqUtXG5kpI5cdTAwMWXXtlhbVINcdTAwMTSGzNyTXHUwMDAynrNEX4TAv5UlOilPVk2esFx1MDAwN3+ihURL07uBV6fF40+35+3NYmezftDeLnwtZlJ32tdjN1x1MDAxMNndtVx1MDAwMlx1MDAxMDUldthAv1x1MDAxMVx1MDAxZlx1MDAxYfZcdTAwMTCtJck6cn46kFxcwI6mtb7bLZB8jEG2OFx1MDAwM9bUXHUwMDAwWljwc5cyiUe2mUFcdTAwMTGm95zP+Vx1MDAxZVx1MDAxZbycabEsYoBKXHUwMDBmdk0jy7/N6O1cdTAwMTJcdTAwMDI2dFx1MDAxNJujhsdVXHUwMDE4qZ/7vkmC5D+PRegxQb2IR0hMTO5DoTVcdTAwMWE3y+FAtJa7zmSyWWbQjc6pzm1sVFpLwCPKKfbctbdcblx1MDAxM5Y0j7FkcmGL0S+/VfObXyFcblx1MDAwMKQ/aVx1MDAwNNB7qDGdxTRiXeB3XHUwMDBm81x1MDAwYlx1MDAwNDXR6Fx1MDAwMVx1MDAwNVx1MDAwZmrdr1x1MDAwNVwik9rk+lx1MDAxNYs8rr0mZeB42PzsXHUwMDFkazNcdTAwMTNrbf/hi0qBtuxhSSGNRPXs902UJP95LEMz8sgkj5wme+RoXHUwMDA1WaaS6edpO+u1a8rs6ouNtup1Ny/KW33MppxGmO+tXHUwMDEzfpd9XHUwMDAyZ1x1MDAxMzTis5pQS8WMXG7C4qhP/NrpXHUwMDEybFx1MDAxNVx1MDAwMfu2XHUwMDAyuMvV1C658stcZlKQP/h2Lvk/8d/vzb/e1i9PPnOuIbKJ/oHUTmijZtiGK6dcdTAwMWL1Umv9u7hsydbl4UntbH23mXI8XHUwMDEyXHUwMDA23vTXSlx1MDAxYkdOjoQhXHUwMDFlQmSacepjV8pcdTAwMWaNPMdcdTAwMDQmXG5IOmZcXMFPXHUwMDExUycwSVZcdOzBzD9xP0WQlP9+T29ccsnEM2eC5Lt7Lfwh32yeRNx3Q8OJXHUwMDA3q1K474D4+Vx1MDAxZm4rYXf9sfz8ozj4+GVcdTAwMGZcdTAwMDOYe0RccoJcdTAwMDN//Pnuz/9cdTAwMDNcXFMlmCJ9 yxO112736(2; 7)(3; 6)

    (2;7), (3;6)

    {a22+b2+c=7a32+b3+c=6b2a=2

    {4a+2b+c=79a+3b+c=6b=4a

    {4a+2(4a)+c=79a+3(4a)+c=6

    {4a8a+c=79a12a+c=6

    {4a+c=73a+c=6

    {4a+c=73ac=6+

    a=1

    a=1

    b=4a=4(1)=4

    3ac=6

    3(1)c=6

    3c=6

    c=3

    c=3

    f(x)=x2+4x+3

    Ats.: f(x)=x2+4x+3

  3. f(x)=ax2+bx+c

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da0/jSFx1MDAxNv3ev1x1MDAwMjFfdqXFU++6NaPVKqGhXHUwMDEzoEOmgVx1MDAwNmY1apnEJIYkXHUwMDBljkOAUf/3vWUgdlxm7iR0gpKVQ4uGKj/qcc+5j6q6/P1hY2Mzuu97m79tbHp3XHK34zdDd7T5L1t+64VcdTAwMDM/6GFcdTAwMTWLf1x1MDAxZlx1MDAwNMOwXHUwMDExX9mOov7gt19/7brhtVx1MDAxN/U7bsNzbv3B0O1cZqJh01x1MDAwZpxG0P3Vj7zu4D/2e83tev/uXHUwMDA33WZcdTAwMTQ6yUu2vKZcdTAwMWZcdTAwMDXh47u8jtf1etFcdTAwMDCf/l/8fWPj7/h7qnVuXHUwMDE4XHUwMDA2j1xyi4uTxlGlVba4XHUwMDE29OKWUqIpMElcdTAwMDRcdTAwMWJf4Vx1MDAwZj7iy1wir4nVl9hgL6mxRZvijm81ylxyetg++vOm53/8Q1x1MDAwNSf3yXsv/U7nKLrvxG1cdTAwMWFcdTAwMDTYlaRuXHUwMDEwhcG1d+o3o/bzoKXK8+5cboNhq93zXHUwMDA2tu90XFxcdTAwMWH03YZcdTAwMWbdx30g41K314qfkZTc4W9cdTAwMWOoI1x1MDAxNaFMXHUwMDAyI1x1MDAwMIqJcbV9XHUwMDAwXHUwMDEz2lFCK0WM1sRQzTMt21x1MDAwZTo4XHUwMDBm2LJfqGe/krZduI3rXHUwMDE2NrDXXHUwMDFjX1x1MDAxM4Vub9B3Q5yt5LrRc585dbRUSlx1MDAwYqFcZmEgkpa0Pb/VjibaPvDiWTBCXHUwMDFhzYhIZtG+sl9txtLwVzL0IcpR1d7RXHUwMDFidjrp8es1n8bvWWpcdTAwMTK5YU8l35M+2et3UvKWvGHYb7qPkkE1M5xLbSSBpF1cdTAwMWS/d519fSdoXFy/XCJMg8hccqOy32v6vVb2XHUwMDE2r9dMalJNflx1MDAwMkHcxc2d4d05XHUwMDFmlXu96sP+Vcv9LP5cdTAwMTiVr8cjbocjaFxmbfuJg83Uhlx1MDAxMCk0KC5Sl7TcPl4gXHUwMDFkwlx1MDAwNTAuJdNcdTAwMTIn5sWIdNxBtFx1MDAxZHS7foSdr1x1MDAwN34vyrY47k3JXCKw7bkvZlx1MDAwMPuTrstCtW+fmCDbfpKfNlx1MDAxMnmIf1x1MDAxOf/8179evTpfwjK3f0j//9TXOUiFap1LKlx1MDAxYcDgUOpEkqeRyqVX27upVj9+KVx0+Vm191snW6Oj1SZcdTAwMTWhcKCFwVx1MDAxMaZcdTAwMWOM5iaBgX1cdTAwMDDn2qFGK644ip4hZmmckjRrTCHUXGLHcJxcImyX0IKrpG1PnFx1MDAwMoZIaTlvRTklXHUwMDExrmVwyuTD1lxi3Vx1MDAxM1dvvZzmOeGNY+u9jm7DssVjdEuOXHUwMDFjI9RcdTAwMWMmw/7N7tFtKO/OPfK5Mtzpf75cdTAwMWN0Lldcct1oXCJooo3iTGkjwMhEXHUwMDA0XHUwMDFm4c5cdTAwMWMhXHTnTDIgQJictCGocCQg7yHWhSE6ZWIsXHUwMDFj71x1MDAwZSc4XHUwMDA1XHUwMDA2m0pQXHUwMDAy0Hh7xYhgzKFUajRpXHUwMDE0XHUwMDE1RoiXXHUwMDA0ILVWVKdmsSCAxVx1MDAxMMBE3WLRnz/z9vNizlx1MDAxN8VcdTAwMDaMkWzxM1x1MDAxYjBCNOeoXHUwMDAxZyaDL7W7b9vDy4++3O1XSu6NumVfq2tIXHUwMDA2TCNcdTAwMDdcdTAwMDJcdTAwMWGO1qeYJFx1MDAwM2qIg4ZcdTAwMTdHjFF0OmTKVFpNMpCAnZWGJrNYkEFBXHUwMDA2OWSQkrBcZlx1MDAxOUhskVbSJFx1MDAxN0wjg16NQVWz49LRWXhUuT5cdTAwMWSRxkitXHUwMDFkXHUwMDE5XHUwMDEwR4OdXHUwMDAzYFxmKJ9cZi5QpVx1MDAxZE2VQY+MIFNwuURHYCFcXEBcdTAwMDUngFx1MDAwNFdcdTAwMThcdTAwMDZcdTAwMDVcdTAwMTdM41x1MDAwMlx1MDAwZflBXHUwMDAwXCJASIGYmJlcZsq1duXCyD9cdTAwMGai6KxcXPW76mZg9teOXGZYXGZ3Jlx1MDAxMe+as2xUgCicKqWpJFxmTYe0XHUwMDE3saJsoKRcIoTSXCJQUNDBVDpAvOfSgbEyxLme3VGQ+jDY3a9cdTAwMWWPalx1MDAwM1xi27uHu/3WXHUwMDE3s3Z0wFx1MDAxZClccmpTo7U2+H2CXHUwMDBlXHUwMDE4XGKHKqLQSEDrW4rlLTwsiFxyjKFcbq2YglxmXG4ymEZcdTAwMDaS5a46amxcdTAwMGWY2VdcdTAwMDcq3jU7kPWds+Fh5/QkaJVcdTAwMWHR1621Y1x1MDAwMuqA0pqDXHUwMDAxLnjSkphcdTAwMDeQJtBUkpRcdTAwMTFcIpVJrdeuJlx1MDAwZqCjJ5VcdTAwMDBdxFx1MDAwYlxuXHUwMDFlmOoj8PylXHUwMDA0xjlcdTAwMDDTcyxcdTAwMTS2WW2fVY5KV4cj0r2tdDqfXHUwMDBlSt6qUVx1MDAwMXeooNIwJblcdTAwMDSjXHJN9HpMXHUwMDA1oFx1MDAxZC7sclxyXHUwMDA3xplcdTAwMTSTPlx1MDAwMuPoI2i8lVx1MDAwMlx1MDAwMCVsidtcdTAwMTFcdTAwMTZkXHUwMDE1SFx1MDAxMFx1MDAxY41cdTAwMWKa3Fxc0EFBXHUwMDA3OXQgc81cdTAwMDLUn4JcdTAwMTGesi6nscFxvbVTXHRuzkbsvlu7XHUwMDEy31x1MDAxYV8r5b01Y1x1MDAwM0mJY4hWXGYxXHUwMDA0dr0gy1x1MDAwNtJhXHUwMDA2XGJ6XHUwMDEwkjPBVt00YOjsIOenrLuCXHUwMDBiXG4uyFx1MDAwYlx1MDAxZubGXHUwMDBiNHqaMFe44Fx1MDAxYS5PxE7tjlx1MDAwNUdcdTAwMTftw23v/LDOYd24gFx1MDAwYkfbJVx1MDAwNPSO7Ia/zD5FW6sk4K1cdTAwMWGtXHUwMDA2seqrilx1MDAxNGxcYtRcdTAwMTTLilx1MDAwNVx1MDAxN8xcdTAwMTA7pPluXHUwMDAyVUJcdTAwMTEt5thx1G+NaLPkN069k1a1zPzjnVx1MDAwYuquXHUwMDFiXHUwMDE5SHCIIaBcdTAwMTDy2qTNomcvgTKQXG7VLU6TYqvOXHUwMDA2aFx1MDAxNTCCXHUwMDE2XuElXHUwMDE0bDCdXHJE7o4jSpRgNk42e9Bg5/683mv5Tbfcq385gKDtPpys3JajaWxgzzBcdTAwMTBCuMBcdGHCZLZcdTAwMWZcIlx1MDAxYlx1MDAxME5RiJEtiNSrz1x1MDAwNshrXFyb9OGBglxyXG42yGFcdTAwMDMw2eJkN7KNO1x0zWa3XHLIsK2jvc+35MuX+rft+sNR2DheN0eBXHUwMDFiiraBsJ1HNpBCZulAO5JKglx1MDAwZVx1MDAxNmdoR1x1MDAxOMg0ddXoXHUwMDAwh8Ao7GexXHUwMDFkuaCD6SuL+SFEJVxilVx1MDAxY/TsO1x1MDAxMD8+XFyB2bnZXHUwMDEzXHUwMDE3pWPd571vpZv9nTVjXHUwMDAzQbmDXGZcYkxcdTAwMGLOX1x0XHUwMDFioFx1MDAxZkHRbjCEMKZcdTAwMTms+p4jpjlcdTAwMDFKeFx1MDAxMTYouGAqXHUwMDE35IdcdTAwMTBcdTAwMDG4QruYz85cdTAwMDVhRHRj+44p//z4YfilretbV2u3uIiqX1x1MDAxOUFcdTAwMDAvUlwiTZXPXFzAQDCUY8pxQtiqry3GgU6iobBcdTAwMGJcbi544oLIu4te5Vx1MDAwMpJcbjRnuMBcdTAwMTCFqi998H9cdTAwMWFcdTAwMTds9evBaeBcdTAwMWVU68HI37+4P/9avfNXjVx1MDAwYjInklx1MDAwMUfexttcckXeS+/gj+9cdTAwMTfMXHUwMDAxqaXhXGJ9xchcdTAwMTJXXHUwMDEyjYOuvVx1MDAwMYPjbbc5p1x1MDAxNHlcdTAwMDL8lFx1MDAxMfKEdGwwXr1cdTAwMDClP1ExXHUwMDBmooFcdTAwMDNJXHUwMDFkXplcdTAwMDPRl0EvOvJcdTAwMWZcdTAwMWVPxE2U7rpdv3M/MaexXHUwMDAw/2ZnZaKo1PFbvVjZeZeTXHUwMDAyXHUwMDFl+VxytzOujoJ+UtvAV7ioXHUwMDFjw5dDXHUwMDEyhH7L77md45evs+q0Mj4s7qQm48JcdTAwMWR4sbK1yzdvgiGo/MOCXHUwMDFhXHUwMDA3XHUwMDFhuJhcdTAwMWSFP07ysJIoVFx1MDAxNFx1MDAxY4RcdTAwMTiaXHUwMDFlqGeVMslTXHUwMDFlc40wh6PiQHwqalx1MDAxODHLU8BcdTAwMTQnXHUwMDE22cDEXHUwMDEw1MlcdTAwMTT/XHUwMDAwg0ihUlx1MDAxMXtUadkoXHUwMDFjc36ilceT/uNcZjNcdTAwMTNC+HjWflxc8/1ZgUzBuEwjYalcdTAwMTi/e1+M371cdTAwMGbGXHUwMDE1yfXAUfkotNlcdTAwMDBmX7mHoDqob7vmrnRRaflkf2swXHUwMDFhytVcdTAwMDa5UNoxylx1MDAxMG6oliSdMeg5oZBkhlx1MDAwMdZLKUXKXHUwMDA1WTjIhSOp1bXo4StNYTaca2RcdTAwMDRcIlx1MDAxN7BcdTAwMTD3c6r2TYmD3lx1MDAwNMPD94Xh4fvAUGqaLVx1MDAxZFx1MDAxYrxayflUbfip1Kn82Wp+LntV2Gad9tet6GLFUVxi0lx1MDAwMcol1yhQqG2zi2LSOJJTYMLYLTNmeSiUjkBcdTAwMTBcdTAwMWGgXG7Q3+GUzaZtXHUwMDAxLXGJXHUwMDFhd1x1MDAwMWtgP1x1MDAwN0RIi+tSgUjfXHUwMDE3iPS99GH+RjbO0dCbx/NcdTAwMWPW2MWwXHUwMDE2ftppnX095vSqcjQ8WbmIdFx1MDAwNoiCom9cdFx1MDAwNlxi4bG5OYlDVFJx3j2C0i7EXHUwMDEy16bfhkNGuKDYbLl0q7fA4ZJxmJ+aQmiUvXS0eFx1MDAxYVxmq1x1MDAxZqF+XHUwMDEweDeH56291tF5V5x+2ll1fciVI1x1MDAxMGhGUo3+JZPZtDTUXHUwMDExaCFygqqSaFx1MDAwMkv0PcX8viezYStNXHUwMDE2cbj051Bo0rK6VFx1MDAxNLL3RSFbLFxuL0OcuedsuM8tXHUwMDFkp4nJQ6Ki0maQm+OUR6UxuDk4KvdcdTAwMWKNYXW34pPBwWn5bMWRXGLasbkhKdNMSyZZRiNcdTAwMTKKXHUwMDBlXCJ6a9Tmy1HZdi1yXHUwMDExhlx1MDAxMJJ0IckxO1n+nFx1MDAxM06gy2DYXCJcdTAwMTLNvlx1MDAxOYHxqsqb9OCC1zDSXHUwMDAzlJQk933I3D/L+ozfXHUwMDFkdrC79Vx1MDAxMFx1MDAwN2lcdTAwMThasYnCYapcdTAwMDdP5Y9jtFx1MDAwNOyhdUSI0WJ27PngNlpw5X7zXHUwMDFi5YPRTpWeXHUwMDExd8VcdTAwMDOw9lx1MDAxMIVhXHUwMDFhXHUwMDFkPsJQ6+vMUWthkam5sbFozpe6M2pcdTAwMWXsUcO40lxmXG7wrT748nYjsPxcdTAwMDVIin4+XHUwMDFhRMBmh17v63a4XHUwMDFibl2d9PdcXC2vd3r8hpZXXHUwMDFielx1MDAwMuw2ZI5KjzFFNM9kOyHEsceEiU2KXGJcXIrl6T3NXHUwMDFkTZS2RyY5h3T25SRHMpGO4oLFR5fxUlx1MDAwNS8gSShcYlTdZFU3XHUwMDFmvFx0qf/nm1x1MDAwZrasXHUwMDBmXHUwMDA0NpWG5IpzooVM38+4XHUwMDAz6JfoODMn6lx1MDAwMCGnPjBXluznpVx1MDAxNL0kqTdxXHTVucuoXHUwMDE0lEE3js2RWo1Q0YLt+7P+wd522ZzW1dlhZbjqXFxcdTAwMDLozEqCXqwghrNcdTAwMDTCz1x1MDAxNrQmglNurMWaPii6aC5RxsHRloRK9Jm1XHUwMDEyr+xmoFx1MDAwNE1cdTAwMGVcIoRGUqNGsnSoeezdXG7rXHUwMDBlXHUwMDE3VLI+VMKlY1x1MDAwNEVcdTAwMWSAX1xmXHUwMDE0JHF6+0Em4ZIpm8TP5lx1MDAwNEdtN+15uYJkPy9FaE5cIsmPTefxXGKjgiFccqbTXHJN/eMvh01cdTAwMWSOju9cdTAwMWai2nb3dujCqLa/6jaJUehr271f6Fx1MDAxM1x1MDAxMM5cdTAwMTJJj+/X0kGnSFhVT0Cnc5gsmkeEnX5jXHUwMDA0XHUwMDA3XHUwMDExO/0zxqYp/qNmXHUwMDExXHUwMDFiINclKvZcdTAwMGb6+1x1MDAwNvvn+4bGsu9cXGqU+lx1MDAwN39bwVxikFx1MDAwMvTsmv3h/DhcIvVb/m07vD69XHUwMDE51Lp726XSaiNScuqgZWbs30tAOy27WkTAQZFcdTAwMTc2bKbQtOLLO64gtSPRXHUwMDE4tOlVjNSEv+Ksv1x1MDAxMqemXHUwMDE0zVxyupCTiz+DyPQ4L1x1MDAxZJH891xy8t6IzLxzqVx1MDAxYilktnC8j1x1MDAwMlx1MDAxODM0pUOn4VFcdTAwMWT3PsLZwzXv7Tb3SOV4+K1cdTAwMWU8rDhcdTAwMWWZdtDw0JxcdTAwMWLkXHUwMDFlXHUwMDAymeNDXHUwMDEyXHUwMDFjLFx1MDAwNK6IXHUwMDA0heb4XHUwMDEyNzNxR1F0zlxmoIBcdTAwMWKYceMwXHUwMDAzYEIsxEtfXHUwMDE3PPL3hVwifyNcbj88mcKbbr9/XHUwMDE04YiNvVx1MDAxN5xcIr/51O3k1Zu3vjcqv1x1MDAxNJpfLuOP3edcdTAwMTkj26IojtP9/f3D9/9cdTAwMDFLn4dsIn0= yxO112(1; 2)(3; 0)3

    (1;2), (3;0)

    {a12+b1+c=2a32+b3+c=0b2a=1

    {a+b+c=29a+3b+c=0b=2a

    {a2a+c=29a6a+c=0

    {a+c=23a+c=0

    {a+c=23ac=0+

    4a=2

    a=0.5

    b=2a=2(0.5)=1

    a+c=2

    0.5+c=2

    c=1.5

    f(x)=0.5x2+x+1.5

    Ats.: f(x)=0.5x2+x+1.5

Parabolių braižymo atskyri atvejai

  1. f(x)=x24x+4

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1dbVNcIrtcdTAwMTL+vr9iy/N1nZN03k/VrVsouq7vqKvirVNcdTAwMTbCXHUwMDAwIy+DMFxiemr/++2Mylxmo7OCXCJcdTAwMGX3glWuJJkkk+R5ujvpzv7z5evXleCu46789XXFXHUwMDFklktNr9ItXHJWvtn0W7fb8/w2ZkH4vef3u+WwZD1cYjq9v/78s1XqNtyg0yyVXefW6/VLzV7Qr3i+U/Zbf3qB2+r92/7eL7Xcf3X8ViXoOlEjq27FXHUwMDBi/O5DW27TbbntoIe1/1x1MDAwN79//fpP+DvWu1K36z90LEyOOkcl6GTyvt9cdTAwMGV7qohcdTAwMDRKXHUwMDA1jPK9Xlx1MDAxZZtcbtxcbmZWsbtulGOTVpqbwYGv9lx1MDAwZlxuq37er9f9i5p/Z6JWq16zeVx1MDAxY9w1w1x1MDAxZfV8fJEor1x1MDAxN3T9hnvmVYL605DF0tOe6vr9Wr3t9uyb01Gq3ymVveDOplx1MDAxMTJKLbVrYVx1MDAxZFHKXHUwMDEwv3GuXHUwMDFjSYTUknElOfBRrn2eXHUwMDEz6Vx1MDAxMClcdTAwMDCYNEZwnejWut/EKcBu/UFd+1x1MDAxM3XsqlRu1LB37cqoTNAttXudUlx1MDAxNycqKjd4fGFqhCOoJsCFwZaIjpqqu16tXHUwMDFljHW854ZTXHUwMDAwRFx1MDAwMCUgY4Vtm51cdTAwMWaVcCX8XHUwMDFkXHJ8XHUwMDE319BcdTAwMGb7SLvfbMZHr115XHUwMDFjvadcdTAwMTVcdTAwMTOtXHUwMDE5eEz5XHUwMDE1vZQtv1x1MDAxMVtrUVx1MDAwYv1OpfSwLqhcdTAwMDLDXHUwMDE4Z0xJXHUwMDEz9bjptVx1MDAxYsnmm3658cJS6lx1MDAwNaVusOa1K167lnzEbVdScpqlXrDut1pegN049L12kCxcdTAwMTHWm7M4qLulZ2OBNcfzkoDp2Fx1MDAxYSN82U/019doasIvo7///vZi6fTJTjz+Jf7v4zxMXHUwMDBlbaw5XHLZlDBcblxca1x1MDAxOS3317A9LN6zVTnobuu6n9tuNVbrsp3POLa1drigilx1MDAxYmpcYmFcIqolxLaQXHUwMDBlNSBcdTAwMTHeRFx1MDAxMMN5ol+zXHUwMDAzd9SrXHUwMDExllx1MDAwMbTDlOCSXHUwMDExRLBQOjYqXHUwMDBm4NZGXHUwMDExpTWVS2wvXHUwMDEytsdKrz6f5inBjWPrvii2qeDJ5Fx1MDAxMbhcdTAwMTmVKK705NjeKJ7u339vevxcIrfTXGLq3ZuzVrOeNWxTRyBcIoxkIJXh2lxilVx1MDAwMLtxUFdRRlx0ZSin44KcKUCwc1x1MDAwM6A4XHUwMDEzhouPXHUwMDAzu8NcYlx1MDAwM2aMnXNsiMSIJVx1MDAwNn9cdTAwMDdnUEliJOVIPVx1MDAxMchcdTAwMWbRrzhcdTAwMTjB8OGMoj+atEVD/1jebKGfPvP282zOZ0ZcdTAwMDUx4ZGgXHUwMDAyhpxcdTAwMDOMksmpwFx1MDAwM+L6XHUwMDAzc9gqXHUwMDFjVWuF2+uN+j7LLVx1MDAxY1x1MDAxNWjHKEUpw8nQSrNcYl4hXHUwMDE3cKtcdTAwMTZcdTAwMTBONTKB4SzjVEA5XHUwMDAyTmM90Yhmi1x1MDAwYlwiLl1ywajAJ3FcdTAwMDFcdTAwMTCZTH7iXHUwMDAyYFrBmGX5XHUwMDFhXHUwMDE3nOpcdTAwMWQ4KLfFYLe122id5VtcdTAwMTe3tcLCcYFyuFx1MDAwNimQXGJwXHUwMDAwUM9cdTAwMWbnXHUwMDAyXHUwMDEwXHUwMDBlXHUwMDAzQDOMXHSpXHL5OFx1MDAwYn9GZFx1MDAwMGjyS0lVVs2CqF9LMlx1MDAxOFx1MDAxNfgsMmDpNlx1MDAwMkpcdTAwMTQpmeZcdTAwMTGgXmODqr4oN/bkXHUwMDA2J3Bw4per/lx1MDAxYemvLiBcdTAwMWIwXCLRRpCGyzEjKmRcdTAwMDNin9c4XHRG2Vx0k4meZo5cclxi5Vx1MDAxMpWDaFx1MDAxY5ZksCSDXHUwMDE0MpCpVlx1MDAwMlDsXHUwMDA2XHUwMDExXCKmJ79GXHUwMDA2fvOyf8HXXHUwMDBibdI6rPLcOtlm9czt9E9gJlxiQY3BTJSpXHUwMDEwdcVWXGJKOVx1MDAwNi1cdTAwMDSKM0EkfrK+ZSCpXHUwMDE2XHUwMDEyyJJcZpZk8DpcdTAwMTmY9KNcdTAwMDGuOGGKT75lUL+teNtXXHUwMDAz1euI84Le+3nSbObXXHUwMDE2kFx1MDAwYnCRMoq/XHUwMDAwNZzIXHUwMDBlXGK5QHBcdTAwMDdniVx1MDAxMCmUXCJxrSGjVMA0xTpYVo2EaOyXVDAq8ElUwHXq+T9cIoFcdTAwMTMtpqCCo54u/bxS7s5OoVxitNkuqkKtuIBUgFx1MDAwNYAgXHJybljiJIFcdTAwMDN1iOA4KlJwNKCyvmOgKGiCWkFW1YIlXHUwMDE3vFD609SC1FxyXHUwMDAzI4xcdTAwMDaIXHUwMDFmR7/GXHUwMDA1dyc/h9e7/Yut9ctq73r98uJ4nZ9kjVx1MDAwYphDOVx1MDAxNVx1MDAwNqRgQqMhQKPTXHUwMDAwy1x1MDAwNYJyh3CpkVx1MDAwNFx1MDAxOGM6ylxmd1x1MDAwYlxmQ1x1MDAwYoFcIlx1MDAwN6DlpLTJ/HaBNlSjWcOzeqi4pIJcdTAwMTdKf1x1MDAxMlx1MDAxNTCarlx1MDAxNlxi1JK1XHUwMDE0k1PB95Z7XHUwMDEynJGTnLd+2Sic3q1fXHUwMDE1zHDRqIApR+Jz2nAwSiVcdTAwMWNcdTAwMDWZXHUwMDAxx6DGIITEaYLMU1x1MDAwMVXWXHUwMDE5XHUwMDAy+WDJXHUwMDA1Sy54lVx1MDAwYvhvXHUwMDBlXHUwMDE1rWOsmMJHeH+L7+3mXHUwMDA2jZ+0Smr7udV92a+rReNcdTAwMDJJXHUwMDFkrkMjWzBKVLQ1+MRcdTAwMDVMUS21XHUwMDAwXG6MqkRHM8dcdTAwMDXMUIKTTLLqRlx1MDAxY/VryVx1MDAwNaNcdTAwMDKfxVx1MDAwNSrVRFx1MDAwMKCEaVx1MDAxNIBcdTAwMTNzwWox+ClcdTAwMGXzN+c7m3WzlTuEuoDLReNcdTAwMDLNXHUwMDFkhUuVUcnQXHUwMDA2iKH9yUZQjKPxhHRgjYiMc1x1MDAwMZNcdTAwMTLfMb5Zv6SCJVx1MDAxNaTsXHUwMDFjktRcdTAwMTNFbI7ryXlA5tvuXHUwMDBlu9xcdTAwMTiWzs/r3zf3SrrDvFx1MDAwNeNcdTAwMDFJtFx1MDAwM1x1MDAwNLgxRCNcdTAwMTmQhM8h8oBEpVx1MDAwMIg9YuDZdzok+JZS8iVcdTAwMTEsieBVXCJcdTAwMTDp9lx1MDAwMSVaSqJcdTAwMThM7nVIuvv7d5uSXHUwMDA28sC73K6drfaadHfByIBL7jAjXHUwMDA12thoXHUwMDFkUJlUXG6Eo41ccsGiXHUwMDEyLfB40GE22Vx1MDAwMIhQXFxcdTAwMDLLbDjCklxyXij9sWxcdTAwMTC4w+AlNtDMpJGBQp2AXHUwMDE5XHUwMDAykytcdTAwMDb5q7XB7UW+eX6UU529/vHBVqfTzFx1MDAxYVx1MDAxNySCXHUwMDBlJbVHXHUwMDA2XHUwMDE0VVx1MDAwMY2jz8f3XHRcdTAwMTFDXHUwMDBljlx1MDAwMFx1MDAwZVx1MDAxMiAnXHUwMDEy83Gnh8Zhylx1MDAxOG1Cd1x1MDAwNoTJXHUwMDBiXHUwMDAxxVx1MDAxMHNpeoo10FRRSmfhOTCWMVx1MDAwNaKFMprGjMgpXHUwMDEwXfXbwbF3XHUwMDFmklxuXHUwMDE5S90stbzm3dikhlx1MDAwYtieU62MJeWaXq1cdTAwMWSKO7c6vsBcdTAwMDOvXFxqjrJcdTAwMDO/XHUwMDEz5ZaxiVx1MDAxMorH7vMh8btezWuXmifPm7NcdTAwMDJ162kyqFx1MDAxM5uOq1LPXHLFLabrN8Iw1cNHXHUwMDEzypEz+eRcInlI9mXx4Hg93y/ubFx1MDAxNn2/WNzY72ZcdTAwMWKGklx1MDAwYkdcdTAwMTFhUPFGXHUwMDA0aDUugTmhjlKonFx1MDAxOFx1MDAwM0CplFx1MDAxZqePU2pdh9AqsCCM7Vx1MDAxNP5cdTAwMTaFiiFVzuLIflFAOJwvXGKH81x1MDAwMaGIKX5JxZgqYXeQp1xix9GN/mlj92ZzM5dcdTAwMWJcdTAwMWXvrVx1MDAxZV23zoJytlGIioUjXHUwMDE1Rd1cdTAwMDNcdTAwMDDNXHUwMDAwnjhB50Q4lFx0NImJ1YIp+zhFmHLHuvqi2o3CTVE9XHUwMDE5XHUwMDEy8Vx1MDAxMaFcdTAwMDRRM1xivXtcdTAwMWZcdTAwMTLfXHUwMDE0b/smJFx1MDAxZcxcdTAwMTeJXHUwMDA3c0JcIqRqpVx1MDAxYVUxgTry5EDc2ro/6jXWNi5Ph2yI3b0tnlx1MDAwZe6zXHJEQVx1MDAwMde/JKiVXHUwMDEylEVk/MSKU+MoLiRhNkJeXHUwMDAw/ThcdTAwMWNcblx1MDAwN1x1MDAxYjN2SWu0SdBcdTAwMDSeTFwiMrRcdTAwMWJcdTAwMDSIWYS9LVxuXHUwMDEw6XyBSOclXHUwMDEyRTI1um5cbo15XHUwMDE0iJO7m252+t9cdTAwMDe1+1x1MDAxZq32vTg/41x1MDAwN5Ujkr3zo6R5qFx1MDAxZIFcdTAwMTY32uOaWlx1MDAwN4wxIDJFXHUwMDFkjUaYYaj9YbZJ9Ouzcai5vTdcYsRcdTAwMTKGXHUwMDBiXHUwMDBlQ5WumKJ4UJxcdTAwMTI1uXvX5dFde6dw3+/lLzZ3XHUwMDBm+1eD4fernXnBMHpmKnnIXHUwMDEwaJJpaSO/7Vx1MDAxNVx1MDAxMVx0eWhviFx1MDAxMCgqgVx1MDAxOILr7T0w/ONcbqpwdfWiSjqtZVxiqFwiXHUwMDBimM2xzO9cdTAwMDH4mPE1tl87mm92Xtu95PWLfuO0Ue5v3+3ummFp9H5j6+/hqqVRzq9vv6t3/zCfP/55Sq9cdTAwMDebvdOd861y4fj2aLJ6XHUwMDFm/3qNNiBcdTAwMGWuXHUwMDBmpVxymC9twHxoXHUwMDAzaDIxXG4opyhKQExcdTAwMTFQXrjbzd30u1x1MDAxYYCtr31cdTAwMTc/OoVzd25eoW+kXHKlXHUwMDFkXCKMvSlSUYXSOkFcdTAwMWLK0Vx1MDAwNDOllqjKmHdFjKbTXHUwMDA2OMpKbqWsn+mEhixlilx1MDAwMOhcZkju+UGQz1x1MDAxN4J8TpI71f9KMqVcdTAwMTTAXHUwMDE04VqibE4qXHUwMDE1dn8oRe94z92WXHUwMDFiOTO3XHUwMDBiXt6GQC6Uw6RgQFx1MDAwNUXJXHTjhixqzI6yvus2wlWKd6nPM1x1MDAwNqBcdTAwMDKCepWahcP1p0juzEnYxYZ3tYvr4umy6KeePl3cmo5wqW30weSq+b6fz1xyrlx1MDAwNk127p90ju/o3c3xzfdsI9xcdTAwMDZaKGpkePOCXCJ8/FpcdTAwMDa7ZcytXHUwMDA1XG6MMut/8SFcdTAwMTAnjrW/n+M6kf6EbSGwPyruXHUwMDA1P3fhav0gXHUwMDE0edOBzYy9XHUwMDBl4iNcdTAwMTSlRM89I5JcdDwqvFa/ia972MVB6nftmlx0uv3YXHUwMDFiPKY/jNHscYcrzZ6ZTlx1MDAxM+ZcdTAwMDBcdTAwMTf34rC0ere2x3227vUuhkU1t0tcdTAwMTHeXGI8XHUwMDFi1SA1ok5aP1xylohq0MwxKFvR+ERcdTAwMTYy7F2eXHUwMDBis1x1MDAwMlx1MDAxZXaV2VjtXHUwMDBmXHUwMDE3qkvgfSTw0s1KiZaWpNPcTFTveDe3tLx1ZErtXHUwMDAyXFzVq9VcdTAwMWZukHHgUeZILrTmjFx1MDAxM3t3R1x1MDAwMnjUkYajea1cdTAwMTixlzi+K7ZwVshDRrQ632c6XG49IO9NO8FL5L0q8qzb6nhQ2GvIO/Zz1zp3tHt0vXpR2ym5a+Wzw8NsI8/eXHUwMDA3KIGgJSlcdTAwMDRcdTAwMDHDdcJrXHUwMDFmTT2iXHUwMDA000LbXHUwMDFkcZpcdTAwMDWZZ7RAXHUwMDAxzGfx/1x1MDAwMiyB93nAo6nHoFxmKFp5fFxu97yzrfOL7q3qNtbUmb+7xkFXr+fmJftGkaeFg+8prF9cdTAwMTByXGZ9XHUwMDA2O1x1MDAwNZKApoi8uNf5J1xuPE64XHUwMDA0Lein23hL3L2Gu7RAXHUwMDE1IOl3WnCDplxyMZPrmb/fSsuk74FgxiGAeptQWlx1MDAwMkDSXHUwMDE5z1x1MDAwNrJS/DHSoLL5MZunYeS8sJfoKWM3s2LBJiNcdTAwMDRSqlx1MDAxZIXMXHUwMDAwyl5QwbR+4fpcbkCa5GiIvlx1MDAxZo1cdTAwMWZcdTAwMTCQ8kaQ/o9cdTAwMDekrILE5SekYcpcdTAwMTDGXHUwMDA1Yd/GcikuPymQ8rm1dlDPebXC9MVcdTAwMTRmP19Hz1x1MDAxOeptRFwiU4mEiofLZKc4XHUwMDA3/f2xd0aZRDqCKnutXHUwMDFj2JOQhDshYY5cdTAwMDY02zVH6Vxy4l3O9alMXCKEY4RcdTAwMDBcdTAwMWNtbsJrSF5kXHUwMDEy6VBcdTAwMWKIp5H7kODiN3c+efii4VxyhC+JZHGIZNY8kr6Swlxuny+iKWnkXHJOWFxuhDaSTHGWXHUwMDBi3jrlunJ4SVx1MDAwN8fFXHUwMDFme8Xt/MlpxkPlhFx1MDAxZHh7665U3Fx1MDAxONBJb1xujcNOiNYk9Nj/ICcs5sjwXG5wa2lcdTAwMTg9aZxcdTAwMWMg+VH4v3KnYPM9b401N9V565dHmK+UOp3jXHUwMDAwR2zEzDhFXuXxtaOmV249d7D2woqphlx1MDAxZntcdTAwMDJcdTAwMWXi2lwiKDQ+/vn15dd/XHUwMDAxXHUwMDFhxf+LIn0= yxO112443

    V(x0;y0)

    x0=b2a=42=2

    y0=2242+4=48+4=0

    V(2;0)

    Kerta Ox, kai y=0

    x24x+4=0

    (x2)2=0

    x=2

    (2;0)

    Kerta Oy, kai x=0

    0240+4=4

    (0;4)

    x431
    f(x)411
  2. f(x)=x22x+2

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daVNcdTAwMWJJXHUwMDEy/e5f4fB8XHUwMDFkeiqz7onY2ECAQMZcdTAwMWPmho1cdKKRXHUwMDFhqUFcdTAwMTdSi2ti/vtmNUYttWgkjIRbu2ImbFPVR3VVvpeZVVlZf3/6/PlL9NBcdTAwMGW+/Pn5S3Bf9uthpePfffndld9cdTAwMDadbthqUlx1MDAxNca/d1u9Tjm+slx1MDAxNkXt7p9//NHwO9dB1K775cC7XHK7Pb/ejXqVsOWVW40/wihodP/t/tz2XHUwMDFiwb/arUYl6njJS5aCSlx1MDAxOLU6T+9cbupBI2hGXXr6f+j3z5//jv9cdTAwMWNond/ptJ5cdTAwMWFcdTAwMTZcdTAwMTcnjVx1MDAwM41cIl283WrGLVx1MDAwNcNcdTAwMTmCNob3r1xiu6v0siioUPUlNThIalxc0ZeVyN83V6Zw0TPrrFC82OmhUsl7L8N6fT96qMdt6rboU5K6btRpXVx1MDAwN8dhJao9d9pAedZdnVavWmtcdTAwMDZd9+3QL221/XJcdTAwMTg9uDLG+qV+s1x1MDAxYT8jKbmn37jkXHUwMDFlXHUwMDE3hlFDNUiu+pXudjTaQ0BjQDBcdTAwMDFcdTAwMTZEqlkrrTpcclx1MDAwMjXrN1xi3H9Jwy788nWVWtes9K+JOn6z2/Y7NFTJdXfPXHUwMDFmzLQnpbBMW62tXHUwMDExJnlVLVxiq7VoqOHdIFx1MDAxZVx1MDAwMsFpdCxo269wr2yXKrEo/JX0e4eEqOTuaPbq9cHOa1Z+dN6zyCRCgz9K/km+yV2/NiBsyVx1MDAxYnrtiv8kXHUwMDE2JFGWc8EltSxcdTAwMTGceti8Tr++3ipfvyBJ3cjvRIWwWVx0m9X0LUGzktRcZjT5XHUwMDA3XHUwMDAy4k/80tlcdTAwMTOHa+uwUTKbZ83q6UXxXHUwMDFhd1x1MDAxZvo97rqjVe7FXHUwMDAy41FTrVRWaWaFVIJcdTAwMGZcXFT12046PKWFUMiMUVx1MDAwNpkwcqRX6n43Wmk1XHUwMDFhYURcdTAwMWSw21xum1G61fFcdTAwMTctO1xi1lx1MDAwMn9kXHUwMDE06JtcdTAwMDbr0lhtuycm0HY/yb8+JzJcdTAwMTH/0v/3X7+/eHW2lKVu/zT4949vnZxVrIV06TOpWINKWGCJyI7jlI2r++9cdTAwMWLXwVp546zBTip7O5272k2+OUUgeJrIU1x1MDAxYsmNlZh87EPMOMKzXHUwMDFhuDXSXHUwMDFhpdGoVMOmxypJs/okgkJ4XHUwMDFjSKJcdTAwMTlJvFx1MDAxMWjSpIKKXHUwMDEz8yst80kqRs+UVIZcdTAwMWY2R9BcdTAwMWW6emlklN9cYm3q2uBFe1x1MDAwMVx1MDAxOaaL+/aCXHUwMDA1JHtcdTAwMDFZXCI547Dd9k8qULgq75+tr+zXXHUwMDAyLsutq528YVx1MDAxYjypiTBcdTAwMTVHpa0gPCdcdTAwMTL4XGZ2XHUwMDA1li4wkjraYqL1Ylx1MDAxM4LQXHUwMDBlUlx1MDAwMDCJNFx1MDAxY2pAKU5cdTAwMWTtXHUwMDFlZ1x1MDAxY7mlpjIghcbEXHUwMDBiRlx1MDAwNKJcdTAwMDcgtWJWgbCk29L413Qvos6rUTHH+Fx1MDAxZqqbLvizR979jIz51NiAs3TxM1x1MDAxYkhtOLFcdTAwMTBPhmtcdTAwMWNcdTAwMTnUjsL2XHUwMDBlPCx9a980msvb6/eHwcX+XHUwMDFjkoFcdTAwMTCEdqqW5FMkTYm5gDNP0CAwXHUwMDA13HAyxGao+afCXHUwMDA15PagtZrrpHtcdTAwMTZksCCDXGYykJlTXHRcYs5cdTAwMTbRXHUwMDE2JzdcckRQPMDNQjk8aIDs2TZs7HzNndk/jlxywHpWWCUt9TRcdTAwMDOjk+qHXHUwMDFmPj9cdTAwMWGkcuDSjZlONTV3dGBcdTAwMTk5zFxicuFcdTAwMWIs6GAsXHUwMDFkmGxPQVx1MDAxOJRaSzm5cSCLm/5moan4fXOzXTo5PihEW4U5pFx1MDAwM6251URcdFZLy4fpgLxuT3KtXGZqXHRKXCLLvadAXHUwMDFlXHJIa1x1MDAxN2ywYINxbMAh01MgNUiugiRUTMxcdTAwMDY731rnxfXmcTWwzVx1MDAxM/z+cLK3ti/mjVxyyFUgm4DMa1x1MDAwNGWSh8aPk85wQGVcctFcdTAwMDU9XHUwMDAzUs3MXHUwMDFiXHUwMDEzIKM6lPSEXHUwMDA1XHUwMDE1LKhgXHUwMDFjXHUwMDE1cJMu7lx1MDAxYlx1MDAwNsxIXHUwMDE0TKlE4MdRwfflpvxaW9u7PGfd8n64+rha0rW5o1x1MDAwMuZcdTAwMTnBOdCAkFXEhlx1MDAxNyGBK1x1MDAwZqyhIXJTXHUwMDA2qGe5XjBcdTAwMWQ3QWtcdTAwMTRcdTAwMTKYSr5ywVx1MDAwNlx1MDAwYjZ4mVxyhMpcdTAwMGVAUEKhXCKtMnlcdTAwMDBC7XvpcKeoXG5Lonq+7jfNYWX1Ts5cdTAwMWRcdTAwMWKgR8LKSPczXHUwMDFhXHUwMDBmM7yeQGNEtdJwXHJGoVx1MDAxY+DSfJKBMtxoSWbMglx1MDAwYlx1MDAxNlxcMIZcdTAwMGJcdTAwMDbDb1JcXMCdz4z2XHI+gilsXHUwMDFkn9xcdTAwMTbh9Lx05N+0gzvTPrqdOyogXHUwMDFmgWtknFNni2EngcaIXHUwMDFjXGKuOVxujprciNxPXHUwMDFmcmus1myA0Vx1MDAxNlxcsOCCXGYvQWRPXHUwMDFmSqksOHdzcrvAbp3cXHUwMDFmXHUwMDA0onT6eHV9sFJYuYlwL29kwD1cdTAwMTDk+ZPJQ9JoyetPcFx1MDAxMpOBUJ50XHUwMDBih4wgJDlLNH+8mKClZ1x1MDAwNZNcdTAwMWE5SGQ4u1DFaU1cdTAwMTnQV0pmYLG0uCCDsWSgMlxyXHUwMDAzaUFxXHRvWEoo+lv3x51q+2ZZ7Vx1MDAxZZ1VVrd1u30/b1xcoJnHnCo1mlx0O1x1MDAwNPcnMlx1MDAxMJ5RzjDghlx1MDAxMZOy3E9cdTAwMTlcdTAwMThcdMbSJVx1MDAwYjdhwVx1MDAwNmPZwL5cdTAwMTJoIFx1MDAwMcHqyWdcZi6XSuHdzfLJ7cZ9obrkV47PTytcdTAwMDfzxlx1MDAwNpZ71ulSjmhQjuxiIDbgXHUwMDFjmFRIYyVcdTAwMDTknlxykFx1MDAwYqkkiMVcdTAwMDTiglxyxk4gYqajgFJcdTAwMWIlyFiemFxyXG4svFxyXHUwMDBmq3dYO11eqomdrXa5x+eMXHIkaFx1MDAwZlU8ZUDXcZsmXHUwMDAz6SnLqWOUUFJKnXdHwWoyY4yGRZTBglx1MDAwYsZOIGb7XHSAzFpcdTAwMTd+P7lpcFC4ulxci7pfT8/EJl/ZKlx1MDAxZu2ZXHUwMDFkM2dkwDV6xlwiWtB0kZRpP0F7jiPRXG5cdTAwMTJojXmPOFx1MDAwMqOscuugXHUwMDBiLlhwwTgueMVLsMJcdTAwMWHQMPmcwVlhK1xme4XVb6VwdanNL05cdTAwMWVvXG65XHUwMDBiOFx1MDAxYUdcdTAwMDVWuUlcdTAwMDEpjDBI2l+mXHJcdTAwMDPtXHUwMDE5XHUwMDFhXHUwMDAxa61gKFXuV1x1MDAxM1xmmTDGzVx1MDAwNC/IYEFcdTAwMDZPZFx1MDAxMFx1MDAwNffRS2RgTGb0oVAgXHUwMDE5oSGZTVx1MDAxZsdcdTAwMDVHu8VSb+9m62zlpMhcdTAwMGJcdTAwMTeP7fXDnU7euCC1IZlbTzND/yPhn+Hw0lx1MDAwMYDxuEVBylWA0mxgc/a0oW89rq01ViG1gnCSNCRcdTAwMDF+otyfl1xuJGNyOpuQhiregGhpXHUwMDE49d1PIfqy1Yz2w8enSNeh0qLfXGLrXHUwMDBmQ4NcdTAwMWFcdTAwMGLwn25YhoqW62G1XHUwMDE5a7vgcljAo7Ds1/vVUaud1JbpXHUwMDE1PmnHzmiXtDphNWz69YPR1zl9uvE8XHUwMDE24FxyjMaF31xyYm3ruPfnYGhtujRZ0+NWorAsUVx1MDAwNeNw+Hqeh1xc4lAq9JAjMlx1MDAwMOs2XHUwMDA0p5bwLPNIbVx1MDAxMCyERff37FQw0MhcdTAwMTJcdTAwMGLbXHUwMDE4hFx1MDAwM1v9X0EhuFx1MDAwMESFalx1MDAxYav3r8OwT/qJWu5cdTAwMGb661x1MDAxOWaGpPBpt32/5p9nXHKSXHUwMDFikN9/LMjvP1x1MDAwNuRqYKYmXHUwMDA1cs2JyUmMJsf4XHUwMDFlVlx1MDAwZvdV5etD2L1QO62rddw4P843xlx1MDAwNWpcdTAwMGa4kYw+XHUwMDE2XHUwMDEwUY2mXHUwMDE0ctlmnKg5S3128XsgPFx0Ttky4EqDmVx1MDAxMOZMXHUwMDE5hW578v+Ptt35WCDufFxmXHUwMDEwZbbRq5nbkIpcdTAwMDNcdTAwMGJBY4HYXtq3591cdTAwMWRZvN8ubu/D0UqxnrvN+SkgXG7hKXImXGaTQCi0w7vtyP9wtqhw5q5BI2c39SU9QTC0XHUwMDA2lCHcc8CJcKhcdFx1MDAwM0hcdTAwMTbBXHUwMDE0lsB+XtturnyzZsVsXHUwMDE3jqg1S71cbtZ6d2dT1bZmXHUwMDEwXG4zXHUwMDA1OXwsyOGjtC1Pl/ZNakAmhdFcdOLGgbxcdTAwMTmunp8/SLg+La2cXfDq0bLFw5yDnGBM/ixhnbtcdTAwMDRuViWd+5R9h3taXHUwMDBiZpjWLj3PXGbV7c/BXHUwMDFjlFwij1tNZXnrfep2gcR3qtts31ZxZVx1MDAxOXvLXHUwMDFjU6FcdTAwMTmsnVx1MDAxZj801rbbm5fReqljXHUwMDBikLvt7ikkKlx1MDAxN4SiXHUwMDExya1lwsJw0ju01nOibl1cdTAwMTC/8yTfpW9/u8BLvLh40eZ9q1+LVlx1MDAxOWGN/OWzS1x1MDAxZlx1MDAwN0D8WFx1MDAwMOJcdTAwMDepwsz1XHUwMDFlXHUwMDBlmvxcdTAwMTlmJzd3y5VNrbY6R6vrZ0er+yW2+u12eTXn+DPWc/nlpHRcdTAwMDFgVqb8Ts6YR/3gor9cXE7KXHUwMDE5wY+7VHhWXHUwMDEznFxmt2bC+V2QXGLcTXj9clxi2kFBnSlcdTAwMDT5x0KQf1x1MDAxMFx1MDAwNLPTwZGnxbV+w/Tu0e1cdTAwMTE+XHUwMDE0lpm62v12drhcdTAwMTbJhtq4zjdcdTAwMDTdXG6rXHUwMDAyqVx1MDAwNUqHXHUwMDAxSE3vcmeqXG7GXX5Fl+BFplx1MDAxYfbLVCA32lx1MDAxONTTXGK3nFx1MDAxN/z9b6pAkTn1XG5cZpEzzlx1MDAwN3pobGaFx+ZjdNTBY1x1MDAxMa13lmv1uoFm7jKwpVx1MDAwMcif9ktazcAwa4bDnUChx1xyoFx1MDAxMtLtKlf4Lm8wXHUwMDFigfRcdTAwMTZJnqB0+1LUpH4gNYdblFPYXHUwMDAwMS9cdTAwMTiUXHUwMDFmi0E5XVxmXnZo5J7Pe3hu6fOZXHUwMDBmr+xdVExIUG9Ikny6ftm2q8fNsP3YiZbX2tfijJ/nXHUwMDFih26ronbbXHUwMDEwOVxiMlx1MDAwMm0qJTJ5ikRGpHGs0Vx1MDAxYcRs9CAja3hgh2hyisJweVx1MDAxZn+ATlx1MDAwM/5KXHUwMDFk+I6woSlcdTAwMDfpXGb2UFKS3Pcpdf8kXHUwMDAxSGGjV6fP3e1QJ/U6TmaiTm/gXHUwMDBifpQ/9dFcZpCHTNJHoHlcdTAwMDPyzkv+drVWLLBjNNdrlU3YukfIOfI0eG5cdTAwMWGUpFmQWyVEaj5UMFx1MDAwZjgnM1RcdTAwMGIy+iS+ayvQtLBHVolcIsn/lbpvgb1ZYk+QL6RcdTAwMTVcZmS5XHUwMDFiXHUwMDA3PVxc7dwx1tg9L95/XHJ3S2vNzo68yzn0wJJ1aVxieC64lkN64Z+gp1xyd9P9lkvSiu/aeDMt6KFLt6bFr5z9XFxAb5bQXHUwMDAzXHUwMDBlYPibXGbOoLy1i1x1MDAwN8HqUb3Vutx81O1Hsfwt39jj1m1xdeHr3ILb9z5cdTAwMDQ9UNaT3JDe41x1MDAwMlx1MDAwNVlcdTAwMDC5sDhcdTAwMDUwJVx1MDAxN1x1MDAxNmd8wf8m9NBZWuTnTK729v2VzvKO//32INpcdTAwMGKC/XD9trWcu1x1MDAwM3FSas+iZ4FcdTAwMTlmXHUwMDE1kjaxw+t+JGdcdTAwMWXpQ6RusORcYlxullx1MDAwN+iRscmndMTVXHUwMDAyebNFXva2b51cdDsuXHUwMDE1usyRk8Pu9TinacCu0nK9Ne05XHUwMDE25nZxMe2201xmkEx8vyBjVFx1MDAxOVx1MDAwMZp0jFXiXVs6smE3ijgwwlx1MDAxM1JcdTAwMDNcdTAwMTMudbVcdTAwMWPcnd+PMFx1MDAxNeRcdTAwMGJIjos0cHO0cWvw6tExXHUwMDFlpYtXUZ25fpFcdTAwMTnM5uI4SZ/i5CE0Z6XLXHUwMDBi32/63V6rc3W/tk1cdTAwMDLw9Vwi55gm99EzzKVsXHUwMDEyiqWPi3FcdTAwMTGr5ENrJLBcdTAwMWKhWbpd01vCd1lnXHUwMDA1cGbcXHUwMDE5XHUwMDE1k60gXHUwMDAyanIzfvlcbv7AeWSzXr1Y+uAwtqUpx7Fln976Snp2ZiVcdTAwMWbKXHUwMDEzMDbZ2vbS9mYgb6+/r95URelmf2nvMOer+JIpj7xEq4lyrGHpQLbUKj6fzVxmKpI/a11cdTAwMGVo64Jb6TUvbJF264zOsnarmVx1MDAwMtxqSlx1MDAxYZbudFx0PXiwcb407cDJMT+vabOOgT5d3tk4OZWrW9+DzTufbT9ePnw/XHUwMDE5iF3vXHUwMDFmXHUwMDAz7eKiuNtcdTAwMDKMLjZKySSx5ufkXHUwMDE4aHLkXFzcolUuuomBXHUwMDFl+faJjqaeuE1OxkjSXGYwXHUwMDE3TmJMXHUwMDEyXHUwMDFl3G9cdTAwMTNIT7lcdTAwMWNZ8Vx1MDAxY1x1MDAwMrDRXHUwMDE2zdPptUvW09K6RI5cdTAwMWG4NihcdTAwMDfvXHUwMDA2ckmMsFLFXHUwMDAxLVx1MDAwNEs99nHZ8IlcdTAwMWY4XHUwMDAynGnZL9nUXHRcdTAwMDZJu0s1uVx1MDAwMfO6sOSSOoVLMUFcIlx1MDAxOVx1MDAwNzyTPlx1MDAxNql0M8xltlx1MDAwN0a0hFx1MDAxMpR+3/mXmdxpXFxebJdqmoyoiVxyXHUwMDE4t1x1MDAwNMVw9vPgfUl7YbvN68pySFx1MDAwMn9uu81cdTAwMDeaR92wXHUwMDExRJ3wyv9YK+mF107DWHrlXHUwMDA03EzEK1x1MDAxOc8z4eQp649LV/6eWOs9+lxue9+KvMlcdTAwMGJrrZwjfkykXHUwMDA3eiR4QLwnkFxifEazf4p55JJcbrfzhoHbY/BcdTAwMDLkXHUwMDAxtCdcdTAwMDSzwuXItEjWW5pcdTAwMDKQXHUwMDE5d1x1MDAwZZlcXJxnN0fzXHUwMDEyS0jDSqIlOHWThcFELk/V4JHNZozSQJpeIedjn5gtTXH1qCC90Xh4JZNlJpdYYCRcdTAwMDRvOD73sFx1MDAxY9Z7XHJdvjl7WGnfXHUwMDFlnsPpSS3vXHUwMDBiXHRCe0wwiYJTt+vBU2Y/LmpMgidcdTAwMTjTQlwij/PlJZhcdTAwMWJiXHUwMDEycIGdyCRcdTAwMTnfKEdnOOlOzVx1MDAwNVvktp8jJkHpka3IpIuZki5PUopIJFx0p9XkXHUwMDA3arJcdTAwMTXJJVx1MDAxYuuEZIpS/LxRKcqikU8/3vDFb7f3I1x1MDAxYc2+VJBUhZVcdTAwMWaWWdIxX27D4K7wgsxfxj/OaIxFx5FAvFx1MDAwNPP3P5/++S9fsPdXIn0= yxO112325-1simetrija

    V(x0;y0)

    x0=b2a=22=1

    y0=1221+2=12+2=1

    V(1;1)

    Kerta Ox, kai y=0

    x22x+2=0

    D=b24ac=48=4

    Lygtis sprendinių neturi

    Parabolė nekerta x ašies

    Kerta Oy, kai x=0

    0220+2=2

    (0;2)

    x13
    f(x)55

Kvadratinių grafikų transformacijos

Pakeitus formulę transformuojasi funkcijos grafikas

Funkcijos f(x)=ax2 koeficientas a daro įtaką šakų išsiplėtimui arba susigrūdimui, kuo skaičius |a| didesnis, tuo labiau parabolės šakos glaudžiasi prie y ašies.

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daXPbuLL9Pr9cIpX75b2qXHUwMDExXHUwMDA3XHI0tqm69cpLvCl2JFleX91yydZGW5slWrY1Nf/9NpTEpChTSywr1ESKk9gkTYJAn9NcdTAwMGJcdTAwMWGNv3778OFj8NypfPzzw8fK002p4Ze7pcePv7vj/Uq357dbdIpcdTAwMGZ/7rVcdTAwMWa6N8Mr60HQ6f35x1x1MDAxZs1S965cdTAwMTJ0XHUwMDFhpZuK1/d7XHUwMDBmpUYveCj7be+m3fzDXHUwMDBmKs3e/7l/j0rNyr877WY56HrhQzKVslx1MDAxZrS7X59VaVSalVbQo7v/P/384cNfw38jrSt1u+2vXHJcdTAwMWJcdTAwMWVcdTAwMGVcdTAwMWJcdTAwMDeW6/jho3Zr2FJcdTAwMDFWM8ZcZr5cXOD3tulZQaVMZ6vU3kp4xlx1MDAxZPpYUPY+KG42b09uri5cdTAwMGZ6fu9u12+Gj636jcZx8NxcdTAwMTg2qdemN1x0z/WCbvuucuaXg/r3PotcdTAwMWNP+q1u+6FWb1V67tXh5Wi7U7rxg2d3jLGXo6VWbXiP8MiTe0mFXHUwMDFlXG5cdTAwMGJWMVTSMFx1MDAxNr6tu1x1MDAwMbfoMclcdTAwMTW3XHUwMDFjmdXcxlx1MDAxYbbVbtAoUMP+XHUwMDA1XHUwMDE19yds2nXp5q5G7WuVX65cdLqlVq9T6tJYhdc9fn9lrT2rkSs0iilcdTAwMDHq5Yp6xa/Vg5GW9yrDMZBaM4nahte6J3b2y0NR+E/Y8V1cdTAwMTKiffdcdTAwMWKth0Yj2nut8rfe+y4yodDwb0f+XHUwMDBlX8ld/ylcImzhXHUwMDEzXHUwMDFlOuXSV7lcdTAwMDDqJCGoS6UxYbtcdTAwMWF+6y7++Eb75u5cdTAwMTVR6lx1MDAwNaVusOm3yn6rNtqwb3I+fJGPzVxu1Ld3XHUwMDFmcFs+ZEztav8uy3ripVvdS7dvXHUwMDFlXFwrM5xGUFx1MDAwYmYlaKvBXHUwMDFhi5GraqWOa7TwOCihXGaNgEJrlFx1MDAxOXv5SqtcdTAwMWM2avQ9Sr1gq91s+lx1MDAwMfVAru23gvhcdTAwMTXDV9pwXHUwMDE4rFdKY8NAd46ei4O14+5cdTAwMThi233C7z6EQjH84eX7//z+6tWJUlx1MDAxNvvt36L/f+uEOVhcdTAwMDWYTGJcdTAwMTWgh1wicDY7q9zu+Vx1MDAwN4NcXNFWi4fn94Pz3lWwmX1IN6ugQVx1MDAwZiRJXHUwMDFiSZzUxFx1MDAxY2KEVVCBJ5XgNFx1MDAxYchRg3k3Vlx0m/XCXCJcdTAwMWONZ4jN0IBQQ2KL01xuIYCDVDbsr3TRSthdP04rcVx1MDAwNE4nnMpd+bS20S12v/DN8km1stso5o9eJVx1MDAxY+FZKaRcItJcdTAwMDFtXGY1W0eueiFcdTAwMWMjOWfaSss49fVYr6xcdTAwMTKrjFxcnVx1MDAxOVx1MDAxN7A5eYVGtfIqrXBp44e/01xuJ443XHUwMDA0N1x1MDAxMVxu7TReecifdnC/a/NXpti38jGbq1x1MDAxNzJp41x1MDAxNVwiXG5NUkJkobRFY2Vorn0nXHUwMDFhYnKtSHnR9zpsiruhYOBZQ6ihcSA5g1g7XHUwMDE3SDOeYIJcdTAwMGJL7WRgUTJcZkklJFx1MDAxZe5cdTAwMDFIrZhVgFx1MDAxNjG0XHUwMDBlvvFcdTAwMGWn01KoqG5IXHUwMDE18fBweN6DeN7TqFx1MDAxODm3WOwnXHUwMDBmvfuMXHL6wrjAJnJcdTAwMDGQsVx1MDAwN2TgRMZrXHUwMDFhXHUwMDE3bFx1MDAwNH29aYrX8mH/slx1MDAwMlx1MDAwZq1cdTAwMWTT2LhdQS5cdTAwMDCO0lglJTNcdTAwMTHHbujJKMdcdTAwMDVk3dJ5rZCpWEPTRlx1MDAwNjSI5N2QpVx1MDAxYWr7NVx1MDAxOazJ4HUyoGcmkoGyXG65niuMcf1pt3d/eVxu5yd1wVx1MDAxZjYzt5uFw5UjXHUwMDAz7rlBXHUwMDEwipiSaclDh2zIXHUwMDA2gmw0qTnBi4bJRDonnWwgXHIzXHUwMDFhUlx1MDAxYedYU8FrV/8kKpAmOfRgmZHIgIUqZVx1MDAxYVx1MDAxNaCvz3aeeoD9h9Lp9mWn93hcXDxKXHUwMDFiXHUwMDE1XGJcdTAwMGZcdTAwMTCk5Yq8TlLuXHUwMDE2QjJ0VEC2gGeBXHUwMDBiennJXHUwMDA1UcEoXHUwMDEzXHUwMDEwUWhDQ8VAXHUwMDAyXHUwMDE5XGKhs5pSKtDINJjUXHUwMDA2Pddk8NrVP4lcZuiOiWRA0i40n8dJ2Nsp3viqm5eX+5ndR16pXHUwMDE0tvc6q0ZcdTAwMDaCe6ilVEqi0Sq861cuXHUwMDAwTzPyrICDJldcdTAwMDLT7iRwOoNKpDZUuSaD167+WWQgXHUwMDEypzrJaFx1MDAwMEktmd0wkJf92sB0mXpcdTAwMTLtfXt2tqHvunerxlx1MDAwNVJ5XHUwMDAyLbfAtEPSOFx1MDAxOVx1MDAwMPlNXGbJiSA/PO3RQ5SSKW7NOl6wpoKpVKAmzE+aIVwi5ohcdTAwMTd8XHUwMDFhZFx1MDAwNpY/XFxcdTAwMTSPd/PZz+LmsGiqV6vGXHUwMDA12npKXHUwMDFh52bTt+RcdTAwMGaMOVx0UlxiKVx1MDAxMI1cdTAwMTDCQNrjXHUwMDA1Qlx1MDAwMFxyoubrmYQ1XHUwMDE5TCVcdTAwMDObXHUwMDFjPJRWc4KLXGZcdTAwMDVsXHUwMDFhXHUwMDE5nH9pXHUwMDFl3t7VSmZgs092t3zQaZbaK0ZcdTAwMDaKXHSPKW01eUec3IHxiFx1MDAwMVxuxSTdwFhh0lx1MDAxZTAgLpfAyfFZk8GaXGamkYGOqLZ4ilx1MDAwMfmaTGgzu5OQ82/EY1x1MDAxM2/VkX9+V8tksltcXD2vXHUwMDE4XHUwMDE3kDnkXHUwMDExeIRSxlx1MDAxOVx1MDAwNjKWXHUwMDFmadBjoNFITt6TsGlcdTAwMGZcdTAwMTiQ5cKk0GztJKypYCpcdTAwMTUgj1x1MDAxZn6xXHUwMDBijDFcXFwiwuzZRlufZS84f376Ur3wXHUwMDFmXHUwMDBi+Z2tU93fWDEuoPf1lFwiNkDBuGBcdTAwMThPMTDCs5wxptycK1x1MDAxMi+knFxyOEpCXHUwMDFkrvON1mwwlVxyTPJUXHUwMDAyoVx1MDAwNVxyzjOteFmrZ1xum/e5bCuwudvrp55/2z9YNTJcdTAwMTDSc6lcdTAwMDWEdSZeiVx1MDAxZaKHYITWXFwpkFGqSCdcdTAwMTeAUaDYOsdgzVx1MDAwNTNwQfJMXHUwMDAyuMxnKyybfVrxXHUwMDFjt2pcdTAwMTc73aedcja/ZZ/x/OKgn181MpDkJbhogctHkmRij5GBMpajplx1MDAwZlx1MDAxM0alPXxcYsCZcM5O2Fx1MDAxMelig3DY1mzwcsH7skFQeVxuXmNcdTAwMDNrIH40TDjSjL6Mmt0ymLzKJCVkXHUwMDEwW+ykXHUwMDE4mf1aOshwZSOrmYbYXHUwMDA34dYgcKlRKKHez1xmsJ7Q1lx1MDAxYauIgDnBJGxGiPtw1uf7UidpmbRSLCB/YOTEXHUwMDE4oF+E7a+ISM60wG1EXGK/ruJ5OfP3d8mdTFx1MDAxNz+2Yqrablx1MDAwNcf+4OvqmpGjO6Wm33hcdTAwMWVcdTAwMTGYITr+dEM+cmij4ddaQ11aqY6iJ/BvSo2X00E7kkhzQ48oke7tjnd4u+vX/FapUVx1MDAxY3+c09Z730dcdTAwMWG8yFhfl3qVoS536vnHMC5cdTAwMTIxbki4QfI5XCJcdTAwMDE2V716RqX885O73bOB6vXrxS/phrhC7lx1MDAxMbdcdTAwMTKMiTwtw9iEgGWeXHUwMDA2plxyU6Tj1futZlx1MDAwNFx1MDAxYVbidzvEt1x1MDAwZVx1MDAwN3hcdTAwMDLAXHRcdTAwMDX0R8tF2PWTXHUwMDEx/i4q+4cw+LRcXFxmPi1cdTAwMTaDiVY32sRJe6d2UOk5jO5+p17JNfV95/7ian+vl2/vP0lIXHUwMDFiXGKn5vhLj1QuaPLBOYFcdTAwMTNHY/PkhHhcdTAwMTbJ9iZcdTAwMTVcZlx1MDAxMOm8lNrcyJFb4pC1zb22uadm+Scv+CEnlIjAzFNhYP+uf9Ur9esn1T2+9blU7J2V7lM3TzdcdTAwMDNcdTAwMTlwUGiFXHUwMDA0XHUwMDFhXHUwMDBipUOAXHLJQGlcdTAwMGbIVFx1MDAxMVqjlihSz1x1MDAwNoJcdTAwMTBHzVxchGW+ZoN/Olx1MDAxYlhcdTAwMTY//MJcdTAwMDYgyP1cdTAwMTbz2OdicJ4/3O6WLk6ebjf4zV29XHUwMDFifLpeOTZQXHUwMDFlObZuxVx1MDAxM2dMj7FcdTAwMDFKV9aIhlxuXd/odyxAsphpe0Z9YKxek8GaXGam5/YmTttcdTAwMWJcdTAwMDDhXHUwMDE2x8+ezZfPnz6fXplccnJfVCt3tcUr97h6blx1MDAwMnqk/lx1MDAwNVOGS1xycjQ+JzidRVx1MDAwNlx1MDAwMkmetYrE9dNJXHUwMDA10jCpU1xcI2RNXHUwMDA1r1xc/dOoINkuYJaMZCC3eWYuXGI2d0r5ev5kP398dPms6sWrbZFbOS5QnsvrRSVdpE7J0VxmXHUwMDFlXHUwMDE0wpPCcqGBcSutTns+n1x1MDAxNMxozdZssGaD6fl8XCLRMCDMkDEs5sjgaUOjUD9cdTAwMWKIXFw1XHUwMDBiQf/Jx+fBXurS+WZcYlx1MDAxOcBQm0o3XCJy1EdwyX6Ga1dbXHUwMDA1rWTR9Pl0clx1MDAwMXBXbk5ItSaDNVx1MDAxOUyZ0EtO4HHusHKWwcxUoP3u4K7zOVNoP+SbpcaB2C+cfkpcdTAwMWJcdTAwMTXEp+y1W+1cdTAwMDdcXKJcdTAwMWOiZlx1MDAwNPnccs+d1ORcdTAwMTVoUOxN0YF/XfMqv75cdTAwMWVcdTAwMDc9oCfBTdi7XCJFrqLHbPN5aFx1MDAwNOhcdTAwMTHL7ifM2F/tZ9Thnrr+sls66jc1v+hcdTAwMWVuhuXiRiQwPmP/+6T7ZlxuwU6LXfR9rszpyZeb8uZZkFvAfTfU8e7nfr/TzZa/nFx1MDAwN33Z9I/45Vx1MDAwMu47uC9lavdcdTAwMDOb61x1MDAxN/TzRvbp/mk/c7KA+zZ3tlxu9bvt0vXnk10mbnBro3Gxt4D75jcquYOtRrPfuWhcdTAwMTe3g4st0ynVXHUwMDE2mWmxxFneSMrAMmZ5I497z0yLZFx1MDAxYo2IiEy0uVxutpiLp53t+t7+oFUub55kMyfbjzZ1mZWjzCyZJKONTC6Nmlx1MDAxMz2GSedfXHUwMDBiumqyySxappFU1NtqMiQys/TQPdnAsDicXHUwMDAwPlx1MDAxYjNcdTAwMGJcdPArpVnAclx1MDAwMVxiS1x1MDAwMmDixCpK5K6nZ7eMXHUwMDA2mf3iRvGp08xvXFxt7evuMzbPg3TjXHUwMDBmlaD+lGRcdTAwMDBcdTAwMTJcdTAwMDZAaVx1MDAxNqubqJin0Vx1MDAwMFx1MDAxODDCXHUwMDAwe1M646JcdTAwMDEomeZqMf7PXHUwMDFhg18l5ydhMLlqXHUwMDE5XHUwMDE4pZTVenZcdTAwMTCWdjul7Fk5f350Vlx1MDAxMzvbNZs77JbTXHJCyZUnLTOgyTdhcVx1MDAxNag85IZLS1x1MDAxODHkOLyXczJ3piFXmtPFiygzsCrw48uFXHUwMDFmX1x1MDAwZfxcIlx1MDAxOewx+FlkRlx1MDAxM1x1MDAwMmePXHUwMDEzXHUwMDFl6tv9g8PC803mXHUwMDE4n/PtYFA4vNhMOfrQesOKXHUwMDE5mjSctbG1PFx1MDAwZX+aXHUwMDE5slNcdTAwMTVdXHUwMDA05p2CXHUwMDAzwlP0bFdwwFxiV5V0pmx+XHUwMDE3RGB6MVx1MDAwYnpXXHUwMDA1gmK5XHUwMDEwXHUwMDE0S9KAyVx1MDAxM3eoXHUwMDA1n2etbVDZ/ZzZ2u3dXHUwMDFl7Vx1MDAxY97UO2ftnD4xKUegJvEn989Yy1xystgknXNcdTAwMDJd3W5r3C490Vx1MDAxOcyFXCKQe9rZoFpbbtWM0TlOXHUwMDFloFx1MDAxZCZcdTAwMWP9Olx1MDAwMMTlXHUwMDAyXHUwMDEwl1x1MDAwM0Cu4lx1MDAwNyOFc1x1MDAxOSicJ4umcP4oXHUwMDBlPjXvd7b3T/dQVlxuZ6bbSzdcdTAwMDRRgoeGPD3DNekgXHUwMDE1V4LGXHUwMDEzXHUwMDBlgYK7rXfetrPORCVIRqhBcLW77Yx2KPml1KKF1MFcXFx1MDAxNVxiZpbsXHUwMDA2ZpblXHUwMDA3Jlx1MDAwNkOtk1xiMUcpqs6gVH5sVWvX/Xwp+Fx1MDAxNPhbe9dPqUtxj0GQo5uGXHUwMDAyrVxmINl046HQqFx1MDAxNpRvSlVJxCDnXHUwMDFlSutcdTAwMTLjrOLGsshU2SRcZlx1MDAxYcNIgf9KajCzZF8wsyRnUCQrQlx1MDAwNobpkVwiXHUwMDAx01BY38xcdTAwMWVtVStt1r2r9Hzwj832wWnKUciYp1x1MDAxNeOILonEjinC0Vx0XHTxpiSRZFx1MDAxNIJnXFyOgKuDMms4VHPJXHUwMDE0/FJqcMm+YGZJzmAkoD2WxWmcblx1MDAxMHOEQyfvXHUwMDFinEpcYlxujVx1MDAxZVxiZVxiZYq+NP5cZn+QIMhcXESGrFA0hlx1MDAxYphJXHUwMDExkrNAXHUwMDBlrKu6+N4w/Hbi1Wn/yfuSj8jgXHUwMDBmXHUwMDE2WPihna5/XGbkS/Y3M0tyOCF5b1fQKMhcbuRzhF2PjqrBkTyzp1x1MDAxYpub59l2/ma73bbpRjmi8cjGVGRVWFx1MDAxMJzh6Myj4MqjY+hiolx1MDAxYa1501x1MDAwMs5cdTAwMDWbu64orlx1MDAwMoW/UNj1n2ru6kRdXHUwMDBijHMyXHUwMDA2o1x1MDAxNfKmbpLCj57ZbTZTvy48Xt7ut1x1MDAxZlm1O0g5XG4l81xc7VKXL82NYLGSXG5KecCpXHUwMDBmhFx1MDAwNSNBv22ztFx1MDAwNetaXHUwMDA11GorXHUwMDE2Udt4ZVD4XHUwMDBmVYbJ65a0dfFGo2b3OdWtL3JcdTAwMDcgrivysfm5XezpM/icdlx1MDAxMHKPNFxuQ0t/XHJKXHUwMDE5L2xC+CBN6eouSStcIoGhhYKQeZLwRFh3ayOVnE1cdTAwMTWCXCLtjFxc/0pJOFx1MDAxOblkXHUwMDE0ysWisNqlseuWXHUwMDFlXzVLk8M/SFx1MDAwM1xyxM2z11x1MDAxOalsXsCXjlEkcoc7m4NL7e/upjxcdTAwMTXHVflVJFOau5l4iGr/IVx1MDAxNIX2mNbGSq7IXGI0Jnn5cIVcdTAwMTGQ4MewyDzGXCKTLC/4i1x1MDAxZP9ujpK7IOjr3Yv6vVx1MDAwYlx1MDAwNFx1MDAxN7y8JtpB4ZHw936L/f4sS4f85kODXjfXpU566DqhXHS6XHUwMDBmkTf4dvxrXHUwMDFmvVx1MDAwM/SMtEpcdTAwMDLg7P7gQVx1MDAxN48+tY7MRU5cdTAwMGXY6UNu7/LwWqVcdTAwMWJ5UlxijyNHcFx1MDAwZZ/BSKLbV+ChR9xjOErFJKpkXHUwMDFkuDzcWWZcdTAwMThp7Fx1MDAxNZ31WOPupdBeosqzIKSQc+DuyF7VLzeuRW6rbVx1MDAwN+ayYlx1MDAwNvnj+3TjzpWyZoKTN+VcblxuXCLamMZzs/LkIEpcdTAwMTI06lxmO2HLmyozN4wtXHUwMDAzeZy5SLjSa5X3j4VcdTAwMWU5Olx1MDAxMvU821KeXHUwMDE0XHUwMDFlc5ht1O53dlx1MDAxZVx1MDAwN6rRzVx1MDAxNS9Oz9KNPVx0zOPM7UCpXFx5Klx1MDAxNStVXHUwMDAz3Fx1MDAwM6tJI1xu6aY6knXe8pAnqblMRLdnWFx1MDAwMy92ZMWBx1x1MDAwNSNXL1qIcFx1MDAxYfC6taZ+zFx1MDAwNm2WOVx1MDAwZY5P7lx1MDAwZk3lhqU851x1MDAxYoVyOz7C17Iw5O3FJlx1MDAxZrQhXFwyMjNdrT2QPFxySlx1MDAwZrSb8MRo1d819mJHVlx1MDAxY3vaaE6u/Fx1MDAxY3luZ6VD/aW/K6tXhfqFz46yl9ssm27sScE8JH3nlDtcdTAwMTmfLGZvau1KYKBxmyyi1iY5w2aJ9iZcYq6FWEjdpTX00lx1MDAxOGIh1HFcdTAwMTfJxtntzZvtUr5Vub6Am7O9p0LxKts52n5KN/RcYm+eXHUwMDExbstCN6eihVx1MDAxZZ9o0IprN+1puJig9XjVVlx1MDAxMJei9YSQpKnF+2fUrKH3k6AnydBcdTAwMDJcdTAwMDF29on23n1tv3Z2cLxzUus83G2X7NbFRT/d0JNgPM2UYlxcXHUwMDAzaT9cdTAwMWXL7jbWs3KY2WcsoXPCjmHLg55QpH3x/StcdTAwMGatgfdzgKdcdTAwMTTGtoCcWlx1MDAwNbC2XHUwMDE3XHUwMDE0spw9XHUwMDE3T8ql83M9qOexmXLcuaVL1nK3qkJaq2K4c9NcblxmOONcdTAwMWO0XHUwMDA0m1x1MDAwNtiBXHUwMDA0KYRd1YX1a+BNXHUwMDA1XHUwMDFlJ89H65GtX6buoNvMX99dXTW+tPbvXHUwMDA32bvcl72jVjvdyHP75HFrkHO3XFwpvkcmmXWe5K5cdTAwMWNcdTAwMWZ9OLBUQE9cbm1RqvWMXvqRl1T2lrNcdPpOaFx1MDAwNvPYmZPrXHUwMDFlplx1MDAxM3VcdTAwMDZcdFdWXHJcdTAwMTezk05cdTAwMWIvdamU21x1MDAxM4dzg2ZCPudbQIfGU0iiLMnNJPBb8cpcdTAwMDImIFdUutArSkFXYMQgfvH8jDaGLVwiy3pd3nZJ5W0zYD1QhjEr3eI1pWT017n20Lhdk4XLtmfW6Kn3S1x1MDAxNiX3XHUwMDE5XHUwMDE3onF6+jFcdTAwMTaBxL33wKAyyJScfYJkcpnT1NKIQGPQarCkvcdphOhDald/hvrifVx1MDAwMkVIXFylJSlkw90uXHUwMDE4yrxSJVx1MDAxYlx1MDAxMDytmVx1MDAxNYYulSRcdTAwMDWRhLyvNIIuW1x1MDAwZkVqN7pf08j41WDIK1NcdTAwMDItY9ot81x1MDAxYkU9J7lgQpNcdTAwMDAqKVx1MDAxNJcgpt0vWZKGT1x1MDAxYpOhXHUwMDA1scikNV7GlZqRco4tPCdcdTAwMTc1TimLSM9qJTh9rJQx55u7vHZknKxcdTAwMTEwblfPZGvkLVM9XHUwMDFhPOQuw1x1MDAwMkhNkHVcdTAwMWZcdTAwMTLBiDHCSDSMUFZccieFxzxcdTAwMDNcdTAwMGJcXOF6XHUwMDFinlVikVxm2Vx1MDAxYmTsuuQ2t1s7ycBcYotIj5RcdTAwMDKZXCJcZi1nknpy6v1cdTAwMTIlyX3GZWhRLIKJLFwiXGZcdTAwMTFcYp8njjC5gvlKklxid0alXHUwMDA1ZZGMTqbfZ75Ycc9yY8mBVJJcdTAwMWUlX1lcdTAwMWNcdTAwMDOoPFx1MDAwMDZUSlYzXHUwMDFlLVx1MDAxNfi9ZKak14VFrFhbk8iSSISjh8CZ0YpcdTAwMTBPSiDMi3JcdTAwMWZydzQwXHUwMDAyIakxSbCXU0kkUZCGt1x1MDAxYlx1MDAxM6FcdTAwMDVxXGJcdTAwMTfJ/owr+0w+lpp95nvydlx1MDAwNSklXHUwMDEx4ZHF5daaK1x1MDAxOCsxyIdcdTAwMTPfYpjjTFagjbdrMatcdTAwMGLcXHUwMDFlpaSIgGu3OyF71ZshqqNTQjLLtLZcdTAwMTGD6Fx1MDAxYoMwJ4KajNg1haxcZoVkyL9wXHUwMDBixjjZuVxm3G7Vo3v+kFhcYqe6QKEhRWdx6lxykyTJfcZkaFFmSPJSebdpXHUwMDBlkI89xz6jXHUwMDEzNyZJKYOMREQ4XHUwMDFinc/gljl70lx1MDAxMnMzTlx1MDAwNlx0JNshb+JcdTAwMTC3VFx1MDAxZaxcIluHbFBcdTAwMTPZLyNCXCLWI5mg/4zgIyulvnNcYlx1MDAxMT6OxMHXXHUwMDFjknZcdTAwMGVBki6yXHUwMDFlpdsjxYVG+GhERHnIgHOmOXfFY/i02yWKkfvEXHUwMDA1aE5cdTAwMDJJWuQvk/NeXHUwMDE1mVeMyTnyXp+f1fGnXHUwMDEy3zi+vVBPu9Xrfv+4nLr9XGJjmVxikkxcdTAwMTBFXHUwMDFlXHUwMDFiaVx1MDAwMZRaxOdD0SPvUZN+MMTtXHUwMDEzSqy+hT6s9YS2hkRIw7DezTh9vLLGXHUwMDFmyPdcIuP3V1rjX/ufp//9d4b9LiNcdTAwMTmdy1jr/9pz37XucaJfoFxmaTmI1pafhsmd/KVf9LdcdTAwMWY+NWt+4Uxl+e5cdTAwMTeZ8mqPUqGnhEYrpFx1MDAwMlx1MDAxNt9cdTAwMTKUnDRcdTAwMGbJalx1MDAxYi5cdTAwMTRcdTAwMTHc2vdcdFAq7bmNXHUwMDA3QGpccjhz7X/S4cJcdTAwMTXJ+4VAWVx1MDAxZIJjyYhcdTAwMWN76HvCXHUwMDExJySoM2NcXOBx9ljf3sb2dcD3z3w/aOyd1zKXMtfbTTdcdTAwMWXVUFx1MDAwYmog31x1MDAwNel7iOWnK+Fpsq45t+hmgydsR/VcdTAwMTY8XHUwMDAyeMJyXHUwMDE3fUkuQ1x1MDAxZTY73KiTXHUwMDE0qvxcdTAwMDfsRlx1MDAxNZkpXfHtcHDRdqp01e/5PFP/J/L+c7Vlt0qF6nHxfL/1XFz8jOfpxqDbjUOAXHUwMDE26Fwi6uRcdTAwMDCMxttdfWTUbmc8QdpKQvKi5LdM/Vx1MDAxYu45T4dZpfTMu3GAsY4yVrUqwFx1MDAwZqnE+lA78SXrxPGnvqdSNIlK0a2GhTk25jgobJ3wy2xcdTAwMGbYc/XoeStfeN48vEg3XHUwMDFhyfD0tFEkU0wzXHUwMDA2sa2r3YotcvtcdKScJF9cdJlcXI/qLXD8IY3ImaBLtZCrmU37T9aIv31cdTAwMGJcZn0sdTrHXHUwMDAx9djH76E8XHUwMDFhXCK//O21w0d/7PuVx81XXHUwMDA0pjr8uPrRQ1A7XHUwMDA0XHKTd//6+7e//1x1MDAwYqxcdTAwMWMlXHUwMDA0In0= yxO11234-1-2-3-4-2-4-5g(x)=-0,5xf(x)=-x2h(x)=-2x2

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daVPjyLL9Pr+io++X91wixprKqqztRtx4wdqYnWbnxVxywoswaq/YXHUwMDA23EzMf7+ZpsG2jGxcdTAwMDPGyHPNTPRMS0IqqfKcXFwqM+vP3758+dr+2Vxiv/7zy9ewU8hVomIzd//1dz5+XHUwMDE3NltRvUanZPfvrfpts9C98rrdbrT++cdcdTAwMWbVXFyzXHUwMDFjtlx1MDAxYpVcXCFcZu6i1m2u0mrfXHUwMDE2o3pQqFf/iNphtfV//Odurlx1MDAxYf6rUa9cdTAwMTbbzaD3kExYjNr15uOzwkpYXHJr7Vx1MDAxNt39/+nvX7782f2zb3S5ZrP+OLDu4d7gwFtcdTAwMTc/vFuvdUfqPFx1MDAxOFx0aOH5gqi1Ss9qh0U6e0XjXHJ7Z/jQ19bhdr58en5h2mtrt9W9bGlcdTAwMDeq573HXkWVymH7Z6U7pFad3qR3rtVu1svhaVRsXz99s77jSb/VrN+Wrmthi1+9N8x6I1eI2j/5mFx1MDAxMM9Hc7VS91x1MDAxZb0jXHUwMDFkfpJ1gTROg9KI2lx1MDAxOPV8ln9fXHUwMDE5XGK0lKCMVkJLi7FxrdQrNFx0NK5/QMj/9EaWz1x1MDAxNcolXHUwMDFhXq34fE27mau1XHUwMDFhuSZNVe+6+6c3tjbwXHUwMDE2pUFnhFFcdTAwMTL18yXXYVS6blx1MDAwZoy8XHUwMDE1dufAaS+dXHUwMDAx27uWXHUwMDFm2chcdTAwMTa7ovDv3odvklx1MDAxMGX5N2q3lUr/16tcdTAwMTV/fb0nkelcdI38deSv3jvx9Wt9wtZ7wm2jmHuUXHUwMDBisNIrhVxi1prelFSiWjn++Eq9UH5BlFrtXFyzvVx1MDAxY9WKUa00OLBfct59ka91t97evNuOVjeWt3aizm0jb3dcdTAwMGWfvyu/dL1wy6PMyECAUFIqY1x1MDAwNZDAXHUwMDBi3XdVKdfgQcvASC+k185cdTAwMWH0xqmhl1x1MDAwZmvF8YO6jXbb8urnxj1cdTAwMWXc5VbqWYi+L+2+NChcYoQhsbNAQlx1MDAwNVxiSpjhMVxyXHKhkmu1V+rVatSmT71fj2rt+CftfrslXHUwMDA2+3WYXHUwMDFimm96hf5zcVZo8Fx1MDAxZHskwj+9//vSk77uX57//9+/v3h1sjzHfv23/v/+etdX8JeyNom/wFx1MDAwYuW865vvsVx1MDAwNGaXa1x1MDAxYj8ye0fRSkNcdTAwMWatleubN5tcdTAwMTf76SYw5V2g0FlcIlx1MDAwMkVcdTAwMDRle0/m30dcdTAwMDWBcyBcdTAwMDXxXHUwMDE3gPI6Nq7pXHUwMDExmFxitGeG1MqCQXCmp1eeXHRMalx1MDAxM4DwYJUxgERecUJcdTAwMDPSONKRvPh0Mlx1MDAxYfS+/dtcdTAwMTktjsmEM/OE9uTJ55/M0Ly/XHUwMDEy/vStw5fRL3z88DP6XHUwMDFkcStL/uTmy2lcdTAwMTnkpqtvOHVcdTAwMThcdTAwMWTtXHUwMDE2nTuBrZW0oVx1MDAxZlx1MDAwM1x1MDAwYlI5XCI2Yjc0vvd7T2xgvFx1MDAxME45I530rlx1MDAwN/iuPaNcdTAwMTXNXHUwMDE0KCVBaO2dj1xydJp0oEjnKu9cclx1MDAxMY9HXHI906lHXHUwMDA3Mlx1MDAwMNDWXGJPUkHXyFx1MDAxZZU/8YF2xiP0m2VcdTAwMGI+mFx1MDAwZVx1MDAxZlxmnJsyXHUwMDE5JE09/2SGZ31qbIDJbCDQeolW91x1MDAwNGlcdTAwMWNcdTAwMWJ8x8OT0u7K0t3pydlD6TavL7Nccpw3NiAjTCsvyM4kXHUwMDEz0/lcdTAwMWVcYrts4JlcctgmdlaRL2E/0jqYXHUwMDA2XHUwMDFksGGuUNiFdbBgg/FsYFX88DNcdTAwMWJoJ7xT1k/OXHUwMDA2TX1/uVx1MDAxN+Wa6/Wr+sNldVnfLLnsvLGBXHTI+FwiI81IK1xmXGaaXHUwMDA2pGXpt4kgXHUwMDFkucBcdTAwMWUg7VxcXHUwMDAw1ltcIjapei+5IINcdTAwMDVcdTAwMTkkkIFROn74iVxmlHXSKouTR1x0vPp+fHF8arZbN/e7Z8390tHlvUpcdTAwMWJcdTAwMTeoXHUwMDAwXHUwMDEwyNUyWmlHUOm9XHUwMDFlc1x1MDAwMdKntlx1MDAwNHlphFx1MDAxNoqdskHLwNJpj1x1MDAxY1x1MDAxMVx1MDAwNa/pNmlnXHUwMDAzTbAj7PlcdTAwMDVcdTAwMTksyGA8XHUwMDE52EQyXHUwMDAwKziIpk3PxFx1MDAxY8dcdTAwMDZcdTAwMTdeh621zMqG2WzgKZ5uly/Km3PGXHUwMDA2qFx1MDAwM1x1MDAwNcJcbnp5dlx1MDAwM2ScXHJ0IMjqdqitg36uSCdcdTAwMTk4sMRsXHUwMDBiN2FBXHUwMDA2k5CBS1xcQEBcdTAwMWFcdTAwMGUqoXtcdTAwMTeMXT/IKXtTLFx1MDAxZrZcdTAwMGXCy1x1MDAxNjY7XHUwMDE3ra2oM2dcXGBFXHUwMDAw1lx1MDAxOeE08YGT6nll6lx1MDAxN1x1MDAxN2CAglxcXHQ2qYTF+EDTxlx1MDAwNUCOnlx1MDAwM4dcdTAwMGI3YUFcdTAwMDbjycBComXgNHpeRp58OaFTWH1cYt1J5vJHmF07V2EtKq/MXHUwMDFiXHUwMDE5eFx1MDAxNSCvXHUwMDFmXHUwMDFhqbU3RsfJQFx1MDAwNVx1MDAwMoF8cElcdTAwMTdcdTAwMTmZejKwQN+ArJiUJkwsyOClqz+NXGYwMYAohVGAXHUwMDFjNpiYXHL2N5t7t+XWxfL+z0a1cbZfr9aaZr7YQINcdOgoiSt7XG5EiENkXHUwMDAwyllSuCg12Vx1MDAwN1x1MDAxZpcsNSU2UGRcdTAwMTiQebdcYlx1MDAxYSzYYFx1MDAwMjbok+ehoIHWXHUwMDAwjqAxMVx1MDAxYuwtb69cdTAwMWafXHUwMDFmXHUwMDE3jiv3uL68W6xmy9XL+WJcdTAwMDOah4D8XHUwMDAzQ7Y12Vx1MDAwNuRxx4NcdTAwMDZcdTAwMTBobaVcdTAwMTOa2NJcYlx1MDAxYlx1MDAxYmjq2MBIpax2i9SjXHUwMDA1XHUwMDFiTMBcdTAwMDZ9uWsxNvD0IGeUm3w94WRzf+lnY33jOtzNf1tqZq9Py9XCnJGBNFx1MDAwMflHToMj08BcdTAwMGJcdTAwMWTLoyYyMFx1MDAxYa32wmphXHUwMDA0mNhIU8dcdTAwMDbK04uShbewXHJcdTAwMTZsMJZccpxOTjzSQlx1MDAxOHrUK+jg28XZwW6x9uOok221127N8cPt7cGc0Vx1MDAwMfpcdTAwMDCkXHUwMDEwjlx1MDAwNFx1MDAxNchIiHtcblx1MDAxMIAminSaiFx1MDAwMo1IPVx1MDAxYqDyWlx1MDAxOdBcdTAwMGLbYMFcdTAwMDbj2SB5RYGYwoBCZyZng7Ps1km7/m0/2nGXl7Uzf5mr5b/NXHUwMDE5XHUwMDFicJjQ03srYlx1MDAwMrJcdTAwMTKGoohcIiAq0GRUeURcdTAwMDOp91x1MDAxNIRcdTAwMTPSWqFcdTAwMTdRxFx1MDAwNVx1MDAxYjyxQTvstF9kXHUwMDAz8Mm2gUTRXW/vTdg4Njjfx0N/sZe52Hs42cw1XHUwMDBlr/O2mU9cdTAwMWJcdTAwMWLEXG6UrFxmOFx1MDAxOVFI9FxckWBcdTAwMDddXHUwMDAzXHUwMDEy2IAu4bg8zVx1MDAwZbHEh6Hf03O8d97QZ5dMRi+An1x1MDAxM1x1MDAxZPp++opjf4GfXHUwMDAwprR20/BcdTAwMGJcdTAwMDZOvFx1MDAwMuSaszv7XCLPr1x1MDAwMPlVvdY+jFx1MDAxZVx1MDAxZUPYg6/aXHUwMDE33uKr1nPVqPJzYNK7XCL+T561gUNLlahU6yrE8GpcdTAwMTBcdTAwMDLtqJCrPJ9u11x1MDAxYr2zXHUwMDA1ekSOXHUwMDE0aHP4XHUwMDEz1ZtRKarlKkfDj2OVu/E0V1x1MDAxMPSlqeRzrbCrkFnHvlxyqMJB/HDPiEeJSkGfOIxcdTAwMDPq6ErQVFx1MDAwMlVrXHUwMDE1oEWrQFx1MDAxMkOC7r3sYym0XGY4XHUwMDE3QmqviCBcdTAwMTFi45pcdTAwMWVOgWaWqaBcdTAwMGLSvqW6V6D0cW1cdTAwMDZATUFFj4bps5roafIvk5XDXHUwMDBmSOVjcd7zmb+edM5cdTAwMThcdTAwMTJw/dCYKVx0dGZLXHUwMDAynemSQKLtrjExXHUwMDAxwFx1MDAxYTRcdTAwMWO7mjwzUKx2rrfu9WGumF/+WVxub+qFaDt1ynpcXM2AXHUwMDBmpCSTSFx1MDAwM+FxIIzPN5RcdTAwMDZcdTAwMDOjwEtlUCiBJu2pgaC1IUNcdTAwMDRcdTAwMTe5gVx1MDAwYtt9XHUwMDAyNlx1MDAxOFFCpFxmPVJbmLyEaLshNv3ekazVVmC5YMpcdTAwMDV98y11zVx1MDAwNcbTgUDtgMN6pKJcdTAwMDfjetI5MrFcckryj5XX/TVcdTAwMTcpZVx1MDAwM2mso39cdTAwMTdrflx1MDAwYjaYIFNcdTAwMThF/HAvrie8XHUwMDAy41/BXHUwMDA2SqyZ082D3cLd2Y47lYW9o0whdVH+8WzgOIjvXHUwMDE0fVx1MDAwMFx1MDAxZK8uXHUwMDA2wb2TtDTEXHUwMDBi0kmRejbwdFx1MDAwZotywVx1MDAwNlx1MDAwYjaYJFU4MVx1MDAwM4CUoyf195pmXHUwMDAz6Ds1WMGj/ezDzdI33bgp7Zy2541cclxcXHUwMDAw3lx1MDAxOIk0XHUwMDFmxrtcdTAwMThcdTAwMWIo9uqRnFx1MDAwNcEhNKfTXHUwMDFl5UfnyDBcdTAwMDCx6DyyIINcdMgg0TRAXCJcdTAwMDLU/lx1MDAxNVx1MDAwNYVe7GUu91b2cvtcdTAwMDfbR+6sqG6usqlcdTAwMGJcdTAwMWSO5lx1MDAwMlx1MDAxNFwiMNJ4MpmkNMZcdTAwMGY2JZM0XHUwMDExQmktnTFOXHUwMDEzb7jYQNPGXHUwMDA1XHUwMDEyrCDo9Z1YcMGCXHUwMDBikrjAJVx1MDAxYVx1MDAwNkqCXHUwMDE25HNOblx1MDAxN+wv4bfd9tnG7W7zprN8flx1MDAxMsHZyvf54lx1MDAwMrZcdTAwMGK8XCIngWtcdTAwMDaUcDEuQG5EYFxyibIkqyn9RVx1MDAwMyA4XiD9YvF/wVx1MDAwNWPXXHUwMDE0ZXImkFbccku8YkmxcXx6p384tHvbXHUwMDE3XHUwMDE3sFx1MDAxM22d7Eapy1x1MDAwNIqv/bvAXHUwMDEyMZBoovJcdTAwMTZ6d3nqrsz6X1x1MDAxOFDSoXtXXHUwMDFh4D/y8krm88O4XHUwMDA3XGY08Lq/XHUwMDAwZSy4t60oSoFKKYL9XHUwMDE0glx1MDAwM29fUTzPlNY7y/fHrnVZaV+fQaN94nuvPCCT8Vx1MDAxNcXfR91XXHUwMDE0v1x1MDAxZmaOSjt7V9u21C50zEmtoqdw361cdTAwMDO/XHUwMDFl5peK2mRrOVx1MDAxZp3sXHUwMDE1Wj9cdTAwMWamcN9aNbulT0pXq+Q1XHUwMDAzljtcdTAwMDfNRqk2jfF+P85cdTAwMWOUTuF7iGeXXHUwMDFil401dbOSncJ9S1x1MDAwZruH2cbF9r3Yr4iVjCh2Kkf3k933iYBcdTAwMTJp/7NXgvdmu1x1MDAxMtz3uFx1MDAwZk1cdTAwMDeBxHIvXHRs41x1MDAxMSH0eHRsSrdePq5ly53jO7tyvn39be9beFx1MDAxNKWbupEkXHUwMDAy6E29kWS8QXytR1luXHUwMDE3p6UmzUmsqMW78rZcdTAwMTLJW1x1MDAwN0iP9lx1MDAwZbh5pVYg35ZcdTAwMGXiXHUwMDA19/RcdTAwMTHTMNrel7Xl+4V3pjCF2cJcdTAwMTRmXHUwMDA0U5lcdTAwMTh4IYNO8lx1MDAxYeXkyZVcdTAwMTd32eP2z/x1pVpZr/tCZPZLKnVFmXFcdTAwMDPLXHUwMDA3XHUwMDEyuP07XHUwMDE5V8ZAT766IJUuMGRfkW9F5415V5zlozFqyVwiXHUwMDE2jJFcdTAwMDVG/2ZcdTAwMTiFxFxmaPL+gT5471x1MDAwM42D6HUxW169a5/sr7SqV+2Tzp09WUtdqWRMkSqCKIdcZtChIC89Xlx1MDAxOWlcdTAwMDNpUElk51x1MDAxM4R8V1x1MDAwMGSUXHUwMDEz9O6cSoPcQNubKURB31x1MDAwNVB8U4hjKlx1MDAwMJWzXHUwMDA1qJxcckB9ctMjQO+lNJNbunBb3nVYPzNHXHUwMDFi26Z0XHUwMDE5VpdXhE45QI1cbrjcV/Lqv0BccvHyJN7JxtFHQF7J8OaDwlx1MDAxNCog9e2td9yDwL2xPMHQ6I3ur0D7r8Oomi1G1YyUqEhMReTVdLK6XmHorm2vRGe712BajfNS5Wqt1Fx1MDAxMXYn5SB1JjDoXHUwMDE18ZEghKCOd1x1MDAxYrGBXHUwMDE1QG45olRGyHclXHUwMDFiJYOU21wik6lrLVx1MDAxM8FcdTAwMWJDiYDCXHUwMDBi7T/d0O0r4Zg1RnG2XHUwMDE4xVx1MDAxOWHUJ+6lyOWx3E7iXHUwMDE1IC2UXHUwMDBlb1Y3fPFu++i4XHUwMDEzZaNI1sPU7UZcdTAwMTTzRkmTkj1vyVx1MDAxZnSyX1x1MDAxY557iqNcdTAwMDHJpb5S6fct9Y3Uo2TpOt5Uz2n/ZmNXXHUwMDE5r7WZRp3AvII0M2N3NPP5MSPJ3a0lp6xMXGbTrXC39uO8+ONu6Wo/V5e7u/vZauryeGMwVTrw3lxidLz3XHUwMDBmmsFcdTAwMTX5Lk5cdTAwMTWpKFx1MDAxMkCnXHUwMDA1foy5KyXvReIt2bxGOi/6XHUwMDA28SpV6slFUVNZjX9cdTAwMWZMZb/ozlx1MDAxNqYzdkozM/JKR4WNXHUwMDA0+TnS4OQo1ctcdTAwMDdY3z/dydzWtuqN782HjYf9lMeNOH+etSWRkSOE4HDrXaukYU1HwvK+svlklELgOG1Ckzp/c2CXc/yUs/DpqvRcdTAwMTMxOmOnNDMrr1QnWrzc0UFJNH7yXHUwMDA0l9FbOqdcdTAwMTKk0tlAece7aZFV6+RgeSw3y1x1MDAwN91dmFx1MDAwMcfJWVx1MDAxZlx1MDAwNVJen7Vk6lwiV9rA21SpXCLLXHUwMDFkyHn+aJT+OvE5XHUwMDE1833R95lzwIyd3szne71SWF54f02SW7S1jrff/DUsX+/+yG2K06uzkkw3XHUwMDA3sMGMpCR531x1MDAxY/JcdTAwMWJdLMlN2EBb73h3KlLnXHUwMDFmtFx1MDAwNjuN9Vx1MDAxZE2WNGn5j++ZkV6M/j3XdyC5qVx1MDAwNc02SFx0k+OzsJyPzu+r1+3wcPuuuivD8OLofFx1MDAwZfBpuc87WvQ2ln9ukFx1MDAxY1FcdTAwMTSkvLX0761S/eDAMTgheVx1MDAxYpLPbj6F2C+3i8jxXHUwMDE0QlLJXGLVhmuPrJo8SaJTduuwno8gkymugvjh1JlZTztGyZ31TpOrSX4/eYuxzlx1MDAxMihcdTAwMDKURniSQLK14X2dJUahVGlCqSZW1OZt7q5cdTAwMDTl0U6lbvR9XHUwMDE4Nf2SO1OM6tliVE9cdTAwMTejV02ayGbu/iWcjthcdTAwMDNCcn1cdTAwMDM6NXltV/m4WVx1MDAwNrdzmNVcdTAwMWLhxb0kezdcdTAwMTOtplx1MDAxY6bouaeD4eCwIWMx3vHBkSFM2u1xT1lcdTAwMTDJKzwhXHUwMDFimvA2lHblXHUwMDEyXHUwMDA2ZFOoXHUwMDE3fN4x1z13c1x1MDAwNYloPrOh4ztcbremXFwmNeqD8U/m5Ut6N/4t9oBJasSi6m2Fvsd+k77ibZOFrt287XvFX8dcdTAwMWY/4puhXHUwMDBiNrlcdTAwMGYrXHUwMDEzPlx1MDAxYf+K7eAvXHUwMDBlm/XdaFtcdTAwMTZqp2GYWTJXXHUwMDE1t5n2NCc0XHUwMDAxodJcYpScXHUwMDE3jbFVXHUwMDFmXHRkJJPDzjl+llx1MDAxM3nnXHUwMDAwu4a0tLOfmpG4wO5cZrA7Qu3SXHUwMDFiaFxyyk6+9dKKb8LPyK9eXHUwMDFm3+SP/OphW691cumGbreFslx1MDAwMS85x55cdTAwMTdiXHUwMDA2oYtcdTAwMTB4JSxcdTAwMTnGXGZcdTAwMDZcdTAwMDHJavdKuIJcdTAwMTBpgK6Xmlx1MDAwYkOnsffaXHUwMDAyuvNcdF3uXHUwMDFm6JV+RZekpVx1MDAxNXFf9mVpTmErbDePbM2cVdJccl2UXHUwMDE4kDHsPLuEpHdjXHUwMDE2M6qAuEuhQ/J6UdpkrZtcdTAwMWXoXHUwMDEyaoww7OQusPvfil3HouzVKyxm0kvLp9/WmvlamDNYbYQrl2fL6cYue7vOXHUwMDFidNJcIv2hXHUwMDA2U45ld+NcdTAwMDLkglx1MDAwMODanuQ8qVx1MDAxNEGX2zhcdTAwMWKYxv7HXHUwMDBi5M4ncjWLrH1NP7JacaOwvOU3qo3istg7bS3p0o/U9SaM+7pcdTAwMThI551zpFQ1r0DHoOs4+5D+I51cdTAwMTH9y1/pha7moJr+zKKBR+S+KVx1MDAxZnmB3C/vRi5y3YtcdTAwMTVucuB++3H7U+3kXG656vlWuC3vXHUwMDBmf3T0VrqBq7RcdTAwMGZIn/JWK8JcdTAwMThtVHy/XHUwMDAxXHUwMDE1OJBCauOVNHbEzoHyyoeIaUCupWPOyWlsXHUwMDE3toDuXFxCXHUwMDE3XHUwMDEwjNav2iD8OLt6vnpQ3Lk6vVB7xVu5XHUwMDE0qftiurGLSlx1MDAwNppcdTAwMDBM8Fx1MDAwNKmdjpXoSaNcdTAwMDMjRbfTXHUwMDE3V7vPXHUwMDAxcr1AVEJ/fM+vXHUwMDA1clOLXFwhNDp4RWP/1l3+cGezJrOHXHUwMDA3V8WNljjZOVxy024uS1x1MDAxOUjptEdcdTAwMDWKK2pcdTAwMDaAq6RcYqzlXHUwMDA1X83Nelx1MDAwNSa37k5cdTAwMGZ0OeFcdTAwMWHFVFr2LqA7n9BcdTAwMTWciINeTm4wX+TPd3bv7zbaR+2iK4r83cPBhkk3dLslXHUwMDA20lpcdTAwMTRkXHUwMDE2o7PxXHUwMDAwM2fxaCF5/0Jydt08QNdob4X1n5mHvIDulKCb1CVbieTNNoW3vP/kK2LLo9uiplx1MDAxM7feXHUwMDA1vFe2t9z4ifNcdTAwMWVcdTAwMDdxa2TgXHUwMDA1d7TQZIHCiFr59+BcdTAwMTZdYJCkXVx1MDAwYiXItVx1MDAxNu6FjEdAXHUwMDFkaMNF/VpcdTAwMTE0sC8z8znjkU2HqWRhfEhH7DfB+G/eXHUwMDExO1x1MDAwMz7gXFxcdTAwMDLhNVx1MDAxN3f2pb91z0pcdTAwMWKgI2dNKq7OXHUwMDA2YeXYXHUwMDFiJsvS4/OGxGiYot7GJMlbb3BKP2FI9GFr7JadI1x1MDAxYiGnlknAOjBWktQrNLFCYWJcdTAwMTIrXHI4mmUyiNXHWFx1MDAwMChcdTAwMDNjyX8gWdJOaPeC8lx1MDAwN1x1MDAwNHIjaFx1MDAwNI6uJE/CXGbvrU2ioVO8/9aCSIavXHUwMDA2XHUwMDE3OGFcdTAwMTR6QSabk+BcdTAwMDetXHUwMDEzciyNUJabu9OMk2zguFx1MDAxYiZKUvd+w0I0JVx1MDAxYZHaxI/2Ylx1MDAwMFo64Vx1MDAxY07uSIzue55SXHUwMDFh8TST5OR7K61GUHGDXHUwMDA0XHUwMDAzTTjwILRSUo7Y6fc9a2ZcdTAwMTZcdTAwMDLukmRcdTAwMDSQoiBcdTAwMTnoffJcdTAwMDGDRJBsOGXIcjJ6eItcdTAwMGVcdTAwMGI8QphGmdSCR2ZlkJDJYVxmL5VwXHUwMDFkrZDOmt9cdTAwMDdO60CBId0gyKNcdTAwMTckXHUwMDFmY2+YKErds0NSNC1cdTAwMWXBZFx1MDAxZbE0eIf6XHUwMDE1js3ofVx1MDAwZeaTR1QgXHUwMDFjK1x1MDAwNFZcdTAwMTbKj2hcXPJcdTAwMWVcdTAwMWVh90k6sna4U4zpL/rs41x1MDAxMVx1MDAxM1x1MDAwMIiuYvIkeH2VO7+IxJG9StbVNPLcXHUwMDE2PDIjXHUwMDFlkVx1MDAxOCBIkjBDmCfp6mV+8Fx1MDAwZrs9ljSYXHUwMDEwSOAn31x1MDAwNsbaI4mS9Hi/ISGaXHUwMDEyjyiVvKMgkJUl/CtS3kdva5JSXHUwMDFhsVx1MDAwMfk0mrNcdTAwMDDI2nOxrtndPFx1MDAwMFx1MDAwMK7ZseRs+ti4plOs4kwgSFx1MDAxOYG0xipyI3tcdTAwMWZ8wFx1MDAxOPHctl5cdTAwMGLey4l0zZA1QkJBrzCVzJ1cdTAwMDWLzMpcdTAwMWHhklxu3rmaK3mBXHUwMDA0KLZhXHUwMDE4XHRcdTAwMDZvcM+BOUdAtHrsXHJcdTAwMTNlqXt2WIymZY6YxKo3w7tvolx1MDAxNJN7NaN3MUopjVxmXHUwMDA0R4ZoRFx1MDAwN1xch1x1MDAwMpKYRIBcdTAwMWGRlPAuXHUwMDFl4Vx1MDAwNk3gXHJ6zVvB9rX47+NcdTAwMTFcdTAwMWaQUuJ+ht2mWTjEI85cYsdb0y2CI/NDIyhcdTAwMDIlNWje2dJcdIODIVFiXHUwMDExXrXjmktpUY1ccrEmilH3bsNcdTAwMTL0SlxuSexNoVx1MDAxMntTsI9ccjT/cvJGjC7bMPs7azlxqFx1MDAwZlx1MDAxYqXddjVf20t5I0Y0hjxcdTAwMWFlUDjOS7R6MMAqnVx1MDAwYlx1MDAxZUNbUpKbKUZ4NO8hXHUwMDExXHUwMDBmXHUwMDAxaO+JqsRbm1x1MDAxYbNZTIRcdTAwMGafmc/02b0pSv/T+d9/id91Z7Y9Kl547Ef2k7EjWrJJ4lx1MDAwN+fF5Ft6tH7UXHUwMDFi16vnty11vlx1MDAxNK3eXHUwMDFjqfWtzlnKIctcdP5k3pBrpr1cdTAwMTBOxlNcdTAwMTFFwDubeFKqhp2IRMS+J1x1MDAwNqF9QID1kqifXHUwMDE4m6D/XHUwMDE2zHK+lTOoPrHW7lx1MDAxMbKft8HkXHUwMDE1Y2fGeI0/82PbsyXnQijnPYfKJlewtbJcYnOFy/N8dFxc8Fx1MDAwZq52rI8vId1o1WQnSctZSlpcdTAwMDEpuFjOv8ZAXHUwMDFhYN1llPRcdTAwMDNcdENTRCtAoDh12bnkbVx1MDAwM5JF+MnZ527kXHUwMDA02U/ffue9e9iBXHUwMDE5fFU9cNFcdTAwMWN3UMS3QVQk2sDKcZhKucn1qemcXWaKXHUwMDFiXHUwMDE3jWwlvNRRM19ebW+nXHUwMDFioegsKUxjXGZcIvLeXHUwMDAwse5sitRpN09cdTAwMWFJVNB+UG6/VYFnfcqhWMH9et6iT0nta+f7d+H7XHUwMDFjhOrP2yDrmnWbnLFCXHUwMDFkeujHtiSW8aPPcFWkRDR53Fx1MDAxM8O1kFG1vdqS2bpcdTAwMDG9VG7f3yhsp9xj1d0qOt44XHUwMDAwXHUwMDA1ONVn63fhKjFcdTAwMDBnrOOQkrFGJ5e/vlx1MDAwN65TUajS8Jay5tP399Dv3Ybn765Qf/tcdTAwMTW2+pprNFx1MDAwZdv0XHUwMDAxvz7FXHUwMDE5acai4q+v0Hv017sovF9+QZyuuj/c2L2LesZXN9H4z79+++s/VEMh2CJ9 yxO11234-1-2-3-4245g(x)=0,5xf(x)=x2h(x)=2x2

f(x)=ax2+c

Jeigu skaičius c teigiamas, grafikas kyla per c vienetus

Jeigu skaičius c neigiamas, grafikas leidžiasi per c vienetus


eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daW9cIkuW/f5+Ran6y4zmXHUwMDExXHUwMDFkN5ZcdTAwMWJcdTAwMTEttUY23vG+le1Ry1x1MDAwMlx1MDAwMybNalx1MDAxNoNpvf8+N7LKXHUwMDA2XHUwMDEy0lx1MDAwNmzjdDU8ya/ITHKLOOcucZd///Ht2/f2Y6Pw/Vx1MDAxZt++XHUwMDE3ejfZSpBvZrvf//TbXHUwMDFmXG7NVlCv0S5cdTAwMTF+b9U7zZvwyFK73Wj94+9/r2ab5UK7UcneXHUwMDE02EPQ6mQrrXYnXHUwMDFm1NlNvfr3oF2otv7X/93PVlx1MDAwYv9s1Kv5dpNcci6SKuSDdr3581qFSqFaqLVbdPb/o+/fvv07/Dt0d9lms/7zxsLNg5tcdTAwMDOlIbp5v15cdTAwMGLvVIBcdTAwMDJcdFxcuOdcdTAwMDOC1lx1MDAxYV2rXcjT3lwi3W9hsMdv+q5d87y8pjO7e1x1MDAxYue5RlGl1E2rNbhsMahUTtqPlfCWWnV6ksG+VrtZL1x1MDAxN35cdTAwMDT5dunpnVxybY/7VbPeuS3VXG4t/+iD56g3sjdB+9Fv4/x5a7Z2XHUwMDFinmOwpUffJEfGXHKXgIhcdTAwMDZcdTAwMTWa573+91x1MDAxMi2zQO+BK21cdTAwMWSgMJFcdTAwMWJL1ys0XG50Y3+Dgv9vcGu57E35lu6vln8+pt3M1lqNbJPGanBcXPfpkVx1MDAxMZjzl9LaSiG1fT6iVFxibkvtkTtvXHUwMDE1wjEwzlx1MDAxOMH50F35Kza28+FU+NfgxTdpXHUwMDEybftf1DqVyvDbq+V/vb2nKTOYNOLXlr9cdTAwMDaP5I9fXHUwMDFmmmyDK3RcdTAwMWH57M95XHUwMDAxRjgplVLSmsEwVoJaOXr5Sv2mPGEqtdrZZns1qOWD2m30J4VaPmZPJdtqp+vVatCm2zisXHUwMDA3tXb0iPC8K1x1MDAxZVxipUJ27F3QmYf3RVx1MDAxMdPwZ1x1MDAxY1x1MDAwMMx/XHUwMDA2//o2XHUwMDE4mfDL87//9efEo2OHOvLrP4b//2tcdTAwMTimh7Y1Lrr1XHTZdGGjNTpcdTAwMThMnNegnd1+2KufXHUwMDFj1Nurp27joVa6Kt/yQrKhrYRiTlmp0EnOnVx1MDAxYUG2cpyhRnCcQM2FhMhtvVx1MDAxZrBcdTAwMDc39VxmZKkks4hSXHUwMDBio6XQXFxcdTAwMGbRyk9kK8uBSy51QpEtl8h+9ejU+DDPiG16t4WJUptbXHUwMDFl3fyMbVx1MDAxYSaJIOT02E6t3ldcdTAwMWZbpdJqNZVcbu6P12E/0JWkYVx1MDAxYpg23DiUXHUwMDAyXHKh2lxyYeYn2DVD5aTTXHUwMDEy3KhMXGZcdTAwMDW51MxogbTfoJFgI3f6jnBnXHUwMDA0WyFcdTAwMWTdKVx1MDAwN6c0V1x1MDAwM+J5Jlx1MDAwMCFcdTAwMThcdTAwMDDdXHR3XGLKKYVR/INcdTAwMTKG+Cu5ov3rXHUwMDEywMi+90V//ND7z9igv1x1MDAxN1x1MDAxYlx1MDAxMFx1MDAxZMSygaI5JLiWg/F6jVxy3Pl1xlx1MDAxNIODk0J9686Vc/CjbvpfkFxylJFcdTAwMDZcdTAwMDBoOOSQXCJcdTAwMWGSXHUwMDAxXGLGuVx1MDAwNamBNFx1MDAwM8tl5EaTRlx1MDAwNlx1MDAxYTlcdTAwMThcdTAwMDdDOsqSXHUwMDBillxcXHUwMDEww1x1MDAwNVJENz9zXHUwMDAxN9Iq6cRAqXyNXHUwMDBiVi/PjnZcdTAwMWTs93qpw+P1Wqrb4lx1MDAxYvdfjlx1MDAwYiRzhp7aIJGBcFx1MDAwM670J1x1MDAxNJYsfMtccnhTgFx1MDAwYvuBdsC7cIF0RpCKJ1x1MDAwN7bdklx1MDAwYpZcXFx1MDAxMMNcdTAwMDVcdTAwMThrJVitjOVuaLq/Rlx1MDAwNZ39oLedKVx1MDAxNDlcdTAwMWPandxhJ329d3T3XHUwMDA1qYDEvTZkmSk0fNQlIFAzkEjwslx1MDAxY6UxSadcdTAwMDKgR1x1MDAxNVx1MDAwZaxbcsGSXHUwMDBiXuVcdTAwMDJcdTAwMWJvI1ituUQrpieDs9P2wbFyZu86vdKtqq3qWa3T+XJkoFx1MDAxOVdWO42WZi3wgVpcdTAwMTSygaLfK1x1MDAxMMJcdTAwMTgniTRcdTAwMWNGbjVxdKCFU/RAiXVcdTAwMTlcZlx1MDAxZWpJXHUwMDA3z1x1MDAwN3xcdTAwMTJcdTAwMWRcYsDo5ic6UNIoXHUwMDA0o6Zf9rtcdTAwMTK3Pde391x1MDAxYuvF3d6xhVaj2Cp9OTZQzHpxXG6aXHUwMDBien6MsFx1MDAwMVx1MDAxOEY/NkIq4CHSXHUwMDEyzlx1MDAwNlajXHUwMDAxbVx1MDAxM7uAsCSDXHRHf1x1MDAxNlx1MDAxOVhcdTAwMTndPFgp5M5o0jGn91x1MDAxZqZFYy/T3jb1VDp7u2XUar19fvnl2EAzglx1MDAwZnJLRpJcdTAwMDY1aiiA01xmNUdBezTJW5F4XHUwMDA3XCJ3kkbRLclgSVx1MDAwNq+RgYTYgCD0vnR0M2hcdTAwMDb1w+3SQW3dllc7jZP+bqVTzqT1XHUwMDE35Fx1MDAwMk1PTlqB5EKP6lx1MDAwNWCAOY4guEHSXHUwMDExaEBcdTAwMTJOXHUwMDA1QlitrDJLKlhSwat6gTLRzc96XHUwMDAxci2VhVx1MDAxOVwiiM7T2Hw8SeU3a/vp9E7xQvPjy6/HXHUwMDA1yLhcdTAwMDOyXHUwMDAzUFx1MDAwMVxm2VBhSJFcdTAwMDYmaFx1MDAwNNDSx2lcdTAwMTRJ51x1MDAwMlx1MDAxNz6JVEl1XHUwMDE4XGY4aslcdTAwMDXPXHUwMDA3fFx1MDAxNlx1MDAxN1xmjUZULdBaW9JcbqY3XHUwMDExLi+rzdXO7spGK+Br17uNzfb9/ldcZjFwoJ21XG7B6sHDh1QgXGZThiukXHUwMDAx0pKrxIdcdTAwMWI57ThcdTAwMWZcdTAwMTnkJVx1MDAxNSypIMZCUPEhXHUwMDA2XHUwMDBlfLyR1NOrXHUwMDA1XCLbvF5cdTAwMGZWVeZcdTAwMTSq/XImUP2H2vmX41x1MDAwMmRGW7T0uq0jYztcdTAwMTJrzDWTQklEobgzLulcdTAwMGKLpNtI7+xcXJLBklxmXiNcdTAwMDNcdTAwMDUqunlgIyhuJGqcPt5oXHUwMDE3m/utm3I+vdU9Ov1xt5Kq3m3hlyNcdTAwMDPNOKLlYIzSOlx1MDAxMnpoXHUwMDE1Q1x1MDAxMIJGgeaxXHUwMDEwSadcdTAwMDJtleBo1UC9WVLBklxuYkxcdTAwMDRcdTAwMTGflKAsWVx0XHUwMDAwdnrXYbErXHUwMDFlM+ulQj5by1x1MDAxZFbgqvDjeGUzaVQgmc/iclx1MDAwMrUkXHUwMDEzyMfojlKB5kwr0pdcdTAwMWNcdTAwMTiasGBH9Vx1MDAwMlKTvGdcdTAwMTE4SHROmFx1MDAwZswufFx1MDAxZjbw+YaO28QqXHUwMDA2g1x1MDAxYl6ywfNcdTAwMDGf5jyMV1xmpFwizHDNp1x1MDAwZjjK7nbv12rdlL2/ap+ne5WgW3pInJXwXHUwMDFhXHUwMDFiXHUwMDE4xcBrXHUwMDA2XHUwMDA20FlcdKMuXHUwMDAzqZH5uFx1MDAwYkOGguZIilPCyVx1MDAwMFxid1Y4l1j34ZJcciZcdTAwMWP9ae7DeJ+BNVJcdTAwMDNKM73/XHUwMDEwXHUwMDBm73Qzle6u1XbS4jD3oE/WTza+XHUwMDFhXHUwMDFiOMOc5VxuiFxmfPWBqGqgmVx1MDAxM05b+rHya66JZ1x1MDAwM+BkXHUwMDE18eRGXHUwMDFmLtlgwtGf5UHk8ZZcdTAwMDKZ1T7Cblx1MDAwNlx1MDAwZmKvt1V/TOeaYj/V7DYu9OPtRv76i7GBXHUwMDE2wIQlI8BJ0rBJ/o9cdTAwMTlcbsJcdEmDwUFY4EmPPlx1MDAwNPS+XHUwMDBm1HzJXHUwMDA2SzZ4fT0hvlCJoUnktJkhffl2qy5buNreyV21d7nNXHUwMDFjPFx1MDAxY3XWvlx1MDAxOFx1MDAxYkjJmbVKWaM8XHUwMDFiXGJcdTAwMWVVXHUwMDBlLDNcdTAwMDZcdTAwMDUpXHJkTNihfM5ksoEvnUTGXHUwMDBmJDVPaUlcdTAwMDZcdTAwMTOO/iwyMLExR07TdTRcdTAwMDFnai7oX1SaW+fyciVcdTAwMGbty5Qo9TCfXvlqXFygXHUwMDE1yX6JWpFcdTAwMDIgXHJcdTAwMWaA6IlcbtBcdTAwMTBcdNDvaCrLpFNcdTAwMDFISyZcdTAwMDLnkNRaXHUwMDA2Sy6YcPRnrS2+4EJEZ6zFXHUwMDE5alx1MDAxM6Z76SN1XS1cdTAwMTZcdTAwMWVvXHUwMDBmVfbI9O9u5FezXHUwMDEypEHmXHUwMDA0WMeFUFx1MDAxM3xcdTAwMDaOgfFZP8r6OIOku1xmrFx1MDAxMUiElli1YCCIllTwfMBnUcGL/kOLPlx1MDAxMWeG1YRbVT/80bvYvj1ItztcctipNuo3X4xcdTAwMGJcdTAwMTQnXHUwMDFiwUlQ6JTRZCeNcVx1MDAwMdlcdTAwMGbc+1x1MDAxNJSz0ftMXHUwMDFhXHUwMDE1XHUwMDAw9zVcdTAwMWFcdTAwMWS6pKpcdTAwMDVLLphw9MdyQbvQa0/iXHUwMDAyo2OzXHUwMDE1ha/3RVDAXHUwMDE5wlxmjkonh7nTTOt6J9Usd2zp/Hg16XVNOdCb10KRXG4krFB2dCFcdTAwMTE0MGfBe1x1MDAwYjn6tKSP01x1MDAwM1x1MDAxY5PGOet8XFyjkISTXHTQXHUwMDFmskh+iX3wK5xSv0NcdTAwMTDByI7ZME2fwVudXHUwMDAx08V6rX1cdTAwMTL0w9nGR7ZuZKtB5XFkVMMp/Fx1MDAwZj8sI5tWKsFtLVx1MDAxNHeF4uhcdTAwMTRvXHUwMDA3N9nK8+52vTHYe0OXyJJ4bI6/knozuFxyatnK6fjlvEDdelx1MDAxYVx1MDAwYmBDo5HLtlxuobj1XHUwMDEydE4gxprqxkfFk1ie3on/4/Quq0/OT/eDI97tVzZu7zM9m2xcdTAwMWNcdTAwMTLPXHUwMDEww/mEXHUwMDFm5fNrRSTSXHUwMDBmJdMku1x1MDAxZMlmb5l/nFxiXHUwMDA2XHUwMDFhV2JhXHUwMDE3QnAoNudcdTAwMDVcZoIwzlxii+9ROuhtIJyrRPhcXCDsLVx1MDAxNoS9xYBQuVhcdTAwMWLZjzHZ0Hp63/lcdK7diIzIrOtK+6qnXHUwMDBmN6uba/lkg1BJYIBcdTAwMTZIXHUwMDAzQVx1MDAwNCkjZX/RMq9ZXG5HKpz8yMh7UEyDl4U+mM+AnVx1MDAxModcdTAwMTa1ML5E9Efj8Fn5XHUwMDFhqMfPw948Pr+6ODk51ivBquObV52LvXrm+Vx1MDAxMUem4c/i2c97/vrzpfNCPlNRxbNVWyw/ZCuwu1PdXHRwuvM+aYivsMdcXFx1MDAxNcbmYo+DxbLHwYLYQ8ea1Vx1MDAxNumjjZ1ehK/Yg9LdisFcdTAwMGJ7fnu+drG/03AmcStvXHUwMDEx9lCOcVx1MDAxMMg5iXGnXSQkz0rmSIKTXG5t6ICPLFx1MDAxNKyZXCL2ILVcdTAwMWQtWVJcdTAwMTLEdPShfNkyMVxcv+WTxPhcXGn7c1x1MDAwMVx1MDAxMVx1MDAxNlx1MDAwYkRYlFx1MDAxOI+PiLG+XHUwMDE2/ExcdTAwMDX9T652cqdnpZzZbneFwu2z6snxacKRyDXj2nJFXHUwMDE2LcjhwJGn8v2kYSN3Vvq0m1x1MDAwZqy4M1x1MDAxZlx1MDAxMrVcdTAwMTG+XHUwMDFjp/l0fXquhJglXHUwMDEwhzzNcTj0iVAjQVxmr6Hw+irYTG1m97d2g0DtXHUwMDE4t7Xt5EXCUUj6siBBx6VcdTAwMDJjwUZcdTAwMTNWrGCSXHUwMDAz6dk+XG7NXHJr23PA8G85UVx1MDAxNLncRF16VoOWXGZcdTAwMDBHXHUwMDE2wHssK79ccn9zOYrnwp9YLP7Eglx1MDAwNGH8Oo9ARXJgllx1MDAxY7KSql6vq9tWKXd11sqL9O1xsZ+4wpRcdTAwMTFcdTAwMDQ6ySQ6oVx1MDAxZE0mp6P96EgjJVx1MDAwMelAgINhR/i7wk8yJFx1MDAxMWic1VY6O6Vbl25ao1Sfr4ra4Xn6oVxilItFoFxcXGZcdTAwMDJ1bKFcdTAwMTeQXHUwMDE2/ZJcdTAwMGWfXlx1MDAxM728ezAn573m1V2ne32sNzbbK7Vqslx1MDAxMShcdIFIXGI0SlvjXHUwMDE3WVwiXGL0XHUwMDA133yNXHUwMDA3zYWv9vBhXHUwMDEwJFx0aFx1MDAxNUhutZvWq+u4ktyJ98jWflx1MDAxM1x1MDAwNvXillZSXHUwMDBiVkNTXHUwMDBi0kNNrD2opDBAQJxcdTAwMWGD1VLwcKWuMjuB3MnnN1bSjbuNZsIxiF5cdTAwMDXkklx1MDAwYiSTcLha4U9cZnJmJGipkHRcdTAwMDJn3lx1MDAxNlx1MDAwMFx1MDAxZFx1MDAwYkIhmNIkXHUwMDA3SVx1MDAxOKKwvlHkdCBcdTAwMTQ+Zn3YWfRJIIThifqxIFxcsC6aWpAyivHKqPJheDg8M1+D4Vx1MDAwMa7sZC+Oc5fH6W7lIbcqd4+vXHUwMDFhXHSHoVx1MDAwMuZbIynfLEZFWyd5UShcdTAwMDWXoDgqlPJjtFFcdTAwMDHM+lx1MDAxOFx1MDAxM239pabzxiDdKlx1MDAxMkt+doiBXtz6RGrBymhqQdqojFxy9iFcdTAwMDXJXHUwMDFh7tz0ymj6NL2jb07yK72GO2vUK5vZUnk34VxidIZ5U9Bw0lx1MDAwNZV1XHUwMDExbVQgMs19XHUwMDEzafRpgcJ9kENGMON9osY44XDKtU3BXHUwMDEx0Vxu+Vx1MDAxZW1cdTAwMGLfhsLF+UTVYkGoXHUwMDE2g0FcdTAwMTGbnyd8k2rDUU+vjfaPMlx1MDAwZp2dfqHMc1x1MDAxYsU1mtKNlb5MOlxiXHUwMDFkM1pKYY1cdTAwMDVcdTAwMWbxXHUwMDE4bVx1MDAwN2CZIFwi8s1cdTAwMDJIOX9TjEE8XHUwMDA0SeUlZdSHWaKVZFx1MDAxMk7nlFFWXHUwMDBiK/SnQ3CutJq5IGhcdTAwMTZcdTAwMGJB875cdTAwMTAsNmngmtnuJFx1MDAxOEL8Wr0hXHUwMDExYO1cZpE+m4cnlfRFobhVK2+n7/s5tWayW8lGoS+mJa2VyFx1MDAxNZKoi0b6KM2ck1pcdTAwMTljSC3n8eF2RW5vOJ9cdTAwMGaFnHE+VLXoXHUwMDE5eZHtQ1x1MDAxNXI4qSk42Vx1MDAxNPy1zZ8nX2w85krXmf7x0UNzo38pjzfxKVx1MDAxYWZRKJV2aPVyXHUwMDA2lL5zTPnwi1x1MDAxY2xcdTAwMTn8buytTFx1MDAxMS9cdTAwMWZUO1x1MDAxNXrcwya9pE7TT612szP0XHUwMDA0v7b/fEdcdTAwMWaAT3rHQihcdTAwMDLo1Pg82Gi5eunHjl2/PFx1MDAwYor9vipv28RcdTAwMTXLXHUwMDFml5JcdTAwMDROy1x1MDAxZPh64M6N4TOMOfWFM41+ISNlcfhUQnFcdTAwMWVcdTAwMTdcdTAwMDObOHTauZyqS3S+jk6SXHUwMDE5SvmarFPDs3i+Xc/ULjrHuHVRKTRT14f908Q1w43A01jmVJg1K6XV0d63XHUwMDA2XHUwMDE5XGLNtXfeO1x1MDAwN/F25OLgSSziaTOmotRcdTAwMTKfXHUwMDEzjv4t8SmNXCJ7R8+w7v9jpZpccmBcdTAwMGZXz1x1MDAxZkunR/21fVmsbCdcdTAwMWKeykhm/NKOXHUwMDA1Q/JRi3F8at9fSnFSb0EnXHUwMDAxn2AlyXolllx1MDAwMvT5y1dcdTAwMDdoXFz+tVCxy5HCN1x1MDAxN3RmXHUwMDA2N+zL6Vx1MDAwNolEJ+m1XGadz6XkvlSlsqPGJ1hkXFyB5fRcdTAwMDfBYLxcdTAwMGLoLehEQ1wimlutfcI3XHUwMDFmXt14XHUwMDA2qr9cdTAwMTGlkORmSFx1MDAxM6jVXHUwMDE4aJ2yYIlQXHUwMDE3htmPyMeeXHUwMDBmyr95PrZcdTAwMDSysFx1MDAxNLdcdTAwMGVJXFz6xSdcdTAwMWP+OSjlXHUwMDE30kxcdTAwMTjY6euGmdfOXHUwMDE3O9/C043NtHFcdTAwMGWbi2pkfNM5XHUwMDFmjybsLH3qX85ASiTV+NZRQjjDhUY6OlLWwXDmfVx09md4ropcdTAwMGZ8eFx1MDAxM9FYJlxcuN4kpE8xn+BqJtnPpF/goYkhuVx1MDAxOF7pfK705FeOferMkml+N6ahKcotXHUwMDE5kaSIKqHdUFx1MDAwNUL/SckwL9pyraXjXHUwMDAwXHUwMDEyXztf7IRcdTAwMGJPNz7XZqSaXHUwMDE3zY74gGNLKDQk06f32m2dw2Ug9vlcdTAwMTFfPzp83D592DuppVx1MDAxM043yjHBldbKWV/OI7K+bDTzXa65smR9KFx1MDAxZc83ouhcbkotwuzwXHUwMDFk97wq9lx1MDAxYa9sbWS73Z6qVW5yXHUwMDFkUexu1lx1MDAxYXa1vbQ6hraMw+hzrI458Vx0XHUwMDAyfZC6XHUwMDE001x1MDAwM7SbuVxiTi5cdTAwMGV37tfs/vFK9aHcXrFcdE+Mk876qm6cS1xmm6+4qGPA5835RvScyFbYJCDUl8TQZCnFVH9eQnTC0b8pREmYa6GHXHUwMDE11VeruZePVqr7lZ673E+t8PrZxfp65zHhXHUwMDEwNYZcdTAwMTlcdTAwMWbzK/3KXHUwMDE3mUujaeTCt3/0STugXHUwMDA16cPD4fmfKEU1KVQk1V/zXHUwMDAzLCH6fMDvXHRR4UvEIFmc01x1MDAwN4+s3O/vnZaagb7oXFyXylx1MDAwZvDYbfVcdTAwMTMuRZVcdTAwMTEsdGSQzuBr0uE4RI2v00RcdTAwMThcdTAwMDW0+EK7lVx1MDAwNYpRUst9hHlMg6XkYXSuhIP/KIzGOr1srNOLzF4yomfoodreKddyje2D1rnbW6lVOudcdTAwMTdr/cNko1NcdTAwMWHplVijjLfx0ahIgKUldOqwjpP2NVxydXzwyFvQqSXTxjphreG+rqFcdTAwMTlcdTAwMDcq0Vx1MDAwM3PWkbHsM+C5UGOgNWDASf1qyNf7YfZDvF5zQfk393qBZUJcdTAwMGJA4eNcdTAwMTLAyME09Fx1MDAxZqO8kqeQwGqsVqhfO13sdFx1MDAwYq81NtHGKWwuplx1MDAxOVx1MDAwZXdcdTAwMWGrqe7rKNMtTa9cdKi1vW72sZe+qd+nO2q9+HjzXHUwMDEwJK5Ja9S/7tfqfEVlbqX3TkY8Xs75tmygQGip9FA2+cKpRjJCXCLRifE6XHUwMDAwXHUwMDBllZd80lx1MDAwZowki8PIXHUwMDA1mtlLrvmiXHUwMDFl9lx1MDAxN8kmNT7XZmSb2TNHiGjQl1x1MDAxM5hBsTloXHUwMDA2j5vlg1661ji1XHUwMDE3e7uP2DVcdC9cdTAwMTFLs5t5V7VxZHcoXHKRnq9+rU8poiDONYxcdTAwMTT7+OxcZkpfY4v7NnxcdTAwMTOp5bdMXHUwMDFj+V0zKOMrXHRcYlx1MDAxZvVqYYZcdTAwMTKPpnRfLtx2jo/S2duzoGc2biqZpDvnnGA+otWhXHUwMDBmZdBDfSRCXHUwMDA0csWsXHUwMDAx5YCsLG7e1mb1nStcdDjjvKPi8/MnXHUwMDE3V9Pqq1x1MDAxN1x1MDAxMnjJXHUwMDA3Z2NdcE7QR6pcdTAwMTmc5Fx1MDAwZus/rLnoXHUwMDAwXHUwMDA2u49cdTAwMWRZaG1nXHUwMDAxTpKNwzB9XHUwMDBiXHUwMDFkXHUwMDFhUmZcdTAwMDC5saORLVxuXHUwMDE0qTTOktItNLcvZTJcdTAwMTdIikmYXHUwMDBmiTNGoCOZcjampNVAXHUwMDE1bu11u1c76zmAh9vVVr6fOU3nNpb+t6Et4+rkLCr5Ynzk8fgkXHUwMDFkXHUwMDFjOemrM7RcdTAwMTUpqHZzZf3k6K5ur/ZEv9Rq761cdTAwMTeTXHLQMH9LXHRcdTAwMTBWXHUwMDAzKssjTjhSU5lcdTAwMTM+81x1MDAxOH0tWu7iV5pcdTAwMTdcdTAwMDdQ8JlcdTAwMDFGiZhiO0uITjj694SodNqHXHUwMDFjTFxy0ObJ3jFcdTAwMWP3daPR3VurPe7cn2YqXHUwMDFiXHRcdTAwMDeoz+CSXHUwMDAwnOx35Vx1MDAwYr1FqpUr5WO1JHJSd4mv4ivTLVx1MDAwZZ+Ce+PXYkxcdTAwMDGCJT4nXHUwMDFj/VviU6OzTlx1MDAxOTO9a/lG549ytW2ZSaX2+pWM6671XHUwMDAxklxy0DCHS5BIMqTFSqlNtESBYlx1MDAxOKbZXHUwMDFiUnHFXHUwMDBipSNcdTAwMTcpQG1YKSvGyFxcXHUwMDAydMLRXHRcdTAwMDdo7Fx1MDAxYfOQdIxmWHJD82CG8lx1MDAwNIX0YVk95NOtbKWSXrsr1i6MTXpJSYXMKW601WRsjy8xW+abaaC13MdoxfuB3oJNy5nVzvc4kMZXsp5cdTAwMDBToVx1MDAwNVx1MDAwMyd90VepXHUwMDFj2cLjXHUwMDE5XFw+TVx1MDAxYnGBKu9y1WdBqz5KMy2FML7ZO1g36DXgPzQ7mbZhXHUwMDEwsC+Or4x97XSx0y083dhEXHUwMDFiJ7C5eEZBbCyLXHUwMDAwUNxyyac3pDdFsdQyjaprXHUwMDFm7LrT4qM5PLpIONOEXHUwMDE5XFykplx1MDAwYnBcdTAwMDJoxEaL19LcZ1ZZbZ1cdTAwMTVoXixe+yaqXHUwMDExXGaFltZcdTAwMDe0+cJhk7ryas6EXHUwMDA0QfY8N2FIQ5RqpM/vM/zVXHUwMDE0riXVfDmqee9cdTAwMDXm2PlcdTAwMTaebnyqzUg2seVBbXTjIJqFk6VMbDO9VnOfXnf500yuXFwp7OV/XHUwMDE0zlxcVnRcdTAwMTJempBeNvNNmFx0qb5IaKRCr+DANCjSZ2iX8UU0YrnmLdEsTjNcdTAwMDOO7Fx1MDAxYVxik1CmW92SyqBcdTAwMTKf3zFJz1X0bK7VreJ/9f77n71v/7PgheZcdJf90PVmiG5cdTAwMWNAkixkmiFDxuaroebX13dZU5RcdTAwMTjog+ydbZi1y5urhEOSI+NAgt1Yo8nciMSXSelcdTAwMGL6Oit9pKBcdTAwMWVcdTAwMGUgfcdcZm7tmK/AJoVFoD/Ttlx1MDAxM0Qgrjfw6ZjExfWPuFxywbFYQEav+aH9zF7SxiWNt51FQupcdTAwMWR5voKtzcNNl6q073ZzP1RTJVx1MDAxYo5cdTAwMDQ15tsnklx1MDAxNVx1MDAwNMbISPYkOm9xkdhCVKBeKKv0XHUwMDE2XdyRXHUwMDE0dj5tmcuwXv5U8tGXm/FcdTAwMTkgn47FxbWRKP1cdTAwMTRUi1x1MDAwZcSacNlP6q/kfOtJdHqGmMjVwvpDp1+Tq5mz7e5G5rJcdTAwMTXo9WRcdTAwMDOSZFwiqYtcdTAwMWFcdTAwMDSppZqLqCPOkXwknVVxb7lp/kFcdTAwMDHYXHUwMDAwTDrBXHUwMDA1sV9sf6XBbT/JR2/AIFxm90T+JEy+ta9cdTAwMDTgyNYv3GVQzYVBXHUwMDFiXHUwMDFml2wsqUuzeKhcdTAwMWXujy4rx9eFe9zLXHUwMDA1Zve6qfZXXHUwMDEzXs5MI1mN6IPOwuyyaFxuhLBcZqTybV10WFAq3lx1MDAxOf5cdTAwMTZcdTAwMWR1Llxiou8+4fTna6hv7Snxn45AULFmolx1MDAwMVx1MDAwMVx1MDAxNofrvr5cdTAwMDbBNbd2JnMmm7rePqysXlx1MDAxZFxcl7PX51x0hyCZaL6YXHUwMDE5aYS+k6dcdTAwMWGNhlx1MDAxNKhcdTAwMThtJO1cdTAwMWM5+mafXHUwMDFmopfOKVx1MDAwNC1cdTAwMWFcdTAwMWYr/dmpXHUwMDAx+Naw5P90XGKq2FbX4Fx1MDAwYkGRXSinXHUwMDBm19jaweZZ21xc72bNziW/d1xyvGqUk1xyQV9ZR3LBXHUwMDE1zSiNZKCNLtRcdTAwMTAsXHUwMDE4So6c9iBcdTAwMWFccvHO08V32/VudKNcXEzq31x1MDAwMkG47LZcdTAwMWKxXHUwMDA2//i1RPI922ictOmNfX9a1aIhXG7yv1x1MDAxZXtw6e9cdTAwMGZBobs6YcJcdTAwMTTDj19FXHUwMDBige0hXHUwMDE0hn/8+68//vp/LV+kXHUwMDE4In0= yxO1123-1-2-347-3-2f(x)=x +3g(x)=xh(x)=x -32223

eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daXPiSLb93r+iot6XmZixJvPeXFwnYuJcdTAwMDVeMd6NbbBfTFx1MDAxMOxm37119H9/N3GVXHUwMDExXHUwMDAyXHUwMDE5sFxyJbrBXHUwMDFk7rIkpJSU59wl7/L7b9++fe8/t4vf//3te/Epn61XXG7d7OP3f7rtXHUwMDBmxW6v0mrSLlx1MDAxOP7da1xyuvnhkff9frv373/9q5Ht1or9dj2bL3pcdTAwMGaV3iBb7/VcdTAwMDeFSsvLt1x1MDAxYf+q9IuN3v+636fZRvE/7Vaj0O96o4tsXHUwMDE1XHUwMDBilX6r+3qtYr3YKDb7PTr7/9Hf3779PvztXHUwMDFiXalbLL6NbbhnND6ug1x1MDAxYk9bzeFQXHUwMDAxmVx1MDAwMcs5vFx1MDAxZFDp7dLF+sVcdTAwMDLtLdGAi6M9btP3y0Ll/OC5wdtcdHk02E/sXHUwMDFk799cdTAwMWN1Rlx1MDAxNy1V6vVk/7k+XHUwMDFjU69FtzLa1+t3W7ViqlLo3/98aL7tYd/qtlx1MDAwNuX7ZrHn7p2/bW21s/lK/9ltY+xta7ZZXHUwMDFlnmO05Yn+kpx5XHUwMDEyOaDixoKVavQ43Fx0XHUwMDA0U1x1MDAxZVeWKyaYVMZcdTAwMDRcdTAwMDe206rTa6CB/U+JmTxjo6HlsvlamcbXLIyOyUFcdHK50TGPP26XeYyx0fjvi5XyfX9ye684fPJcXEhrrEKt3va4XHUwMDBitVx1MDAwZlx1MDAwYqMp8Pr666x23SrfXfHOYav/1OlAv3z2/cf+/45eS5fm2KE7c3NQr/ufbbPw49mO7ci5XHUwMDFke75JNzrVoF3Ivk5cdTAwMGauwVwiXG6hXGa3ozuoV5q14OnqrXxtyoxqtyr+Oe0+o399XHUwMDFivcXhXHUwMDFmb//+7z+nXHUwMDFmPfYgR1tG35t4KvVsr7/TajQqfbqhczeY4MB7lcagTrd73qWHNOi6udXvXHUwMDBlfHfwY/vrM1x1MDAxYW7945+LXHUwMDAzXHUwMDE0bFx1MDAxOEA5cqbpl1x1MDAxMHMjNNFJXHUwMDBmelxcXHUwMDFlXu7ys0p/t33XOr9sR1x1MDAxY6FcbjyGXHUwMDA0TkBuUEtcdTAwMTVcdTAwMDCoIYBypaWwqJhcdTAwMGZcdTAwMTO/XHUwMDEwoESc0lx1MDAxOPS9l1xyQL9cdTAwMDXu6s9cdTAwMDPQdyQo05JbMGZufF7Uz27sVVmZ3Hatl8+eXGaqmcOI41NcdTAwMTjjMamJi5RChcKM4ZOmmMe0XHUwMDE2Wlx1MDAwM0irtIhcdTAwMDA+XHUwMDExuKLRmFxyPH/+8deEp6A5IJkybG54pnZcdTAwMGZq93H7XHUwMDEyT/B4tVi83svH1WG04UnT3EMtOFxuXHUwMDE0klx0XGbCk/RbINWWo1x1MDAxMoRfXHUwMDFiXHUwMDAxeJKUl1x1MDAwNlx1MDAxOdOwweePP9ZcdTAwMWSf9FxcilOxXHQqXGacZHJcdTAwMTFPSzu/9ZlsXGZE5ubi4Vgm7lP9XHUwMDBl5Fx1MDAxYYfFm4iDXHUwMDEztSeNXHUwMDEyTGiaStJcdTAwMDe/oW5cdTAwMGLWk9woi4KTcotLwaZinmZGk8KKkj5cYpMwJe7wSHhcdTAwMWIuXGZcdTAwMThFRnJcdTAwMTCxikxjoDswK1x1MDAwM+zvvpO+zjH4seWPj+NcdTAwMTg+guNeP9vtb1eahUqzXHUwMDFj/EqxWVxi2TNcdTAwMDf63Hlj3W7r8b6YnXhcdTAwMTZ05tB9X8osWyA9ZejVKuQkPrhcdTAwMWW9/dfd6KGwXHUwMDEykZFcdTAwMDRxalx1MDAxZc48Y+iMXHUwMDFi7p2YbJNcdTAwMWP2MaqRXHUwMDEw3PpGNZyQR/N3XHUwMDAxRaC9lavFOdb2Wrfl2G6pzFx1MDAxZpLJXFz0uUZcdKlcdTAwMTlaY+hFjq78k2u0lkiagKTnYdkq2EbzmWyDOME2kmmnwcvVub82bLNcIrZcdTAwMTknXHUwMDFiXHUwMDE4vWL3XHRwjVx1MDAxNHrW6UJn2/B0XHUwMDEzXHUwMDEzbUGmybpHMp1qMJRr6DIguFxcwGWnk3cvdSzwzt1pP/doq+nE7kMl2lRDXGbjgTVK03+SXHUwMDFlL1x1MDAxYt3tT65hwpBmI4WxwMONXHUwMDBlXnQ/71JNv5tt9trZLsFukm6QXHUwMDBij1x1MDAxM1tcdTAwMDBcbm3panJEJiMjZML+XHUwMDEwnCmBkk+3P341c9DNfFx1MDAwMXP4XHUwMDA29mP9aHgj31x1MDAwYrXuWeqIda5iUH547lxm7i5cdTAwMTOs9H2Em++lVn7gRrnFPaNcdTAwMTRBRzkoKlx1MDAwMIG+o8rZ9nCmeFx1MDAwNjlDN3BcdTAwMDRtmJ64+THSXG5cdTAwMWKUad1cdTAwMWRcdTAwMWNcdTAwMWa1XG7QPD04Klx1MDAxNdVzTN5cdTAwMTWmXHKKXHUwMDEzoI3lNMFcdTAwMTRjlmSdnFx1MDAxOFx1MDAxM3pApi5cdTAwMThN5lx1MDAxMbdENJNj+mK6XGZcdTAwMTLFlzJm+FxmXHUwMDBmfP1zlGY5XHUwMDBmbn3Tnlx1MDAxODJtrF2A0mql68vOs7hvxVn3pVxc76Du91x1MDAxYtGmNNKMPGGdmaMs2WJy3FIjYeVJRfqTskKS7JKBcX1cdTAwMWSjjUb1RmCgpUdSkVx1MDAxM58yXHRuRlx1MDAwN1x1MDAxOVxynG9WKcOmXHUwMDFiaL+a0dZZXHUwMDE3Wiq4x47emnzPXHUwMDBiojvUNFwihT9cZt3AXGYy0pJ8XHUwMDBiazOjXHUwMDAwkofVm5NcXPVaXHUwMDFlNa4rlefbzuluOmro5lx1MDAxZUlcdTAwMDdiTFx1MDAwNKUtaSFyXHUwMDA0mle4K49bbbRiZCxpXHUwMDE4N5bQ0pswlvQ4QpXGd1x1MDAxNjU+XHJ3XHUwMDBmXHUwMDE5XHUwMDAyWlx1MDAxYSjj1jlwR9dcdTAwMWFcdTAwMTFcdTAwMDB49Fx1MDAwNmmoVnFBPOxbXHUwMDAz/bngwUg8a7WB//qYQu+8efeZeOdfxlx1MDAwNSM9LshcdTAwMDWEXHUwMDE0sECm9/xUwLNVU1x1MDAxZuw1uuL8sPPCskdnJnK2y1x1MDAxY1TA6K4tt8xcdTAwMDLzyfYhXHUwMDE1aPBAXGJcdTAwMTcmRURJZqRcdTAwMGWMNGpcXMBcdTAwMTWnO5S0f0NcdTAwMDZcdTAwMWIymEVcdTAwMDYqdPGUkIRKWSbmXHUwMDBmbqhvNWJ13bl6vrswz9WH453m7tXV2rFcdTAwMDFp+qA1XHUwMDFh+uHWjE47ZFx1MDAwM2HpTWhBLGno+aBcdTAwMGX3okaDXHJQXHUwMDEy8kD5nsOGXGY2ZFx1MDAxMEJcdTAwMDY21ErgSnHDgUTl/GRQP5WX8lFCRj22cLex3zo0gzUkXHUwMDAzlKRcdTAwMTNcYmBo0YzHXHUwMDBlI0iP1Fx1MDAwM2u0i9Y1XHUwMDEwec1AcFwiLKfIbMhgQ1x1MDAwNrNcdTAwMDI3INRMIHWYxFxuX8BjcHZTuC/2xXPs5Vx1MDAxMJ9fjl9cdTAwMGWymX7kolx1MDAxZWdygfSkpSNcdTAwMTS9XHUwMDA0a+zo8VxmuYBxT2unXHUwMDEzXHUwMDE4Ulx1MDAxY3hgmJFjXHUwMDAyjoZx7kfchlx0NkxcdTAwMTDCXHUwMDA0MnRpXHUwMDAwacZcdTAwMDPYXHUwMDA1/Fx1MDAwNVx1MDAxZHlyuf10mC7dVPPtwq05K9/m15BcYlx1MDAwNHAkXHUwMDFiQLs5O75SXHUwMDAw2nhkXHUwMDE4XGJrJWNcXFx1MDAxYVx1MDAxOXXfoWSkXHUwMDE1KIzoYuiGXG6mXHUwMDFl/YuoXHUwMDAwuVx0bn6zXHUwMDEwNKOxkK05f4xVvsiaR+bxJpm8baZiXHUwMDE36vZcXMfO145cZpRcdTAwMDdKMLeD7Fx1MDAwMFx1MDAxOLdcdTAwMTBASs9cdTAwMTgt6MG4kGcwUSdcdTAwMDPONCNTj4ekXHUwMDFlbthgw1x1MDAwNj420OHOQ6SLaXfVudnguc2fy7Xm9n6qnaqnXHUwMDBmavmjvdve2rGBpnehuVKSjFx1MDAwMK1cdTAwMDOpjIosXGJcdTAwMDKXXHUwMDAwRLIgRNT9XHUwMDA1lm5BWrPxXHUwMDFkbrhgJlx1MDAxN1xiXHUwMDExnsWstSD90i6Q6VFle9unXHUwMDE3g0z75ub2/vpcdTAwMDTO+/zmYe24QHqKSzAgXHUwMDA1XHUwMDFhXGKmflxi4Vx1MDAxOWFcdTAwMTlqqbVbb4g4XHUwMDE3cCWZdFx1MDAwZYON73BDXHUwMDA2sz1cdTAwMDbhXHUwMDBiXHQ0112q01x1MDAwMkVHzlx1MDAxM+l7fZgq9HevbHJHbT9cdTAwMWW2u/2okVx1MDAwMXpcXLhkNlx1MDAxMvzSWG35yD34WuOAe2xcdTAwMThgYFx1MDAwNWjOxldcdTAwMTVcdTAwMDXXLjfDXHUwMDEwUUprXHUwMDExllx1MDAxNy/9RWRAWoEyWobUP9iQwYZcZnxkoEM1XHUwMDAzYGRcdTAwMWMzutz8VkIm/cBcdTAwMTK1RLVW6Vx1MDAxY1x1MDAxZrY7ezuFYr66bmRghKek5KQ2oOVcZsdjXHUwMDBmXHUwMDA1V56yRlxuI0EymtSRV1xyXHUwMDE412isglxyXHUwMDFibNhgps+AhftcZoQ0iqHB+VVcdTAwMDN930qUt5uPJcubtfigXHUwMDFiT1ZitTVjXHUwMDAzxYxHVoKxIFxiQnT7XHUwMDEzbMBd3Vx1MDAxNbKwXHUwMDA0XHUwMDE5XHUwMDBiLOpsXHUwMDAwXGZd0pfcLC1u2GA2XHUwMDFiYKihQMqyQ8xcdTAwMDJcdTAwMDFHpncht/pcdTAwMTDXO/yurFx1MDAwZUpcdTAwMTd3O1x1MDAwNb5uZIDcM2hcdTAwMDTJVEFEXGLjscjOTpBARlx1MDAwNKcvglFqiWlIX1x1MDAxM31oXHKNk4dcdTAwMTRi2nDBhlx1MDAwYnxcXKBCXHUwMDAzjlxiSFK7XHUwMDAw/fk1g3S9qm1mP3Gb2qvkjlx1MDAwNrleOntcdTAwMWG5SqWzyEBKXHUwMDBmxNBBSMdcYlx1MDAxZUiyJjJcdTAwMTDIXHUwMDE1p5elyI5SUV9b1EpLVEJsllx1MDAxMzZkMHM5XHUwMDAxWXCzfznBVd9k8+cllFx1MDAxZk5fXHUwMDBlQVx1MDAxY4qLmqg/JVx1MDAxM5mdanrdnFx1MDAwNkprz2jp5KlFgVx1MDAxM05cdTAwMDPtWbCWdFx1MDAwN6ZcdTAwMTRcdTAwMTnkUSdcdTAwMDNOXHUwMDE2XHUwMDAyM3LjNNiwwVx1MDAxY6qBT4FcZppcdEC2MVxi3zSaRVx1MDAwNjud9ku1l+plts2TvN09zUPiIXJrizPIQFxiTrJcdTAwMWZcXLlcdTAwMDJnJrCgz8B6jKOrryONNoZHPUnJ1Vx1MDAwMlLG2k3U0YZcZmarXHUwMDA2PisgQFx1MDAwNpKMXGKm9Fx1MDAwMmbC09ZzutGCYv6x+dR8srfdzlMquW5koFxcKFx1MDAwMXCUyrGhXHJqXHUwMDA2xrNcXEolmCtcdTAwMGVro56a4Eo3MyvURi/YUMFMKlxiX1rUathAY4HK7KmHQVx1MDAwNlI2f3jatcnLykX8gtuTdaNcdTAwMDKjPaFcdTAwMTlqZp2RYDDoMrCe4Ei7pFx1MDAxNmNcdTAwMGKP0eRcdTAwMDJkxFp8s5Sw4YI5qr+GLyy6nlwizJhcdTAwMDW44Pog3bnYylx1MDAxY7OD/TtpXHUwMDFljpvNkyRbMy6QnGxcdTAwMDRB0lRrrozQwaVcdTAwMDTrKnFcdTAwMWEmmVx1MDAxMda801YlXHUwMDFhVECaXHUwMDFkkPZCL3LDXHUwMDA1XHUwMDFiLnjlgn7xqT+NXHUwMDBiXGaEriq60HvOtC9Ud1x1MDAxNlx1MDAxNZxcXNX697hcdTAwMGKVXFzWXHUwMDE0VOk0XHUwMDFll0WMXHUwMDFhXHUwMDE1XHUwMDA0Slx1MDAxOTLjXHUwMDE5XHUwMDAzXFxcdTAwMGJD09OoQHVWeiGes1x1MDAxM1xc3LLSoJdnXHUwMDExWFx1MDAwZrW1w9AgXHUwMDA26G9NMVx1MDAwMv5krXkumNVcdTAwMWG+XHUwMDAw6GM7XHUwMDE2QLQ0br1ppFsugOhSq9lPVl5eo9vGtu5nXHUwMDFilfrz2EtcdTAwMWROYJf68n1sU6xeKTeHwq5YXHUwMDFhn+D9Sj5bf9vdb/ly6PN0iSxcdMfu5CNpdSvlSjNbv5q8nFx1MDAxM6fxt8Lcnu9t5LK94lDY0nbzIVx1MDAxOOrwclwiNPVcXE9cdTAwMDSYXHUwMDFmhu9XiI0kXGY1c1G9JH1cdTAwMDVcdTAwMDLBMVgjXHUwMDE5wVx1MDAwMyNcXIaAsEzw5S3lk1x1MDAxZeA42Fx1MDAwZSGop1x1MDAxNEiexCDXpFY4S/xcdTAwMGKs8PdB+Eb5I6H89s7fL4w9Nlx1MDAwN1+LdL7t+eOn/HhcdTAwMWbivkWmZUP8abVcdTAwMTB/WlxyxGV470JXX5tcdTAwMTl/pPvMosFcdTAwMDd39uVyp6X1eWZcdTAwMDea3ZernZ1stCEuXHUwMDA190i7llx1MDAwNjRKknHjXGJcdTAwMDfj1uRoolmlcZnpflxceJI7QTusm8/NfCBH5WxcdTAwMDP7XHUwMDE1QfxcdTAwMWbH+Ps9fcYmYeQxfrZajJ+tXHUwMDA248KE5vxrjkxJi/NjvHfekfX847WqJJ5cdTAwMWVcdTAwMGZcbpjsdy5cdTAwMTNcdTAwMTHHuLQua5dcdTAwMTmXv1x1MDAwM1x1MDAxMMzpXHUwMDE1wuOWXHUwMDExvsmO4S6+ZWkol1x1MDAxZVx1MDAxOe2EcrLmh0XIYS6UW2NcXMDgV5T3+JQ67Zsky8YhXy1cdTAwMGX5qmRtaCs1ia4oXHUwMDE1X8CqxUH6MpPLwH3igT+UsCXj3UzkKnVcdTAwMDZcdTAwMWJ5S09cdTAwMTHdXHUwMDAwSstcdTAwMTRcdTAwMWZPp3VcdTAwMDW7XHUwMDE1s2ikXHUwMDA1XHUwMDA0vcxCXHUwMDFiXHUwMDFmg6E0RoiviYrfwPB17vxcdTAwMWFcdTAwMTi+0/lcdTAwMDesMFqo+VEo2GM+d7XfPa2Yfr5/mz/fKbOdaKNQuUZcdTAwMTiuL7mSiuaUXHUwMDFhr3cjxLD7ilx1MDAxNIIpYawyn3IrhzZcdTAwMTnj6Fx1MDAxMVx1MDAwMVhtXeMna+Z0LJGlzUAhLN+onYXBXHUwMDBm+Yo/hEFcXC1cdTAwMDZxNVx1MDAxOPT18Zvs+Os6XHUwMDE1qZF0mIVBNqjupsvVwWXhsFx1MDAxODtullMnfYy4Y0lI5jJEaSa5Nn9SXHUwMDA2XHUwMDAzw1x1MDAwNXjOm66FZeDaYH/K8FxmXHUwMDA1IbhMXHUwMDE1a53xy+aVgpw5ucm+JFx1MDAwNvxzXHUwMDEw/FCLrVx1MDAwZkFwa8VcdTAwMTjcWlx1MDAxMVxibXhat3A+fOXLZJxcdTAwMDXCq/ij3rLXuWRRnJRcdTAwMWbuX85cdTAwMWFcdTAwMDfVYrRBKJn1mOZmWMLFXHUwMDEy71x1MDAwNOrBgvA0qeVKMGDC6k+5d8NcdTAwMDUheNrpoto17lBz+n2EJCPWfEnBx3XBoFgtXHUwMDA0xWpcdTAwMTAoQ1xyQjJcdTAwMDU10jtewFwilOnK6f1LXHUwMDFh+Tl2r9sxnirHm/FoQ1Bo5aErr+T6NGnrK1P7U1xmMkWmolx1MDAxNlxcXHUwMDAw/1xcUZVwKVxinqvZoklcdTAwMWZVQGSgpjS8nWJcclx1MDAxMiVcdTAwMTBqfz1cdTAwMDSFf6IuV1xmworFIKxcdTAwMDaEKlxcXGZysjiAWTY/XGKhqe+x3eyp3UbmclvlYuktXHUwMDFicWVUMvRcXLM6TdNfclx1MDAxYuie5ECIzjGjpFx1MDAwYsbE5YDQ2YOkipI2jMxIO+dcIqfrXHUwMDEwyvgvjzPwpcAvXHUwMDFkgyt2yWytyCejQ30ynDQ0koL+rl2zMJhIN5Ldx85ejXX4Tm6n36ilryOXXHUwMDFmXHUwMDE0wKB2cb2uxLB09Vxip1xiQiVhONdcYp9iSVx1MDAxOFx1MDAxNFx1MDAwYkdcdTAwMTlIJqVcIvX5XHUwMDBisn4+h0Dln6VLReCKheBcdTAwMTfLwFKXXlxcNzu9J7pcYs3R40o6XHRcdTAwMDHzx9+ydCFWTVdjjX41e2pcdTAwMTL5bXn7XHUwMDE4uVJcdTAwMWVcdTAwMDFcZlx1MDAxYe5cdOPWXHUwMDA1nFBcdTAwMTEmIFx1MDAwN5kr6qVcXKgtSUnQXCLcXHUwMDFlLDLkyD9cdTAwMDZC5jmRNom9wPY3hyiXUlx1MDAwYlx1MDAxM+KN+bGNtlx1MDAxZccvrqpcdTAwMGblo/hNrbR7XHUwMDEy23q8aMa7P1fiV4LTT8TYfnFEq/9BjraMvjfxVOaI1q00XHUwMDA2dbrd8y49pEHXza1+d+C7g1x1MDAxZttfn9HHXHUwMDExXHUwMDFhbi+SqlxuTn1aoHi/2L5jNraXb1x1MDAxY+/C8+n98Vx1MDAxNWx3I5c5XHUwMDE3WLtA8Jypplxc3MJYMf5XiFx1MDAxYU9cdTAwMTnSVIXV6PJRo1x1MDAwMVFjhCugM73s7lx1MDAwNqJTjl5niL4jRFx1MDAwNZmTSFx1MDAxNs78XHUwMDA1sVLnvU7Z1uPXJWaeXHUwMDEz4ub4ek+VolxyUVx1MDAxN2zDuFwixVBoKU2gaDZNMo/2cUIwkyRS36l/tTqIoitwRT/TtdhcckKnXHUwMDFj/SdFKIlcdTAwMTZcdTAwMDOu7sLcXGJtXHUwMDE0W7dPT6cyf99cdTAwMThg72qrdLyVjHg4nCtKhTTntSV9wlpcYlwilPRcXGHAZZW5XGbTd0pPrFx1MDAwZaHGKCtcdTAwMTWGXHUwMDA0um5cdTAwMTA65eiIIzQsXHUwMDBi1L9cbjeh4lxuRVx1MDAxMlx1MDAwM1x1MDAxNqguW8Obh7uSLeQ7LyaVOWm2XHUwMDA2XHUwMDA33chVl1xyhudcdTAwMThPXG7JhZVSuVpcdTAwMTjjKi7Sa1x1MDAxNK5VrSE7lEF4/vdnwKmYp5nRLjZH0lx1MDAwN6esiHBcdTAwMTLkIMlWJqowXG7sZKCAXHUwMDEyaJVlZnWm6SYrdEVZoVsgXeqxMFxuXeFcdTAwMWbuy1x1MDAxM3vdjVx1MDAxZdL8RVx1MDAxY2YzXGKtceZcdTAwMTlDp9xw78Rsm6Sxj7FNePlcdI7GWFJUXHUwMDE3KFKXuuimX5qdXHUwMDFhY/dcdTAwMDWRSj+xYrFcbtFnXHUwMDFiXHUwMDE3zSOMa3yrVKBcZlx1MDAxNVx1MDAwZfN/mSDZy+jxQ3gw4NfRjX9NNYRu/EWH30pTXHUwMDFh5XLkp6/HbthmjdlmnGxg5Fx1MDAwM3OfXHUwMDAw15DROet0obNteLqJibYg07xneYAvRTRcdTAwMTj/r8kq1krO71x1MDAxYWD3j+zavrREqzS4u1x1MDAxNmeZp+ZNI9pkI5DIhkxcbtSgXFzjrGDUI1Oe1dY9XGLj+nGGXHUwMDA3PULJXHUwMDE2hViF4eHiMy2TIUvMI1x1MDAwNthhSc5z3fT1jii2ytfJwkX3PrkxPHxbJnH0a1xmj3dcdTAwMDFcbqFcdTAwMTVo3LJcdTAwMTD6My1n4bOVSlxcl+JcdTAwMDXIdo9tNtsv3N5mXG5cdTAwMTHPXGYgTHqck1WBaNFcdTAwMWFcZixCk6pgNXAgZFxuXHUwMDA0rcJcdTAwMWRcdTAwMDOrwydcYmmkVTPXvzb4fDtgnfFcdTAwMTkuQLmghzy2XHUwMDEwOrND5UP9MnVcdTAwMWMzsceBwVx1MDAwYluWpnpcdTAwMTT1cEnXSlx1MDAwNpXgXFyjXHUwMDA1NOOJrM63boy2XHUwMDAwzk1i3ikgvTp8XG5cdTAwMTKdWrKQWpBcdTAwMWJ8Tjn6z4lP65ZjhVXzW9PVh2xMNvHhmSVudtqF5FObXHUwMDFmRq7kezDB1cVcdTAwMTIjoFx1MDAxNEBzXlx1MDAwN/FJ+i3SWZSmg4zAKCi4XFxwrbVlIS2iN1xinXJ0xFx1MDAxMVx1MDAxYebsQlxir8GOoFxcpZf5zc/K8fbxoLTDj2Kdh/bFXHUwMDFkl1x1MDAxN11zXHUwMDFlbXS65u1KSclcXL5cdTAwMWKooPXpfF1gnduPXqZBXHUwMDEx7uv6XGY6v8K1XHUwMDBlpOxcdTAwMTjrWm+uXGazXHUwMDFiZ9fGtb4g28jw/i+ghLRCLFDOVVx1MDAwZmo7LPHQPMinTPcqXT8qXHUwMDBmzi6iTzdcdTAwMWGG9VldXG5hwJgmtiHL1biCM5x0drZcdTAwMWNl/Ss868SHml6VnFx1MDAxNVx1MDAxZLMhm7Ujm7XyrIdmMYdqNWCktK588tw0s3Oyd3/ROWHb2EryykFcInaYbdmI04zknquaI9AyJKtiPJpcdTAwMDdcdTAwMDR6ZG9oJGNEKfNOuN1naFx1MDAwNsCTTlx1MDAwM5auVEFIXG6lmIxcdTAwMTAwwlx1MDAwNEKWf1H2yGiCfCx7xFx1MDAxN9E5I3vkXHUwMDFmq81cdTAwMWXxXW6u7Fx1MDAxMYRcdTAwMGZBkKtwv1x1MDAxY7OSZoRgoyNmgfCmc37CynwrfVx0XHUwMDA3ZV5cdTAwMWFUa7ePOtogVIy4XHUwMDEy+bCEO1jLxlNHXFy5ZqG5spw7y1+8I+w/s4zOhedWz9iwXHUwMDFjbUix5klcdTAwMTSSmkL2kF9cdTAwMDH5RSA0/qm6VFx1MDAxMG6tOIdyNSCUKlRcdTAwMTBqt+pqpK9O+ExBOLi7295PN1x1MDAxMja7j5VcdTAwMGJzc6FOXCK3uqw9YYUh+aFdrI7AQCdcdTAwMTV0NaZoapHSIen/4+Y+wcxcdTAwMDNcdTAwMTKIgMa1O1fhvrhcdTAwMTIzecY+XHUwMDA2SVd40tphXHRZKzXDKW65yaRKbTU3cnbgXFz3dP9l57b+lICTm3S8VrZ3+7H+Sj1yr8BdXZX10t+e/v6fXHUwMDE112FcdTAwMGVec6mV6XR4XHUwMDAzZUAtNT3v+Uvy6IK6Ld+VrnqPXHUwMDE3O+l8rHKWvY/LNcOwYZ5VQimaZVx1MDAwMlx1MDAxNFx1MDAxYlx1MDAwZoYly85TlqxTlEB4VuFp0Z/BMOdcdTAwMWVaYOD61YZVJlx1MDAxON3XXHUwMDFihiWnUc300EVcdTAwMDTDvmXTj2GYzy18o54/LT6EXFyjQr1dXHUwMDAyXHUwMDE501xu7PxcdTAwMDXtLsqpl6ddpVqDl0bG7l/yu0I6cjVEtEfTXHUwMDA2SaRcdTAwMTEpubzo0e09XHKhaTwtleFcdTAwMTJcdTAwMTl3rUpcdTAwMDLSl2SzW1x1MDAwMyO1U1x1MDAwMGmg4cj9jFlqradoeiupnVxyYqZ2LVwiXHUwMDA2kcQ/UnBcdTAwMWGnv+bsXHUwMDBmXHUwMDFilW7ASJdZO1x1MDAwM8inp+1W0u6e7aWa23XeyfHu3VF2XHUwMDFkgWw9XHLull1SXHUwMDFjXHUwMDAzXzztXGZcXJednPzb0z/w76tcdTAwMDX4tOvOh3T9IaTr8HJBwlx1MDAxMFxyoL9Z7yyk09NpZ2IlM9B6KzPYquVPY6eR61L2PtJcdTAwMDVcdTAwMDCJaFxyUtJcdTAwMTRcdTAwMTTSl5EyXHUwMDA0uuFcdTAwMWV3S4skwVx1MDAxMYQ/wO4rke5cdTAwMWGkgOTSkI0tmJpWyjJ8Yv+EOsGfqFrNXFxcdI9cbtQ/W1x1MDAwN5pLz638XHUwMDFiTlaQcM2m/uIyXFxheDU+euyArsve3NDGXFxcIptrXHUwMDFlXHUwMDFkXFzvXHUwMDFmn/VbfZO8rlhcdTAwMTU1aEuPaS20QVx1MDAwMFBa+Oq7vFx1MDAxNkRRnquFYjlHPpZb8SrDJclO5qS4QWnfqdf+XHUwMDE5p5ZVdFx1MDAxMWtIQluurb9cdTAwMWLsu82PnFx1MDAxM1x1MDAwZdTMmlx1MDAwYo2r/X3RrT5dXHUwMDE0L1x1MDAxZo5cdTAwMGVLN4fFx8z1XHUwMDFhQnl+XHUwMDEz+v5VXFxurVpMT7vuUitr8vDlZ1SMk6Wp5ndJn+nKSTl3dNR53MpgXFzsn1Z2U/vrXHUwMDA1ZkVwJTvbKEV7tFx0VFx1MDAxOKPtzsq19DWlXGap58vJ+v6QLU1cdTAwMTKdXHLDctZcdTAwMDTMn61ccv9XsaXDm4KHd//kpIJcdTAwMDKi8E3/mVmZx0ZcXL68bFx1MDAxZjS6p6JwoJuVo1jkmpLN6lxuTtorMidohebob6772lx0WJM1Tco3o29KyYNcdTAwMDONXFwnYHDp64hfUDVwXHUwMDEzKvLnblx1MDAwNCzC3Wpcblxm44rPv6ZcdTAwMTUvdJvn+duDVlVcdTAwMWTGd7JYLah4LmpEXHUwMDEwXGLuXHUwMDAw7WmHai1cdTAwMDVqt4g0XHUwMDBlfME942osXGKjJCj2Tk3CT/aJYK5ZXHUwMDBiyWthXGK608LIplx1MDAxNOdlqFx1MDAxOf+Sdt+/Vlx1MDAxZS9QnXfFVer911tqXHUwMDAzwXeq81x1MDAwZZtnMjO/Ll2odc9SR6xzXHUwMDE1g/LDc2dwd5lgXHUwMDExr2kmmPRcdTAwMWO8NJBurEl2XHUwMDA1YIjWc3lX3JJUXHUwMDAzYZfUrYV5Ulx1MDAxM1xuSfl20Vxccr469ZxUebesJpdeqP6N8X9FXHUwMDFmYLHCbjByxSCXK1x1MDAwMnlo7rNQaujAnV/UVu5zmdPDrXwuk8xcXLUubsxeJtWONsZcdTAwMTWQfeyqnjm0+KORflxuWlx1MDAwMpxrXHUwMDFmKrWWuFx1MDAxYzn7oV4wXHUwMDFjyDaOQk+0XHUwMDE1QvDP2VxmxudcdTAwMDVcZlx1MDAwNjJLblx1MDAxMNhcdTAwMDIxlFx1MDAwN7v1dq8sk93neiZefb7pqNpBxPMllLBcdTAwMWVcdTAwMDPQdLPg0von+1x1MDAxMjJppWCWk53L5HKELEFcdTAwMTAlQZAgTqrrnI1BScIyXHUwMDE2liDxp1x1MDAwNOCKReBHJeBvP/SG79l2O9mnJ/b9p8eAXlGl8OO2R5f+/lApPm5PmS6l4cdpJUNQO/xcZjMxf//jtz/+XHUwMDFmMDhcdTAwMDGqIn0= yxO113-34-2-12+-f(x)=x2g(x)=(x+3)2h(x)=(x-3)2-4-545

f(x)=a(x+m)2    

f(x)=a(xm)2    

Vienoje funkcijoje gali būti kelios transformacijos

Parabolės lygtis rašoma pavidalu f(x)=a(x+m)2+n

  1. Pagal viršūnės padėtį nustatome m ir n reikšmes

  2. Pasirinkę konkretų tašką, įrašome jo koordinates į parabolės lygtį ir apskaičiuojame a reikšmę


  1. f(x)=a(x+m)2+n

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da1NcdTAwMWI51v4+v1wilf069OhcdTAwMWNJR9JUbW1cdTAwMDFcdTAwMDHM1YSbXHUwMDAz77tFtS+Ag2/YbYwzNf99j1x1MDAxY3C3XHUwMDFiXGY2wdCeMqlKgtR2qyU9z7mr//rt06fPUb9V+fznp8+Vu1JYq5bbYe/z7779ttLuVJtccu7Cwe+dZrddXHUwMDFhXFx5XHUwMDE1Ra3On3/8UVx1MDAwZtvXlahVXHUwMDBiS5XgttrphrVO1C1Xm0GpWf+jXHUwMDFhVeqd//i/98J65d+tZr1cdTAwMWO1g/gmS5VyNWq2f96rUqvUK42ow9/+f/z7p09/XHL+TowubLebP1x1MDAwNzZojlx1MDAwN1x1MDAwN0Qu3bzXbFxmRlxuSqM1WoJcdTAwMWNeUe184ZtFlTJ3X/CAK3GPb/p8Xv/6XHUwMDAzXHUwMDFhN1x1MDAwN92bUrNY7Oa+N/LhbXzfi2qtdlx1MDAxOPVrgzF1mvwocV8najevK4VqObp6mLRE+7hPtZvdy6tGpeOfXHUwMDFkhq3NVliqRn3fJsSwNWxcXFx1MDAwZb4jbrnj36TBQFx1MDAxOGusXHUwMDEwpK3Qiobd/lx1MDAwYlx1MDAxNIiAO1x1MDAxMCU5p5VNjWu1WeNV4HH9XHUwMDBiKv5PPLJiWLq+5OE1ysNronbY6LTCNq9VfF3v4YmVXG6EUk5cbmvBjyeegqtK9fIqXHUwMDFhXHUwMDE5eacyWFx1MDAwMzDCKTBcdTAwMDDxXCL6e7Y2y4PN8N945tu8jTb9R1x1MDAxYd1aLTl9jfL99D1smnjb4H3L3/FD+evXXHUwMDEy2y2+Q7dVXHUwMDBlo/tBoZNSXHUwMDE55EeKXHUwMDFmolZtXFynb19rlq6f2EudKGxHK9VGudq4TH+k0ijHPYkh32Ng8IiftzdcdTAwMGI7dvvc4NZRUVx1MDAxNPaK+XLp4nA45X46mqWuXHUwMDFmv1xiSJNcIofO+KW38aT7mVxmW35cdTAwMTJcdTAwMDJtXHUwMDEx0SpQ1ilcdTAwMDUkXHUwMDFmzUot7ESrzXq9XHUwMDFh8Vx1MDAwNOw3q40oPerBXHUwMDEzLXtcdTAwMTBeVcJHq8DPlOxLo7XlvzFcdTAwMDa3/4n/9yneXHUwMDE0g1+G///v709ePX6bpT7+W/Lf+2ednFecpXTrXHUwMDAzrTihrWKkxVv2JVbJhdXzYn6Poo3vuUp/Pb/2tVxyvWyzilwiXGKUXHUwMDA2o1x1MDAxYzghpI6/xX9eXHUwMDBiXHUwMDE5aOOkcc44XHUwMDAx3D8zWomHNWRcdTAwMTE0XHUwMDEwXHUwMDE4QjDG8K42MsFpP1mFqVCiRIp5P0OkwoRcdTAwMWOPa1x1MDAxNqQy+mVzXHUwMDA07ZGrl1x1MDAxZa3ylNDmqa08qTGAVuOgjb5cdTAwMTPJUbzdX8L2fl7u53bUev6uWNsvNGrreUmZ01x1MDAxOIDRKowjxoRxLFx1MDAwNrRJgVx1MDAxZFx1MDAwM9BonGFQXHUwMDAzXHUwMDBiilx1MDAxMbBLQ1x1MDAwMTjlXHUwMDEwjZLaqVx1MDAxOWI9kFx1MDAxZbiOXHUwMDA3KviOmnn+XHT081hBXHUwMDFiXHUwMDEyvEqKXHUwMDA1WszTXHUwMDBmOlx1MDAwNW9cdTAwMWHFlyQ4KzPw1yQpMfnzXHUwMDA2/5G+t8X++KX3P49cdTAwMTb9zcggoaamyIB1XHUwMDBiYo1aTc5cdTAwMDW7l6Wcuj74frdz29vqn+mNntkrz1x1MDAxZFx1MDAxN0DgXGZr5JJcdTAwMTeDp0COmlx1MDAxM1Jj4FdcdTAwMDcsU4FTMjXQrHGBQ8P2kZBcdTAwMGIqWFDBS1SAYqzKjyDJKF6ueL1e4oIlU+jRPt5EW65V17ermyubdTV3XFwgXHUwMDAyZZE0XHUwMDEzgbTeVFx1MDAxZuVcdTAwMDJ0gUR0zklN1onZ+Vx1MDAxNt5IMUBDrFE6WLDBglxyXmRcdTAwMDM51krwTFx1MDAwMVx1MDAwNshNzlx1MDAwNt/a33S0t+rgfCW/Wejlf1xid7Q8h2wgXHUwMDA1P7Umx1pC0oxcdTAwMWGwgdD8ecuL4IxfMEqNNHNsoFx1MDAwNFhrtYntmVx1MDAwNVx1MDAxYizYYFxmXHUwMDFi0FgzXHUwMDAxrCFnSdp4XHUwMDFmvcRcdTAwMDZYOlxcPlx1MDAxNfm7rZ1mdKyvlq5PVf7b3LFcdTAwMDFfoME7XHUwMDAwXHUwMDE1XHUwMDEwYTxcdTAwMTT/hWjZimBcdTAwMTNcdTAwMDF4JVx1MDAwNPFP1p1cdTAwMDZaMmmBzKxqXHUwMDEw61ZcdTAwMGIyXHUwMDE4XvBRZOBEunnoM1x1MDAxMDxcdTAwMWG+5Vx1MDAxNP7D9e9Q3z7cXTY7++H6Uria2++5OeRcdTAwMDJpSFx1MDAwMv+FSmC8WVx1MDAwN1xcoG3Aq+TDk8aIpNqQTSpcdTAwMDBv6llAyKpisOCCJ67+IC5QbqzTXHUwMDAwJPGt2E6Y3ExcdTAwMTBbe7LeXmm2vp6Vls7aIZ3uqus5JFx1MDAwM75cdTAwMDCFXHUwMDEy0sdpU9FcdTAwMDSFNuAu61x1MDAxNLKxQFx0J3022cBqa1xmSpvBWFwiIa/D/MZcdTAwMTL/eWSAbqzPwKFSSrvJM5F+XHUwMDE069i46HRbndzR6VJj6/hGdE+yRlx1MDAwNTJcdTAwMDBcdTAwMDXaIWmpLVtcdTAwMDKJTKtcdTAwMDFcdTAwMTVYw1gny1x1MDAxYyBlXHUwMDEyQlx1MDAwM3+BM2xcIoC0Sksy1mXfYVx1MDAwMMZcdTAwMTlcdTAwMGJCZ1UviFx1MDAxM1JcdTAwMTZUMLzgg6hAgk03XHUwMDBmg1x0yMJTS5w8f2jv+ku/XCJ2u8VDZUxns99s5Gzm8ode4Fx1MDAwMlxyXCIg/pxcdTAwMTf8jiVqynnoKHCsXHUwMDE2aM22k8PMc1x1MDAwMVxuclxuwIpY91lwwYJcdTAwMGLGcIFcdTAwMWFcdTAwMWZYNLyFeNkmN1x1MDAxMerXZ5JyW/udxtHyTtd11W09XFyfNy6QKlBWsvB3WoJIeOBcdTAwMWa4QFx1MDAxYbBkNVx1MDAwMkowqYFmjVx1MDAwYtiYXHUwMDAxfphcdTAwMDVcdTAwMTUsqOBlKjDjo4pe8IFFPTlcdTAwMTesnWzvXHUwMDFjN3utm0ozvJVcdTAwMTe2p1x1MDAxYmdzp1x1MDAxN2hcdTAwMTNcdTAwMTjeq1x1MDAxMkiyXHUwMDExkED7g5FgeFx1MDAxZjvLdOCtiIxzXHUwMDAxm4Dk/Vx1MDAxZTajZEDx+izIYHjBR/lcdTAwMGXF+KBcIlOBs0pNbiO0bK+6uYyr5731g2JZflO4e525mOJLXFxgIUCByjlhmVx1MDAxMEQq9ZC5gFgx8Ol8zKOZzz3kXHUwMDA15GdcdTAwMDXKalx1MDAxY2HBXHUwMDA1T139QVxcQGJsTFx1MDAxMZBcdTAwMTSrwqxlTkxcdTAwMDa9/eObbWfC29ujUrje7nRtd13OXHUwMDE5XHUwMDE5KKlcdTAwMDMltI+hMC+gi6lwXHUwMDEwRlx1MDAxMFwi0FpyXHUwMDFmm+Ekk+Va2WRcdTAwMDNlwVx1MDAxObZmMljo6GO2XHUwMDBiK+Gpq2dLXHUwMDA2UeUueopcZqx8pqTZsGKglZk8kCBllTrHhY2vJ+pcdTAwMGJ06Spv5Fx1MDAwNmaNXHUwMDBiUsWH0td4XHUwMDEysCpgefrVqK9cdTAwMTC511x05FlCiVa42aVcdTAwMWS7wFc4WjdIapAqUWhcdTAwMTjjPpHYdF9yYK1h4SrfXHUwMDAw6CNcdTAwMWRTIFpbX/H9KkRfNFx1MDAxYtFh9ceAVMRI63pYr9b6I2s62MB/+lVcdTAwMTlpWq5VL1x1MDAxYlx1MDAwM2lXuVx1MDAxON3gUbVcdTAwMTTWht1Rs1x1MDAxNfeW+Fx1MDAxNiFLx/bjKWm2q5fVRlg7enw7L09zXHUwMDBma8HKo06sdacykLY+Q++VMIR0a6yeXHUwMDEz4WiKyEswfL6kO5MwJLCBYckgnWRcdTAwMDRYM2qas8xcYoxcdTAwMDHBRjtcIstgmp0+XHUwMDBl4Fx1MDAxM4jYKvAgTHhcdTAwMGKfQSFcYlDktDBvkND3PFxmh6RcdTAwMWaL5eGiP3+cxMgu/FlYO+z5+0GCPFx1MDAwZnL5Klx1MDAxZP5VIL97X5DfvVx1MDAwZsh1XCI7J+2bXHUwMDE3qI20NEWh/1x1MDAxZSw16kuE+TI2XHJ32y9LR1x1MDAxN9lcdTAwMDa5XCK2qlxysG6DSMKoVJReXHRcdTAwMTeA9GeosPKDXG7k7LL3QFx1MDAwNT6f2Drhq63ATlxudMeDt+otrOxfkrfvXGLF/PtCMf9OUMSxaq/z+WZGiCnCZPvFm271qn9z0Cp3bkut4/zXPGVcdTAwMWOJVjNcdTAwMDBIsNYrWNZcdJWStyhcdTAwMDOjNFx06UvxNcLskMiGN1x1MDAwM9FZIMtWj1x1MDAwNJxcYomMQvTnhcxcXOK+XHUwMDA0REhu15lcdTAwMDJcdTAwMTHeXHUwMDE3iPBeMlGnW1x1MDAxZoCoeE8gWppcXO91nV6F7lx1MDAwZYprhlxuXHUwMDFkhbtb571Lk3EgKlxiNJv0bPB7x1x1MDAxM4yms7NcdTAwMDJcdTAwMWFYf5aSXHUwMDE0Qoz4pTJcdTAwMDJD1sS99vtcdTAwMDZcdKtcdTAwMGJcdTAwMTj+3DtcdTAwMWZcdTAwMDNDM1YzXHUwMDA1J8hcItkpzM/TZm1n+7r2jS5cbru5k5WV2k6p1XgvXHUwMDE4xp+ZXHUwMDA2hqySXHUwMDA2vq6OfIG5P4lcIiVcdTAwMGX9QVx1MDAxNJpFJVxuJ5z9pTzyf1x1MDAxNfFcdTAwMDKLxSd10mktT1x0xkhcdTAwMDVvUVY6L/jD98VcdTAwMWa+XHUwMDBm/lx1MDAwMMbnaoBcdTAwMTJa8bacXFwhLdD28n6hvL5cXIiuvlx1MDAxN0SrkdOtq2xcdTAwMDPQu2GlMoAsTlxmK+CQiseiXHKQjK9cdTAwMDSXUjj6pTyt8VxilFx1MDAwMVxyqkytttLZJ52w+qlzJY3QqN4gXHLj10D4qvMjX1x1MDAwNUL5/433heHIXHInXHUwMDAyopLPXHUwMDAycWxwVOP4XCIra1x1MDAxMCWQmdxJc3e9dtw52r68/bF9cXB3vnJzsNsoZE0jnaDIynK3XHUwMDEwxPKPpEpcdEdccoEyZFx1MDAxNX9aKEy6brNcdTAwMTlcdTAwMWQlXHKKXHUwMDFmXHUwMDA2Mpg2taiyyliqhJZjzVMwXHUwMDBlXGZcdTAwMTk5uV581l+tYndVXHUwMDE2XCLaOLo76Tc3hdufOzLAQHCzXHUwMDE1zjty5Wg6tTI+0cJqskZcdTAwMDGqOcihtMJcIlxuNIuSy1x1MDAwNVx1MDAxObyYUE1jg7TIRqFhRpg8VeJkbfPIbJl+76C91lxul9X5d6jNWz61tDZQapAwJq1cdTAwMTDprCnwPiUwltD6448yTlx1MDAwNehrZ6RJnsGZXHUwMDFkKlx1MDAwMClel2OxoILZUIF9Jm1KkVeS9eRcXNDNdaLCd6jfXHUwMDAxrW1fmKObzTpszlx1MDAxOVx1MDAxN7C8XHUwMDBmJFiebM27VSlMx3ZFYL17XHJ8Qlx1MDAxOYrZebLfqrhCXHUwMDBlzHqTRSthwVx1MDAwNlx1MDAxZsJcdTAwMDZjnefjQ1jKXHUwMDE41KAnz6a+/rGXazWbK6XuXHUwMDEyNC/7W9DZtZkrrUi77iBAUqj8+1x1MDAxOfx/RoGPJmBLXHUwMDAxpPYz4a2CmSHfu+/8QdKK8WG1mzR7S1x1MDAxYVSGknz2j/ffLb1zXHUwMDE0a+mNw1hcdTAwMTdtXruH10c9XGb1XHUwMDFljTLdXHUwMDE2XHUwMDE3PWqeZTfNUapf1raL551vq42jrdO7/fyFu9m4zlxcbUM6s8NcdTAwMDSSYeZTKY0/LTlloSv/XHUwMDFhXHUwMDFmzSDxLKj1XGYzKUXgg9aPIZhqf/DKsY0wXHUwMDFh5Xh3XHUwMDE0Kl9OmYhzToHCN1x1MDAxNmPJXHSKW1x1MDAxZYuraUR0td6t8ePut3mSum2/caJ2N/FcdTAwMDT37T/naFx1MDAxNuiToISVNLnz/Fht127qYk3kV1x1MDAwZS12oHuwpTN3rHkqjlxmXCJAX+5GLPWdSp1U6lx1MDAxM1x1MDAxY5V/P1x1MDAxYUtD1kNgpoVE04BcdTAwMGZcdTAwMTCFllxuPzCOzOCTSSfBXHUwMDAyfG9cdD42v1x1MDAxOHxkJ1x1MDAwN99m+TRcdTAwMTe29is/qH2Oy1x1MDAxYlW+fT2XbfD5QFx1MDAxNaAxioQv6KXRXFwq/3JCQGs1d2uG3yyPXHUwMDA2nVx1MDAwNnvMXHUwMDA25DB5XFzbR2DPo2+BvVlgj3clsUiYXCJoLItlm7s9t9/Eitjp39jcrrI3XHUwMDE5h570XHUwMDA38lx1MDAxYsv6NUhWOk3qyC3WOv1bslx1MDAxNFx1MDAxOX/OjsiK0lx0XG5cdTAwMWT594l8rOCz0rzqXHUwMDAw/lx1MDAwNfheXHUwMDE0fGDRWSmmOOjmpFx1MDAwYtGq6nXO7OkynFx1MDAxY+zpr91cdTAwMWbH2UafljIwTmtcdTAwMTbwrGBbmlx1MDAwZvBJJIHqQ4tXWVx1MDAxObeUKDNaYO9p7I3zfKrxXHUwMDA3T1xu1rVY7ZzC2XJ4sFxcPiu1m6p/Vr76Vrj7snr7NXNcdTAwMDdSp4CHLlx1MDAwMO3PmWeLXHUwMDBlIFFcdTAwMDD60/WpXHUwMDAz6VBcdTAwMDFcdTAwMGJEYTXNztqbJHHxXHTPp1XGOPHhycPvmLf4zlmLb+v1XHUwMDFjXHUwMDE3jUT5XGZcZrVxTrspgpFXR6dqY7mzQd0ylftccmy548OMXHUwMDE3jytLgVHCaP5cdTAwMDOQfCPGg8vTXCIrWeRfXHUwMDFiYWV6XFxvXHUwMDA3Q1x1MDAwM4EwYK1cdTAwMDP/Mlx1MDAxYaQn4lx1MDAwZkD+TcNSq0EpO1t9j1wij6w8XHUwMDBi64tcdTAwMDB+XHUwMDFklm/+QmlAtIuMpMdXLyFcdTAwMDUkLJt6XG6Uf5Wr+32k11x1MDAwNYL1MueElL7eWNCLXzh2K1xyelx1MDAxZu+ix5rCq6hcdTAwMDT0+OxnXHUwMDA0hyxhpvAh9cK94rY8XFxZ2qhvXHUwMDFlUrMvTlx1MDAxYauZe9/MYyohY1xieSn9KUoulcagMHDGXHUwMDFhXzErmFhmp0tcdTAwMTNcdTAwMDWSpFx1MDAxY0RVNSXDplx0LjGBJiNZ8zeSXHUwMDE1XHJ89HJ6cEz/1lx1MDAxOcxgXHUwMDE2g+H9ja9Svf/hZFx1MDAwMs67UnxmKlOGT0HB5Mc91VjuVkS8/r5cdTAwMWVBvfSFY7fS4PtcdTAwMWXvonFcXPLb/Vx1MDAxZD6HrdZhxKs53Fx1MDAxNbyrquV7bSyemM+31Upv5Yn6m4vBjz+AZLB1PFx1MDAxMVxmrJC//v7t7/9cdTAwMDGTP+rkIn0= yxO1123-13

    m=1

    n=1

    f(x)=a(x1)21

    (3;3)

    3=a(31)21

    3=a221

    3=4a1

    4a=4

    a=1

    f(x)=(x1)21

    Ats.: f(x)=(x1)21

  2. f(x)=a(x+m)2+n

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1da1NcIslcdTAwMTL9vr9iwv269lZmvTfixlxydUZcdTAwMDdcdTAwMWRfoKhzY2NcdTAwMDKhhZan0FxiujH//Wa1SjeNjOhcdTAwMDVsb9BcdTAwMTPhaHVB1yPPyczKrOp/fvv0aS286/hrf31a84flUiOodEuDtT9cXPmt3+1cdTAwMDXtXHUwMDE23cLo71673y1HNWth2On99eefzVK37oedRqnse7dBr19q9MJ+JWh75XbzzyD0m71/u59cdTAwMDelpv+vTrtZXHS7XvyQdb9cdTAwMTKE7e7Ds/yG3/RbYY++/T/096dP/0Q/XHUwMDEzrSt1u+2HhkXFceNAaZYuPmi3opZcdTAwMDK3QkhljVx1MDAxY9VcYnqf6WGhX6HbV9RgP77jitbY8eDs/P5cdTAwMDc7XHUwMDFmXHUwMDBlsXJ30c73VU/Gz71cblx1MDAxYY1CeNeI2tRrU1fie72w2677Z0ElrD1cclqifNqnuu1+tdbye67vMCptd0rlILxzZSzuXqlVjb4jLlx1MDAxOdJfXHUwMDFjmceVXHUwMDEyWlx1MDAwM1xuidzGvXVfgNp6XG4kR1RMc1CQathWu0HTQFxy+1x1MDAxZHz3L27aZalcXK9S+1qVUZ2wW2r1OqUuTVZcXG/w1GWUnpVcdTAwMDK0XHUwMDAyZFxiUo1q1PygWlx1MDAwYl1vPOTUXGJEo6WUXFzZuDF+NCeAxmjGtOWjO65cdJ1cXCVcdTAwMTKOv+OZ6JJY5dxHWv1GIzmcrcrjcD5cdFEsRvhY8jPuo6v/JSF+8Vx1MDAxM/qdSulBUECj5VxcXHUwMDE4kiRcdTAwMWJcdTAwMGZfI2jV049vtMv1Z2SrXHUwMDE3lrrhZtCqXHUwMDA0rWr6I36rXHUwMDEy30k0+Vx1MDAxMVx1MDAxM1FcdTAwMTfXVP76sMVcdTAwMDd459+F1c39ts7nhzujXHUwMDE5cMPRLvcjXHUwMDEx8pTVnHElpOVSXHUwMDFiVIlK1VKHqlx1MDAxOE8rXHUwMDAxVilcdTAwMTSGkcCoiUFplHrhVrvZXGZC6v9RO2iF6UZHXHUwMDFk2nCYrPmliUmgLiXvpcHbcd9cdTAwMThj3V3xb59i6Y7+XHUwMDE4/f73XHUwMDFmz9aeKnTuWp+Qt/jrfkv+/9j32WnHKj2VdVxmkvxKXHUwMDBlsXC/xDr39fxg+1x1MDAxZYLNre+h/HzW75zAQSHbrCOY9ainXHUwMDFhXHUwMDA1cC2kXHUwMDE441x1MDAxY4HWXHUwMDEzRERcXGsuLYpUq+ZHOXGbRlx1MDAxNFx1MDAxM1x0XHUwMDA0TblcdTAwMDUjhMNsmmJcdTAwMTBQa2WUinkyM1x1MDAxNKMtysRYLoJixr/sXHUwMDAzIX2s9vrENL9cdTAwMTLZNLT+s/ZcdTAwMDTAVGRbXCJLIHqd3ZyQx52tr/Uufsl9r2z614dt//THUdaAXHKe1MRYiqPSVlx1MDAxOCvjXHUwMDAxeEK6MVx1MDAwNGWk7kvFYs1cdTAwMWOZXHUwMDE3QnlSKilJgiWQfbE4rHuk18i8oYYysEIyXHUwMDExXHUwMDAzJYF+XHUwMDBmQGrFrFx1MDAwMkHWX6I5j1x1MDAwNoZcdTAwMTRaXHUwMDFh0DKDXHUwMDA2xlx1MDAwN0f/2L35Qn/61LtrYtLnxlx1MDAwNUKmi0danuxt0vKGxyh7iVxmcuG22N5dL15cZsXJybB9/nnHXHUwMDFltz4gXHUwMDE5aGZcdTAwMThcdTAwMTGCIKHVmGJcdTAwMDOaXG5DhpjQXFxcdTAwMDCZl1xcp5qaOTqwhvhcXCOLzYRcdTAwMTVcdTAwMWSs6OB5OkAj0sVPdIDMWKFpymZmg2Jt82bvXHUwMDFjbvZL3+R9Odfa3Vx1MDAxYmDno7FcdTAwMDHQVKBiwlx1MDAxYWGETttcdTAwMDZcXKHHwFx1MDAxOFx1MDAwM0RcdTAwMDRcXEqTeTbQ5NKQZWlWrsGKXHJeYlx1MDAwM3I+plx1MDAxYVx1MDAwN0opbZjGWOBfooPmXumUhV9uXHUwMDA3xbPN7lBcdTAwMWOwa1lTXHUwMDFmkFx1MDAwZUAyTl6CslxiKTLgxkMtuCbHm2smsu8oICNfwbB4cFZcXLDigilcXJBQ/GkuQIZkXHUwMDEwy4RufIlcdTAwMGLUbe7mPJBfNo5ONvp86zS3f1x1MDAxNVx1MDAxNj8gXHUwMDE3WMuZXCInQaGyPFx1MDAwNljEXHUwMDA2oDyyp1BcdTAwMWJuLNfZt1xmXHUwMDE0dYMx+plRNogtllx1MDAxNVx1MDAxYowqvFx1MDAxM1x1MDAxYlxiXHTp4njZgFx1MDAxYUFaRc3OXHUwMDA2/vX5yVVh8/u3bXM8ONhoXHUwMDBmb7Y+f/tobMAszVx1MDAwNYA21oBNXHUwMDE4TtGigZWeXHUwMDAwXHUwMDA1mitcdTAwMTctgERcdTAwMDAzq2SAVCwyu2aw4oJnar/XmoGcXHUwMDFlKCRLWJFcIuSzL1x1MDAxYeTXT3j+um9cdTAwMDZ7trJv22VkjW4ja1xcwD1cdTAwMTBAQCY7X1x1MDAxYattwlx1MDAxMYi4gFx1MDAwYk9rMqxcdTAwMTU3jMxrk8pXUMbjgiaJSzBcdTAwMWP14vJcdTAwMTXmtYJcYlx1MDAxMiCZV7FcIoNcdTAwMTVcdTAwMTlMW0Ccblx1MDAxOGjGrSE/YnYyKG9cXOaGvrwuXHUwMDFk397nL85V/by4l/9oZCBcdTAwMWTagSnBtVx1MDAwNptaMyBjwnMxR0PVuFDKZn3RXHUwMDAwqSPSRaNXbsKKXHJeXFw0YNNcdTAwMTdccoySxs3a7KlcdTAwMDb2qnpn/G4tV9yS4Y/N1rE5KfOPxlx1MDAwNlx1MDAwNj1cdTAwMDRyj4xlTKJcdTAwMWHPKkKlPE2CbLVkqJVlWV80cOZcdTAwMGJcdTAwMTFXVjNcclZcXPBM7fdaMoBfhFx1MDAxNsktXHUwMDE26lx1MDAxNaFFXHUwMDE2lr+e3Vx1MDAxNPbzx8Hm2X37WG2x3ftcdTAwMGZGXHUwMDA1LlxcINHQZFx1MDAxME9qoso0XHUwMDE3WI/YQjPGlFtE5FlfM6BuOC+BQ1bZIG7xilxyRlx1MDAxNd6LXHJ+4Sdw45L5yTWemVx1MDAwZZr7u/dQMFx1MDAxN2dGb+21mtv92vrNR/NcdTAwMTO4XHUwMDAyXHUwMDBmpFwih0BwcJZB2lGwnjXANHElkoGQbmnW2MCClpJlN89gRVx1MDAwNs/UficykNPdXHUwMDA0I7g1XHUwMDA0htnTXGbqrFxyuVx1MDAxZJsrr+tjflY+auzmXHUwMDA3V1x1MDAxZo1cdTAwMGKM9IAsa6RKwnI5XHUwMDFlWSSbwENJXHUwMDEzXHUwMDA0IMiIyHxCsrNv0FxiYq1cdTAwMTVcdTAwMTesuOCBXHUwMDBiQn9cdTAwMTg+x1x1MDAwNaThptpcdTAwMDVKkSGs1Oxewp25XHLudvv+j+qwXatcdTAwMGWqXHUwMDA3XHUwMDAz0etmjVxuUpuOUHlcXFx1MDAxMKxcdTAwMTlcdTAwMTlAbmfnOPKBeYKGQVx1MDAxOCmtllx1MDAxYVx1MDAxNmdcdTAwMDVYz63UXHUwMDFhq1Aw5IKbZ4Cf8EhGXHUwMDFij4C0vtZzWFx1MDAxY1x1MDAxY7vxXG5IS8NMMqv9XHUwMDE1kL5qt8JCcP/gko6VbpeaQeNubFYjXHR2QrY2VrTRXGKqrUjb+VfjXHUwMDEyXHUwMDFlXHUwMDA25VJjdDtsJ1Jhy/SIXHUwMDEyacfu5JC0u0E1aJVcdTAwMWEnk49z+vRrYt+pTEx2z4+0rVtne1x1MDAxYlx1MDAwZVx1MDAxM+H7iT1CLv4tX1x1MDAxMdP79d7OTOJQXG7whFx1MDAwNStJR4BJw9Bo0t+ITEW7ryUuTlx1MDAwM4Pb32mtjTCo41x1MDAxOf5cdTAwMDVcYoGhNtQwnIPp/WtcdTAwMTCOOD/Wyp9m22Y+JoNcdTAwMGZb6kZ3fj4pkFx1MDAxNyD+Jq39JohcdTAwMGaXXHUwMDBi8eFyIC75dFUrQTHQnM/ugu9cdTAwMTerhepl7eiyf622i7mzwZVfyFxcXHUwMDBlT0rXgvRIuZFcckhdJTM7VlpPp1xuXGJLXGJHhlIvMn9cdTAwMGaER9Y86VpcdTAwMDZcXGkwM8Lcclx1MDAxN19cdTAwMTHzWHz/33Tt8oB4uFxcIFx1MDAxZS5cdIhsqq5Fsr1ccqkhO3uUTMnielWXXHUwMDBi62G7t3d0eS72w3zm1sJSQOToKYNGXG40ZD+iSfm7hoxRazQjo9eQXHUwMDAzsDAguiQ90rXkUZP+lFx1MDAxY3AmIJJ7rsm/nUeu3EfBISxcdTAwMTeHsCRcdTAwMWOiSZc+4VCRXHUwMDE2kGz2jbBH/o2uX5pcdTAwMWJ1KOr9wU7tuGbKzWyDkFx1MDAxM8rQXCJ1lIRZXHUwMDAzS2lDoTzQZOqCg1x1MDAwN1x0/OLU4dtQqFx1MDAwMMlI1vNcYj6tUPggPO+DQj01MKTIKZVGyNlcdTAwMWTPcOtg66rcaFaDgvJrm6X6IPRttmEoJHqoXHUwMDEwXHSA4JLoY0p6SCRn7qRcbk7SRpYp04uLXHSTUfpax5OsXHUwMDE0kNyKhfudL0FQJ1x1MDAwNXWhXHUwMDEwxOVCXHUwMDEwl1x1MDAwM0Ez1Vx1MDAxZVx1MDAwNauN5UrZ2Vx1MDAxZMONq+p187g/sN9trfJcdTAwMTlzvfPBl8ydXHSRUoXapWxai9Jt2nCRzFx1MDAxNFxipYeavEaphFNSmqdaNkdcdTAwMTRyT1x1MDAxMVxujSBXz0g761xukORRs/m7L8MuXHUwMDBmietL1obrS1KHMH1cdTAwMGa2IYdJa6Fmj432hdo+q3DkW8NvXHUwMDEydnbvdPmqknUsMk+QJCtmXHR3pPxTuyzJamVakG9cYky509pcdTAwMTZcdTAwMDZFZJ7U1pKFXHRcXJAlrOIx+FVEhFx1MDAxMV1yS8bpe0PRJsV1sVCUS4ainC9cdTAwMTSnpzMntvimsKiN4GS1veKsJP9857pYP5VD8qZKd839XfuNX2RccoszbIFmzFxiMkWZoFxuqUSF6PBcdTAwMTQwXG6FNUwz0FlPZ5ZaWmnmspSzkESFN2F4laiwmL1ccmp6PrNi5DMxmH3R9msxXHUwMDE4llx1MDAxYWd1u16o3H6zO4WN063+RyNcdTAwMDN3ilwid1x1MDAwYqGGRJXDuNHMjaKPXHUwMDBiQCYtaWuW9WxmMICSXHUwMDFintldjysueKb2+yQtqem7nKR7XHUwMDFlXHUwMDE38Fxuf/n8eCvv721cdTAwMTdaZK9cZvH+cq/9I+OBVK7BXHUwMDAzt4WBKe5SJlJnJXPQXHUwMDFlJ0fF0pyQNSpMqmHzPJ/dI1x1MDAwZsFq8n5cdTAwMTVcdTAwMWHLZrPRQVx1MDAwM6O2XHT77lx1MDAwYldLtNGXvHK1Puelq6suzd3Tm1x1MDAxY56a+lxix6mrV9qtqlwiwuxcdTAwMGWzKOznt29bhcPej7B12C82vm5f1DNcdTAwMGVGw71IoqXg0rnE41i02jMuQYguISQudIchY4mQ2VxigKnyp/iNUNSs90xcdTAwMWNcdTAwMTSGu12Xb4HgnJVYcnzikkll9Vx1MDAxYVx1MDAwNVx1MDAxZDT7XHLq7lGXXHUwMDA2qd91Ylx1MDAxM3b7iVx1MDAxZTyWP4zR/KEnkS6XUDcz9Pzr4+HusJqroz2woHaGpe7mabahJ5jxXHUwMDEwlTtcdTAwMWFQXHUwMDFhXHUwMDA1fDxrkKP2kFx1MDAxY0xcdTAwMDKe5douMHbzOuRcdDTubHP2jtqPoKfl21x1MDAxNotX0HtcdHogXHUwMDA1csFeo/Yu++I0uGlWK7c7bHO4Va3ki0eZW5tK51x1MDAxMEVZdFx1MDAwZu9AXHUwMDAxJVLvXGLiTHiMLHHDgUbCvekmI+hDi5aNnZb2XHUwMDBl6Fx1MDAxMyxcdTAwMTlZWqFvnugjUdRO5GZfXGYy36+0qu+eX+VKt6a5f3OU55+zvm1FXHUwMDFhz0olyFx1MDAwNyQuN6lzcVF5lrSiYlx1MDAwMsEyo7Jic7qQkVvJ0u9cdTAwMGI+zvFN79xage9l1Wdccvl8XHUwMDAyZ19+wS9m2ETRL+ZP82rnc+/73cVF5t5nk1x1MDAwMp9cdTAwMTGeO0RCXHUwMDBiK9zarEzBz1pPSaOl5iC1kZlx+YBJxlxcxOVcdTAwMWRjo8JcdTAwMTnjcmV5vlx1MDAwNL9pYZDpKbPAXGJ9VrwmJPqVXHUwMDA3un96ePCjcl3t5Vx1MDAwZc4ur29cdTAwMWJn2caeZNLjUiqn9MiHMjyVKqSUx+mWOyNcdJRNvqptXHUwMDE574kjf1x1MDAxM1x1MDAxNFx1MDAwMlx1MDAxMMisXHUwMDAyYyZcdTAwMTGoXHUwMDE0zVMyUpWZIIeRXHUwMDFhmHlcdTAwMGIw/9+DXHUwMDFjydqTczzJXHUwMDE4b1x1MDAwMjbgdK2qLaJ74+TsyL7rQ/WgU8xcdTAwMWaENCx7gT7f6uVvs41sMss8aUljXHUwMDAySO5e/zKuVMmf5E5EaeDdXHUwMDA26UQweN7IVuChUFZcdTAwMWHk3Fx1MDAxYZtcYlXGL51cdTAwMDXjXHSNyuXfcoGCTVwiXHUwMDFko1xyfTKLb521TGi2OoNhsvY6knJRLm5G0+7W6+NDN92FXCI6JMRY99pjt3Xjxe+bKkrumlx1MDAxNKI5UYmd/lx1MDAxNlx1MDAxOWRGXHUwMDE40K846qnPKrfd48Ov4mK7IC7u1mWpeK2zziTSXHUwMDAzTo5cYkhAsohUyj5n3Fx1MDAxM1LTyLuX7Vx1MDAxMaUscGuN9KwhU4U0Ppgoi+BcdTAwMTkuQVx1MDAxN5JzzjpcdTAwMTjnOanJQ1x1MDAxZt1cdTAwMWK4tcJMUlx0cIxndkUlT5d7a6HbXHUwMDFmRT6gpVx1MDAxZolDg6K74Fx1MDAwZSRXnCxURkxCc//S902XJHdNytA0Kvnt8Vx0a6VOp1x1MDAxMNJkjoSChCqoPMa143FZu1xy/MHmpNj/flx1MDAxNV3uXHUwMDE0gUhyXHUwMDFjXHUwMDExRH7NPz9/+/lf+CVcdTAwMDCkIn0= yxO112-1-5-2

    m=1

    n=1

    f(x)=a(x1)21

    (2;2)

    2=a(21)21

    2=a121

    2=a1

    a=1

    f(x)=(x1)21

    Ats.: f(x)=(x1)21

Lygčių sistemų sprendimas pasinaudojant funkcijų grafikais

  1. {y=x25x+6y=2x6

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daVMqOVx1MDAxN/5+f8Ut5+M7ZJKTfaqm3lLcr1x1MDAwYor7W1NcdTAwMTZCXHUwMDBirc1cIjRcIk7Nf39PcOmmoVx1MDAxNb2C7Vxm3Cq8JL2kk/M8Z8lJ+q9v378vhP2Wt/D791x1MDAwNe+uXFxcbvxKu9Rb+NWV33rtjt9sYFx1MDAxNVxmfnea3XZ5cGQtXGZbnd9/+61eal97YSsolT1y63e6paBcdTAwMTN2K36TlJv13/zQq3f+6753SnXvj1azXlx02yS6Sc6r+GGz/XAvL/DqXiPs4NX/h7+/f/9r8Fx1MDAxZGtdqd1uPjRsUFx1MDAxYzWOKcaSxTvNxqClSlBrrVx1MDAwNng+wO8s471Cr4K1l9heL6pxRVx1MDAwYlx1MDAwN1x1MDAwN6eHvaP8RbF+afuF02pj765zXHUwMDE23fbSXHUwMDBmgmLYXHUwMDBmXHUwMDA2Teo08Umiuk7Ybl57x34lrD31Waw87ax2s1utNbyOe/ToOZqtUtlcdTAwMGb7rozS59JSozq4RlRyh7+4NURcdTAwMDJnzIJghlx1MDAwMX+udedzXHUwMDBlhGvBtZbCWqltol35ZoCDgO36hXnuX9Syi1L5uorNa1Sej1x026VGp1Vq41BFx/Wenlx1MDAxOCyRXHUwMDE0e9yAVIBcdTAwMWbzfEjN86u1cKjlXHUwMDFkbzBcdTAwMDbKKjzY2uhYd8vWRmUgXG5/Rlx1MDAxZN9GIdpwZzS6QVx1MDAxMO+9RuWx955EJlx1MDAxMlx1MDAxYXgs+Tt6Jnf8SkzYojt0W5XSg1xcMFxylnNhwapYu1x1MDAwMr9xnbx90Cxfj1x1MDAxMaVOWGqHS36j4jeqyVO8RiWqiTX5XHUwMDExXHUwMDAxg0dcXGDtUlDbMlx1MDAxN1uNfPOk0udBPpTw3OOuO5rl7kBiXGIoyVx1MDAxOTZXUSpcdTAwMDXjJnZQtdRyXHUwMDAyQDhTwjJNKVVaaVx1MDAxMCO9XHUwMDEylDphvlmv+yF2QKHpN8Jkq1x1MDAwN0+06CBY80ojo4DPXHUwMDE0r0titeWuXHUwMDE4Qdt9ov99j2Ri8OP5/3/+OvbodClLnP4t/vfxWSdnXHUwMDE1q3my9IlUgDIhXHUwMDAxuFBcdTAwMTOzXG73i8dr15u7i716V1x1MDAwNGLztnlVOMo2q1xipYhVYCSlRlx1MDAxOSvMMK1cYqBESWtcdTAwMDU1wnJj5NRohVx1MDAxMon9LYyVOOxcdTAwMWNcdTAwMTiNXHUwMDFh8kwrXHUwMDAwkmhtuVx1MDAxMNJcdFx1MDAwNlx1MDAxNVx1MDAxMWxcdTAwMWZ5RiNKXGZcdTAwMDWdVZ6JaHlcdTAwMWE8M3yxL4T2XFz66Fx1MDAwZqpHXHUwMDA3/o1cdTAwMDSAve2NtSqYXHUwMDEwaVx1MDAwNMCsMkZQriY3K3InvVx1MDAxYV1cdTAwMGK21/dr9+XlwjpsXHUwMDFl6fWsXHUwMDExXHUwMDAwI1JTbVx1MDAxNVx1MDAwN6Wt63I9wlxinGvDrFx1MDAxMJpcdTAwMTmrI/5zV0QljppGKqqU0lx1MDAxYUV7mpTAKVx1MDAwN26xqVx1MDAxNFuDklx1MDAxMY1VjFx1MDAxM1xiY1Iralx1MDAxNVx1MDAxM9jkqLVPpofkiknKo46YU8LHUMJQ3YfywVx1MDAwYiPvPiNj/mFsoCFZXHUwMDFjmVx1MDAwM9IoJSBmKr7GXHUwMDA2J2bZ1+trvT2/Y/IqONqXh+3bL8hcdTAwMDZMXHUwMDAx49LVo/sxTFx1MDAwNlri6YxRtM9cdTAwMDRcdTAwMDNcdTAwMTCJhmaNXHUwMDBisFx1MDAwM1x1MDAwNCCpxSh9Tlx1MDAwNnMySCFcdTAwMDOrksVPZMAtp4bbN7hcdTAwMDa5jdWdUGybrVxc61xc7Fx1MDAxZucvulx1MDAxN9WtL8dcdTAwMDWCoNJXhmnBLNpcdTAwMDBcdMtAXHUwMDAyXHUwMDExgivDwTCqrM66ZcBcdTAwMTigO82ARjVzNpizwXg2iCu3XHUwMDA0XHUwMDFiYFM0Klx1MDAxNjm5ZdDoLfcu9mtH2z+CwrlYXHUwMDE2ufVgZe1cdTAwMGKygbDMXCLOXHUwMDE1uOheXHUwMDA091x1MDAwMVx1MDAxYoAhKMFMXHUwMDFidCFcdTAwMDQzsTBhRtlAcs1Ag5mzwZxccl5jXHUwMDAzdCnT2Fx1MDAwMG+EhjJcdTAwMWFcdTAwMGaTh1xyrCqs9va9WlFUc0ti/fR2eb9b/3J0oFx0XHUwMDA3i1x1MDAwMJIuOJCcnjCWXHUwMDAwMDRcZpRxXHUwMDE3md70xMeQXHUwMDAxMMEkNdpmM2qgY+MzJ4PnXHUwMDAzPolcZkRMtyVnJjneXGYoi4brNS7YXTk4Xe2u3d/A0c2a2d/q9YJi9ctxgSFMMzevpjj2+TBcdTAwMTUgUVAtmeGCKYEqN+NUgK2U1kqRzZDBnFx0xlx1MDAxZf1JTCBjo5FgXHUwMDAyXHUwMDE0d42Y4ZMzwd7l/oVcZnNrsLq8dKaKXHUwMDA1OLam/+WYQFx1MDAxMWEoNdIoo1x1MDAxNUtYXHUwMDA1Qlx1MDAxMY5DpI1yXHUwMDAzxbVOtDRrXFzA0Y5cdTAwMDH0ZqJz51xcMOeClICBSVxyXHUwMDE4XGKNLoLWfPKAQXjLdlorW51VXZHlwn3vtrhcdTAwMGZcImtcXMCJs5qtS1WR6PTbXHUwMDE42lx1MDAwN1xcYFx1MDAxOVx1MDAwMc6M5DhcdTAwMTBcdTAwMDJiYFx1MDAxZnBcdTAwMDEwwihQZYRcdTAwMWJcdTAwMGIjMj+XYFxyXHUwMDAwUJHR6OGcXGbGXHUwMDFl/VnxXHUwMDAymupcIrjZMybc7OLEbLB2JVx1MDAxNm/2XHUwMDE3S1x1MDAxZJ0/b1VcdTAwMTlrnneKrS/GXHUwMDA2klx0oq1kjKGsXHUwMDFhiPXPXHUwMDAzXHUwMDFiUEJBaG4lKIbmXHUwMDAzT7Q0c2xgJFiJ1XM2mLPBq2zAU2dcdTAwMTbR2VRUMP6GXFzmZe/cO8jd+XvlzubBwVwiP9pfXHUwMDAx+dXYgFx1MDAxYqKUMVhcdNjnMopcdTAwMGZcdTAwMGXYgFmCUiwlXGIhXHUwMDA1iyWCZ5VcZpg0WEXnMYM5XHUwMDE5vD6VkJ6BKCjCQSsxOVx1MDAxOXjXOVPt/7i9ur2V1/m9/iFcdTAwMTN+7auRgWJcdTAwMDRtXHUwMDAyjrVUo4E9nHPkTFx1MDAwM4NUYMDlI1x1MDAwMWQ9fmi45Y6z5jNcdHMueJVcdTAwMGJsav6hwtspym0kgq9RweJmr7h5KO/bVIlSv77SWF3f4V+NXG6MJNxoXHRcdTAwMTRdXHUwMDA1njRcdTAwMGKQXHS01IZcbuCOXHUwMDBiYrZ3NqmAuZiPUYZnc3nCnFx1MDAwYsZcdTAwMWX9aXNcdOkhXHUwMDAzqaTh6Fx1MDAxNk9uXHUwMDE3XHUwMDA05orZ4GSvxfJcdTAwMWKH3asrunfS+GpOgmCaKEY5XHUwMDEzXFzCqJOAI6HRWEA3QUvHpFlPP7TCasX1PGIwJ4PXyeCFiFx1MDAwMepGXHUwMDEwWr8h+3Cv5m9dn3f4srd+1s+v5M5PrzKXi/xcdTAwMWFcdTAwMTdcYkbQx5aaUS2RXHUwMDBlkz5cdTAwMDInlFFcdTAwMWMmalx1MDAxNFx1MDAwNZ55w4AjXHUwMDE1XHUwMDE4XHUwMDAxmZ1YjLp3zlx1MDAwNc9cdTAwMDdMl1x1MDAwYkLvLlx1MDAxY8dcdTAwMDWGpdtcdTAwMDXCLVBCNEWa8VW7oFgteOq8nD9v9VnporLXvjlYzFx1MDAxYVx1MDAxNySWLFx1MDAwYjpYkiRQzVNtzfAqXHUwMDA0XHUwMDFjXHTnMVx1MDAxOIn0YaWlcnrYt1x1MDAwNN1cdTAwMGVrrFx1MDAwMoFcdTAwMWMj+JiNXHUwMDEw4kbIY2ahW0zNpf5cdTAwMDCkXHUwMDBmVbxcdTAwMDHS0lBcdTAwMTOPTb5cdTAwMDHSl81GWPTvXHUwMDFmXHUwMDE2xFxyla6W6n7QXHUwMDFmXHUwMDFh1IFcdTAwMDT/7oZlqGgx8KuNgex5l8NcdTAwMTJcdTAwMWX65VLwXFxcdTAwMWQ2Y3NaZbxFXHS1Y3u0S5ptv+o3SsHB6O2cPl1/XHUwMDFhXHUwMDBiRmKjcVHqeFx1MDAwM23rorXvwyFPzfVxa5mpZCqa4X5ccoYv71x1MDAwNJFJXHUwMDE4KmZcYkXiQ6QxXHUwMDBlcel/2I9EXHUwMDEyZVH7olx1MDAxZE6ps8mnXHUwMDA2Q+bSXG6stVx1MDAwM1xmxlx1MDAxNlx1MDAxZL1cdTAwMDBCRZVcdTAwMDGjPyAk9zJcdTAwMDafKT9Sys9D/vJcdTAwMTY0Q1wi+LD0/rnm7yf9kVx1MDAxOYTfzVx1MDAxNuF3s0G4VKlcYudUgmZ8coDfXSyfXHUwMDFlX+ZPgtxcdTAwMDGY/tGPSuvYZs7/TuhZzYhB01x1MDAxYdCEXHUwMDExXGaVaaSyXHUwMDFlXHUwMDEwLlximt5o/rhsXHUwMDFkoHp6U/SIcMWU29aDXHUwMDAzuv8wXHUwMDBl4yNbXHUwMDBlSWWsXHUwMDExXHUwMDFmsZrn5/Qsj8vqO1DI1FDpXHUwMDBiKNydLVxud9+KQvE+XHUwMDE0QqrrK6jLIJd2cnO3dXHQ2Og2T5uN25Pa8U0+yG0vXHUwMDE1M1x1MDAwZUNjXHQ6YFx1MDAxNFxcylx1MDAxY7pcdTAwMTnRnZ9SaCmqMouuXHUwMDA25UZMb2pcdTAwMWPNaq5cXJKu5diKSVHIQHEpuTZcdTAwMWYwXHUwMDE1/lVwyGaLQzYjXHUwMDFjylS/U1xiY7Rmsd2hXsOhr2/sebC7kr+v31/en+54i/srS1x1MDAxOcehkESjg62UXHUwMDE1biO2pDqkjFxiXHUwMDE0dY1cdTAwMTav4NRML331nUDERmtcdTAwMTDTt3lfw6GIS+tcdTAwMWOHqTi8bOPAPe3S+dTSaDV6XHUwMDFhXHUwMDE20U5D79NtUDE5XHUwMDE4XHUwMDBiZ0ft3fX74nbz9MrCXe6ssKlmXHUwMDA1xqiZb1x1MDAwMaNkQNB/c+nkwmqW8D21IcJt9KI4eqeofV7AXCKeXFyG92ORolx1MDAwYlx1MDAxY1x1MDAwYo5GXHUwMDFiYFx1MDAwZZc/54VZpZEs4Vx1MDAxM5XhT8RzPzh6XHUwMDFh76GoJDrvW+L8SVwiw369XHUwMDFi4ONcdTAwMTba2EndtpObsN2NPcFj+UNcdTAwMWa9XGK/tKlcdTAwMTghZSr00Fx1MDAxYqJcXNDJZ2VvdjvnW4fnnUPvtL9cXNzY7DT54vV7kJeU8ClcIo9yooRcdTAwMTFuUsYwXHUwMDE05oRcdTAwMWG0nKCVqqXCflBD2zh+NPa0JFRojspW8MEqslFcdTAwMTgy9FGNcFx1MDAxYuJykPFcdONnpUitdVvZfEBCxidcdTAwMDDyXHUwMDFmPsGSOsDuk0uO7ShxvFu9plx1MDAxYrpWXHUwMDFhXHUwMDA1b0i7OOws1u5t068omavxaim3XHUwMDEz+Fx1MDAxYllXrZy4XTglMIXSXHSJLFx1MDAwYs5cXC1oo1x1MDAwMb8gfSNcdTAwMDdb5upCzkq1XHUwMDFhXHUwMDE0XHUwMDEy5lx1MDAxMka/JJD/VZr1XchcdTAwMDNqXZBcdTAwMDPesJPCbXNvaTG3cnafuz9Zz8ul9c5lrp1x7IFcIlxmXTtpjEHfLqlbuSVcdTAwMDLwm0tFwbyQ+Txb7DFsi+JoXHUwMDE4zcGXefClmrU23axVLuqBmnZy6Fx1MDAxZNdWd1dDb+V4+famnVx1MDAwYncrUmmTcbtcdTAwMTYk4W4nM3Az9JrKXHUwMDEx6ElNhXLJ/GiTpFu1P1x1MDAwYj20apiy6CWiMtNa6TFWrXFt0Vx1MDAxYTlcdTAwMDLtbyuYXHUwMDFlXHUwMDAxJFVo1NqsbnOq3zcz+Vx1MDAwZrd2c4B2l1x1MDAwNWBcdTAwMTJccitrTSx94KFaXHUwMDEzYVx1MDAxY9OiTFi0elxyf/WKqbI0qFx1MDAxZFx1MDAxMaM3WtBpVFwiaWpwyiXmXHUwMDAwtnzyRVxmXHUwMDA1vlx1MDAwZvqyI3aDvTVl+7md7XDlXeuZZsskWoLbQt29kWWMXHUwMDEyR2+GXHTDnVx1MDAwNa10enDqZ6lEUGJcdTAwMTXVZlx1MDAxMPdFcVx1MDAxYVx1MDAxMye2jHBwNoXmTGhcdTAwMTUjjKd0JSWp0vYjXHUwMDFj5DmTzIhJgFx1MDAxMSHcXHUwMDFiO4SRXFyhKktcdTAwMTBcdEW/WVMuXHUwMDA1RadcdOlEvnbBVEFcdTAwMWFcXG9Eht7IIy9cdTAwMDa6UzMwlFKMoVxmTO6L+z9697XyXc2nXHUwMDA3t4dHxYurXvfHfsb9XHUwMDAxbohcdTAwMDUq3VsvXHUwMDE4XHUwMDE1fDjV0b3zXHTcWlx1MDAwN/fmXHUwMDE2Sl/wxX8+y/lN/lx1MDAwMEOOR1x1MDAxYukj3vb0c/7Au9jhX+VcdTAwMGakZ12kulx1MDAwM2gxUCRcdTAwMDLFJ0ZcdTAwMWWr3JxcdTAwMWRv7Xb3bXmbV6GU31x0ikHGlTg1XHUwMDA0XHTP7WimJP5RXHR/QLiXsbl9y4zlVk7xJShcZtlcdTAwMTUpXHUwMDAwsNONtOPzXHUwMDFiRyd7LVx1MDAxZGxO9Fx1MDAxMXtcdTAwMTN9ldne2EzCLGZ7Y7ebZtZFerI/N5yiUpCT5yDWj2vd1qnKe8WT/IZYPi+stCrLXHUwMDE5hyGXxMmSI1x1MDAxY5SmxFx1MDAxYlx1MDAwN1xc8pNF/KFFYqxBi2Z6uf5cZo0mtIHAWVx1MDAxZO79XHUwMDA2XHUwMDEzJl2g/YUnZSBcdTAwMGJRxqV1qjjks8Uhn1xyXHUwMDBl03f/Z0a73Jq3ZPvv7HinN2x/76rdr57l6e42VydcdTAwMTlcdTAwMGaPuUU3LtVcdTAwMWZ9XHUwMDA2YFxigsTmfahcdTAwMGXdWyetZlx1MDAxNDSb4l7/iEPLgPJcdTAwMDfuXHUwMDEzyoxbdDOCQ6BuXHUwMDAxoeBcdTAwMWaxnfdXwWFuxulPuVx1MDAxOeUhpm+XoyRQMZRcdTAwMDP7XHUwMDFhXHUwMDEw+1x1MDAxYrRys1x1MDAxM1x1MDAwNFx1MDAxYntnvZ3eymZ1r7L1rsynXHUwMDE5XHUwMDAyXHUwMDExNaJwziB1Lj7ViXRgZVx0d1uFuLhcdTAwMWa101x1MDAwNKImVlx1MDAxOSpcZrUu83hCheiIUmsjPl1cdTAwMWaquKxOXHUwMDE3hzM2THOzskzTX4/FXFxCOuVcdTAwMDYmd1x1MDAxMVx1MDAwM/Njt3JSXllvXHUwMDE2dpWUJ1x1MDAxN71cdTAwMWKbOSRKgi6VdVx1MDAwMXNcdTAwMDDJjIw5Y1x1MDAwM2NVopGIXGYkpDJC6oSOXHUwMDA0LYh7pVx1MDAwNEXMcsWMecFY/cnMKGVcYjBrQVhQboOcMZGb0TVxzLVZ21x1MDAwZtmP4nOx+YaVqX/AXU7NXHUwMDE2n8l7TnNcdTAwMDVbPHsn+dIqyrjbX25yZdk+7FS3KD/YO2tX99bX1tY3T49Xslx1MDAwNlFFQDvZd29A585QXHUwMDFjhqgwQDiVblx1MDAxMybmXHUwMDE27yffWUWJXHUwMDA21GjoUlxuVGtcIj2s87NzM9h24lx1MDAxNq87wFEtsMmTYFx1MDAxNG1voyTn41x1MDAxN48/lmHpQXVjfcNv71xc0sVDVrNrXHUwMDFiSoB+WkA6o/WtL+e2XHUwMDBlie8717fqOIamzFx1MDAxM3ffc/LuPzOnipHbTpUtTOpsXHUwMDBiXHUwMDEzKKXoQ7HJl9rRoH9cXFBnUDSrdvVy4yi8q5fftdTuXHUwMDEz6UIySVx1MDAxZWbkXHUwMDAxlDQ2QVx1MDAxN0xcdTAwMTEr3SutXGbX6Fx1MDAxYU8xIet9UWDKhTM0UqLAs6eLaVx1MDAwM/pcdTAwMWZcdTAwMTcs/vbY/Vx1MDAwYqVWq1x1MDAxOGKPLTxNo+NI+pXHx45uvXDre72lUdn65XLwcUM6IFx1MDAwNYe+wezQX39/+/v/IHZcdTAwMDHNIn0= yxO1123-1-2y=2x-6y=x -5x+62

    1. y=2x6

      f(x)=2x6

      (2;2), (3;0)

    2. y=x25x+6

      f(x)=x25x+6

      V(x0;y0)

      x0=b2a=52=2.5

      y0=(2.5)252.5+6=0.25

      V(2.5;0.25)

      Kerta Ox, kai y=0

      x25x+6=0

      (x2)(x3)=0

      x=2; x=3

      (2;0); (3;0)

      Kerta Oy, kai x=0

      0250+6=6

      (0;6)

      Ats.: (3;0)

  2. {y=x2+4x+3y=4x+4

    eyJ2ZXJzaW9uIjoiMSIsImVuY29kaW5nIjoiYnN0cmluZyIsImNvbXByZXNzZWQiOnRydWUsImVuY29kZWQiOiJ4nO1daXPiSNL+Pr+iw/txXHUwMDA3TWXdOVx1MDAxMVx1MDAxYm/Qvo9cdTAwMDbf11x1MDAxYlx1MDAxYlx1MDAwZVxmMmBzNVxijD0x/32z1G1LXHUwMDFjsoFcdTAwMDYsT0B3u02pJJWq8nnyqKzSX799+bJcdTAwMTY8tfy1P7+s+f1ioVYttVx1MDAwYo9rv7vynt/uVJtccjrEw++dZrddXGZrVoKg1fnzjz/qhfaDXHUwMDFmtGqFou/1qp1uodZcdLqlatMrNut/VFx1MDAwM7/e+T/3M1eo+/9pNeuloO1FN8n4pWrQbP+4l1/z634j6NDV/5++f/nyV/gz1rpCu9380bCwOGpcdTAwMWNcdTAwMTilhotzzUbYUkDL0Vx1MDAxYTTytUa1s0E3XHUwMDBi/Fx1MDAxMlx1MDAxZL6jXHUwMDA2+9FcdTAwMTFXtKatOe+ber+50cqf7n69vrp+Klai+95Va7WT4KlcdTAwMTa2qdOkR4mOdYJ288G/qJaCykunxcqTzmo3u+VKw++4Z4fX0marUKxcdTAwMDZProyx19JCo1x1MDAxY14jKunTN8nRU9xcYmVccpNSXHSM+sNdQCB4yJSyaJAxZmPd9aNl681cdTAwMWGNXHUwMDAztexf4Ls/UdtuXHUwMDBixYcyNbBReq1cdTAwMTO0XHUwMDBijU6r0KbRiuo9vjyzlJ6S1Fx1MDAwMERtUCgjXqtU/Gq5XHUwMDEyuOfxXHUwMDE4gDI0MFx1MDAxYY1cdTAwMTVcdTAwMTBcck3HXHUwMDBmR8WAldJy/VruWtDaLYXC8d9oJNokVrvuhEa3Vot3Z6P0sztfhChcdTAwMTIj/rPk7+hcdTAwMTFd/c2Y+EV36LZKhVx1MDAxZoJcdTAwMDKGo1x1MDAxMFx1MDAxMqVmJuq9WrXxMHz7WrP4MEa2OkGhXHUwMDFkfK02StVGefhcdTAwMTS/UUo4Uit0gvVmvV5ccqhcdTAwMTmHzWojXHUwMDE4rlx1MDAxMV4366BR8Vx1MDAwYiN9QVeOXHUwMDFmXHUwMDFixlDLXTGCnPtEv32JhCz88vr7f39cdTAwMWZbO3no3SczMurR9X6L//9zYCaHP8E7XHUwMDEx/UwzXHUwMDA1zNiJwd8+MWW/tc1cdTAwMWWvuvmzpq3ePj1nXHUwMDBm0lxyfqWNZ1x1MDAxMEPhXHUwMDA06vdcdTAwMDHoS9RcdTAwMWVDNJxcdTAwMGLOtNUxXHUwMDFlnDv0PSCe5e4vXHUwMDAyR4jg+4p8ocGzgmiIXHUwMDFiXHUwMDA2XGJcIlx1MDAwNqWf0Fx1MDAwN8aFVUyr6Fx1MDAxOVfg/1xm4E9cdTAwMWF898mMjvuU4Ke+9seqfs6SwW+BSa1cdTAwMDEmR/9u+fDhXHUwMDA0n1x1MDAxZq6OSrBdOa3Ve7lsNm3oXHUwMDA3T1x1MDAxOWZQXHUwMDBiTjQrLaqoXHUwMDA3ftBcdTAwMDF6lmSVXHUwMDBlMyOsxkFTQFx0XHUwMDBmgHNcdTAwMGVMXHUwMDE5XHUwMDAwJsRQS+fHXHUwMDA3zFx1MDAxM2RySM5Aa2s112NMXHUwMDAxrjxU3LVDSqIqau5cYiHQMzDFUUXEtVwihPlcdTAwMTDCwLG5skHy0LvP6KDPjVxyRKIjIJnlYI2anFxm5PlpvlTNXHUwMDFk3dWP9OHWaeZcIrd78vRcdMlAXHUwMDEzXHUwMDE1XHUwMDE4wTS3Nvb0IVx1MDAxOdBIcGmtXHUwMDFiXHUwMDA3IyBmJqWUXHUwMDBiQHPkROlRQ1dcXLDiglx1MDAwNC5QOFxc/GpcdTAwMTlwwVx1MDAxONlcIlNcdTAwMDRcdTAwMDXM/dHXp+BZXFxcdTAwMWbtZzex0mjCzknz05GB8SyVWlBcXFtuXHUwMDA2LVx1MDAwM47WXHUwMDAzRuc4XHUwMDEzjaNUqbdcZlArQGptWtkgavGKXHJeK3xcdTAwMTRcdTAwMWIkXHUwMDA3XHQ4Q22RaVx1MDAxMVx1MDAwMeo9Nig1oHW3UdvKNfu97cpRtW7F5tEnZFx1MDAwM02qn7tcdTAwMTCpXHUwMDEwaohcclxmI9NAXHUwMDAzMkmcwFx1MDAwMIZcdTAwMWGaOjJg2khknEU9ulwig1x1MDAxNVx1MDAxOYwnXHUwMDAzXHUwMDAxyfNcdTAwMDWG/Fx1MDAwNFx0coqQoW2eXHUwMDE3vmns2ozq7Vx1MDAxZldU+bpxs/7pyFx1MDAwMD2gblx1MDAwNlx1MDAxYVxmYSFcdTAwMTZ6XHUwMDBmyUByj1x1MDAwNoprhlYxYoTFXHUwMDA1XHUwMDEx58RcdTAwMDZaM1x1MDAwYqhkWqdcdTAwMTBWbDCm9kexgVx1MDAxNMPFr2ygyGcmwYfJXHUwMDFkhfOtXv7M5K9cdTAwMWUuXHUwMDFh1fObXHUwMDFkcczusPPp2MB6KCwn/Ch081x1MDAwNoNsXHUwMDAw0tN0lpHC0IgwoYdamjo2UCippdyubINcdTAwMTVcdTAwMWK8x1x1MDAwNlx1MDAxMthwccRcdTAwMDbIrCRLeXJH4fLI3l1u3fnF89pta7vfuz6t6u6nY1x1MDAwM/SQXHUwMDFisppQmDiIwutZ69HJoMmPkNyo1FtcdTAwMDZcZiVcdTAwMGVGQldcXLDiglx1MDAwNC5cdTAwMTB2uDiaXFyUXHUwMDA0XHUwMDA1N585MVx1MDAxN2Sf/IfGic53XHUwMDFmdE09r68/fX2yuU/IXHUwMDA1hjM0XFxcdTAwMTAlWFx1MDAxY1xmXHUwMDFhgGZcdTAwMWVcdTAwMTGkMUYzKS2JddrZwMV9pDEsrX5C1PsrNnit8FFsXHUwMDEwiy1ccrGBQFx1MDAwYkpNY1x1MDAxOGR3co/rrb3NrfXKzdGtvSjflFx1MDAwYp+OXGZcZvNAc+7qWCX5UOZcdTAwMTGRgZGMUd9IOpZ6y4AzaSRROqQ10WDFXHUwMDA1Y2p/XHUwMDE0XHUwMDE36OTJRc0lXCKqKTJcckr1XrezvtFcdTAwMDN28Xxxc3NRzlx1MDAwNy38dGRcdTAwMDBcdTAwMWUoXHUwMDAwacmGVYT6QTJcdTAwMTDSI1x1MDAxN1xccNRWiHiUPp1kXHUwMDAwSlx1MDAxOEHWgUirm7BcIoMxtT+IXGaUhOHiXHUwMDE3MnCGMrnFsXj6e1xccHPz/eEww086W1x1MDAwZkGlXHUwMDE5IGR3K59yNkErY1xcXHUwMDFhvzJD8UNcdMxz+UZ0tmRcdTAwMTJ46vNcZoSLglx1MDAxYWHSmpK84oIxtT9sMiE5XHUwMDFmmZBCKtDEXCJo75HB4/fjfiOzdXx7U1BcdTAwMTe33/jzZm7nOW1kIDyQoJBrJcJcdTAwMTVGXHUwMDEwoSwkXHUwMDAzRI9pMEpY4Vx1MDAxMsCjo2FcbqKxnjZcdTAwMDZcdTAwMTlcdTAwMWFCmMS0k4FSXHUwMDAyQLPUhlx1MDAwZldcXDCm9kdxgUm0XHUwMDBirCVrmNziyangnj/CdbnX6va636477cPv+dO7209GXHUwMDA11PWeXHUwMDAxLlx1MDAxZFx1MDAxNVgrhlx1MDAwMlx1MDAwNsJcdTAwMThPUqcx5uJcdJbptEdcZsAwrrWyqU1AXFyRwZjaXHUwMDFmXHUwMDE1MYjN7IzkXHUwMDFjWca45Th5lkHu4uD6uVYvnmXOtW3sUL+VXHL7ZGwgXHUwMDE1qX6pqJdcdTAwMDUwI1x1MDAxNETiXHUwMDFh0oFlXHUwMDFluHhcdTAwMDG54Vx1MDAxY3GBXHUwMDBiXHUwMDE351x1MDAxNTKQjFlcdTAwMTafP16xwYpcclx1MDAxMkJcdTAwMDaxXHUwMDE0upE1y2QmMzJcdTAwMTAmn0zwc0/QLn87bTyfaty5MfqwXFzd/WxsYLVcdTAwMDdAYyFAI/lcdTAwMGJDy1x1MDAxNolcZlx1MDAxOCiiSEZcdTAwMDNBnJByMjDGuF1cdTAwMThSm3+44oIxtT+KXHUwMDBikt1cdTAwMDSw2rppqcndXHUwMDA0dnModrK94uZhL9s7yHXYRqVlPlx1MDAxOVx1MDAxNSjgntZI/oHbMFx1MDAwMsxg+NBRgWZuL1x0IVxyXHUwMDEzXGZTn37IiLWoXHUwMDFiUmtcdTAwMThE7suKXGZeK3xcdTAwMTRcdTAwMTlg8sRcIpnIlisjJndcdTAwMTNO9qAtni962T3c2zs+XHUwMDExpYfsee2zsYFknnFbOFmmLP1cdTAwMWI1XGYw3HqCLCad+rlcdTAwMDRcdTAwMWXSljYmrSGDXHUwMDE1XHUwMDE3jKm9WC5cYvx+MI5cdTAwMGLI7U2kXHUwMDAyjVx1MDAxMpCbXHUwMDE4XHUwMDE43p1XrPWOqvogg7r77WC3u3N/en90ljYqXHUwMDE42thIoCdccoBcdTAwMTFKaKOHZlx1MDAwZUCQXHUwMDFkQFwiq5FcdTAwMDNcbkC5OOxcdTAwMDNxXGaiMtxcdTAwMTn1TMfillx1MDAxMfTRXHUwMDEzQpN8oOXMJT3FWvNz5kCCJbfAzsElXHUwMDE4ODBcdTAwMDXElVx1MDAwNVx1MDAwNjHfaVxuiN81XHUwMDFiwUn1OWRcdTAwMTnhSe2uXHUwMDA2VpEhXHUwMDE2X0znam1cdTAwMTXq1drTwKCHXHUwMDEy/qdcdTAwMWK2gaJsrVpuhNrQv1x1MDAxYkRAUC1cdTAwMTZqr4eDZis6WqRbXHUwMDE0SHu2R7uo2a6Wq41C7XT0dk7f7kT7z8VG8LbQ8UNt7Mh5NpzaxPVDnClBjjwxx8Q4/VxuffZ4elx1MDAxOWzuNy6es8dVsbWeT91cdTAwMTZEgzjVXHUwMDA2PIuKuFEwh8foKj80NPesUUxoyzVou8CwPpApYZnhiqHRakacgpD0XGbzSPz5NZjyuPAuXHUwMDE1pv3lwrS/XHUwMDFjmMaNw1x1MDAxMXUqrDBcdTAwMTZZVOM9mF7Vvlx1MDAxZdZg+650vNG6ejzb8Fx1MDAwZmQxdVx1MDAwYnuG1KnRXHUwMDFl+dRSkblccoaM5UGYovBQKMasJqhcbrbAfF2Qnlx1MDAwMkTqbyC97jZlXHUwMDFhZ0qP4JKUPZHHXFxW8X0wMtlA6Vx1MDAxYkjML1x1MDAxN4n5KZFcYnYmJKpkhUnsbTiZKFF88j0g4vFcdTAwMDHPXHUwMDE1tlxuNuCFfvb0+f764X475UBE4zlv15A8a8VxOD1cdTAwMGXcXCJcdTAwMWEyXHUwMDFkUIFSTC8uvqU88lwiXGKIpJXdfj8wVmGO2aKToMhcZog5xLN+XHKIXCIurlx1MDAwYlx1MDAwNVwiLFx1MDAxN4iwXHUwMDFjIFx1MDAxYZ7sYaIh2bCoJ0didZuvn9ktXdmG/efvZ9XemcyUUo5ESbYpJ7rRRnJcdTAwMDVDgWYlPCatIJNWS3LvYXFcdTAwMWFxRiBqRd7oXFxcdTAwMTas/Fx1MDAxYVx1MDAwZWVcXFpXOEzE4V2bXHUwMDA27mV3/ZeWvniRSUgkT8YgyCl2p9rNrp9mXG7l3cJcdTAwMTWetYvPm61cdTAwMWU8XHUwMDA2y1x1MDAwMmLUzKmAXGLc46T10FxuXHUwMDAyQnyDx1Alcu6RqCvqXHUwMDA0ziTy5NUjWFx1MDAxNPpW/UqUl5zCSOxewTdU/lx1MDAxMs1Ft6voXFwmdmZcdTAwMDXgj6gtxsV0Ulx1MDAwMM45Rlx1MDAxYe+gqCQ677eh8yeJ/1br3Vx1MDAxYT3uYZs6qdt2Ylx1MDAxM7S7sSf4Wf6jj+ZcdTAwMGY9lFx1MDAxY1x1MDAxOeNTQO/WX98v3Mvz0422alx1MDAxN55uL1x1MDAwZbb3r9Nccj2XeEHKzyjBXFxEWUg5gD337lxioniUwC0qN1x0k1x1MDAxMvBZQp6Valx1MDAxZUu3V+BLIfgscEP20Fx1MDAxNGlQ/XKle+R38Ka3edi6bLS/31x1MDAxNUr9dIMvXFwpXHUwMDA1gkxQKZQyMJRcdTAwMTHttKJk3Fx1MDAxONJ5aHXy/szLhVx1MDAxZWqr9Hy2YV5Bb7HQS0o0kDY5z4BZhSRxUyDPNG9cdTAwMWYuy8XrvoKt7V3Z32/eXFzuzIK8YVx1MDAxN2uRXHUwMDE2Jzi15+SYufcm2cHsY8mFJ1x1MDAwNPWBUJKRvJmFQVx1MDAwZsm2XHUwMDA1ai9a7jZqXHUwMDFmn1egPEOGMSlp5FxmcVx1MDAwNJCSS6PIXHUwMDBlTWm6oWWz4PRcdTAwMWaeVZBcdTAwMTE08Fx1MDAxYYyQWlwiMyw2M1x1MDAxY1x1MDAxZZbWXHUwMDAzXHUwMDFhbFBcdTAwMDKMNGDFu1x1MDAxN0yUpPDoiFx1MDAxMI1S1GxMwpI3U6XHXCKfTevJ81x1MDAxNzeO+X3P3Niznczeib6uXGJ/v1RPP5O4OUdJXjq3wqpBXHUwMDAzOmRcdTAwMTLGtZKk4HV8+mLeTEJN9aThXFxcdTAwMDJcdTAwMWF3v1hgOaJcdTAwMTKy9o3SXHUwMDA2hEI0XHUwMDE2YDRdkUxcckKtxDl4tSsyWVx1MDAxMplcYvLhrNWKusflwkTZ8+7jqCRcXEJjOVxyLiPd/t7lkiUpvN6oXHUwMDEwTcklSVx1MDAwMWmevEZcblxySHo8NXk8endXXHUwMDFkV+vnylx1MDAxY+b3t4vnO1u730s25e6AMDSOgjFBXHUwMDA2ieZskEm4W0ltUGhcdTAwMDaaXHUwMDFjgpj1u4BEXG5ccjS0aJV1+zfFsiHeikcrSWxvzYfHo2d6XHLLTPFosdx4dOx2i5xcdTAwMTeCRFx1MDAxOCqyVSRcdEZ0t/dQeHF936/v3VxcVjZcdTAwMWVz67m+vnrKbu+lXHUwMDFkhdpjbjVcdTAwMWZxm9VcdTAwMDCDKFx1MDAwNE3gcP66m1x1MDAxYnKZy1x1MDAwYsw7VFx1MDAxZXfTQs7/J597sjxcdGO0lFbP40VcYp9cdTAwMDWFdrkotPNF4VvRseTNRKTbiYJNs7PQ/tE3k63vlrNP61x1MDAwZvmDq+De3/Pb6UZcIkmxp1x1MDAxOOdk+Vx1MDAxOTnwutDwfKM9Rea1cULHyfZeXHUwMDE4XHUwMDEwp1x1MDAwYo+B1aS94UNTfX/BVF7Fx+iAkIlerXPirGRT7O9X26g93vnY6/fN9kP1/lvj4Ox8JuQt0aklr1UpJlx1MDAwMFxcXFxcdORgsqBUxHWabFx1MDAwMXDeXHUwMDA0M8kqkHN76+vZkWfJdVHk2rj3XGZwxmGMIeqi5GSUXHUwMDE490JTLrVcdTAwMWHRiG5cdTAwMDdcdTAwMDFccuncv1x1MDAwYt3bl2ZB6T/coU1cdTAwMWN398mMXGb5KJ3MrHLf2P/fvVJcdTAwMTddrHhi5F+dlTnebch8/mjLtDKbQeZ0XHUwMDA30q1z3Xo76nmJXHUwMDE2gXxuMbQrXHUwMDA3gkeOqWCKeoMhLHIjz6l0rlDKzV3PI2q10rmL1bmJecHJU1KoSOcy5JOvo8lv3F/AZX43f5ttPPWeQW1+v7pMOfKEcJtcXJDGJb+ThGkoXHSK2fB9fVKTg6dcdTAwMDW+MSU1j/CPIL+TTG43XHUwMDE3KCZM0CcnlVxmXHUwMDA29vGe50y7W8zkeWaWnJCYWVZmcHIg1i2D5KRcdTAwMWQmXyvTYpmd+6/6yvDN2sZ28Vx1MDAxY/xmbmkp+jMmRSGBTVxipi2z2lwiXHUwMDFmXFx66qCoyDxcdTAwMTGghVx1MDAwNkCzOChy7klcdTAwMTdk14DkdrjFp1x1MDAxM0GRW62cbfnhodiZ1pPPXHUwMDA2Rb5kKPIlQTF5elWQXHJcdTAwMDZcdTAwMDLl5NHYdlx1MDAwZtqZs3LlaH0jn4Hzktlp7Poph6JcdTAwMTGeJV1EXia3XHUwMDA2hlx1MDAxY1GGnuRcXDI3M2St1otcdTAwMGLGcvAsKUWtLJm/k2boW1x1MDAxNFpcdTAwMTirXHUwMDE2bpW+2naRh/plsuycXHUwMDAxISw4527t9cjfv7913bfn6t+87ohcdTAwMDE6nj1myu+ajT2WPJOTWdJUXHUwMDBlT35pjeGWgSElNjF7lPnpdutM91x1MDAxNGtcXPVPjlx1MDAxZnJVXHUwMDEwXHUwMDFiaVvhXHUwMDAznttPUlx1MDAxOY1kuFx1MDAwMpmwkSlcdTAwMTPSXHSTnmFKuVxyXHUwMDFktHbvvFx1MDAxZCBcdTAwMTTOjOeWh3P3+lx1MDAwN0P6f3E5l9RIN8tqjWBy0slcdTAwMWRcdTAwMTdccjHKJrm5r1x1MDAwMFvb7uR64lwit36z4Tc7NpBXO49PXHUwMDE3L1x1MDAwMFxcnv7HmbzhmVx1MDAxMPz0n/6Xf8v+v5dcZuQxt10onnnixpEkrSTT5IRNjufu6dXxffN+t2N26t90xl5mOuXPhmclPWXcinaXJlx1MDAxZH9RfXhBlFx1MDAxZefOSFxuY1bKLG71XHUwMDAyUEPpLi5OkegzR0/3XHUwMDEzz5q5N+mJXHUwMDA0l/mfXHUwMDA351hmwTtwXrI1P7UxL+dtzFx1MDAxYrJcdTAwMTPdK1x1MDAxMiZXx1wiXGJ2XG6HXG5cdTAwMGUq2du67OxcdLzb+Jo2+CqPIKFdJplUjKBcdTAwMTGd97L+QWtkbmsll2s9qIu59JjbXHUwMDAwimx/OpO/kWnxq9NMXHUwMDA2PEYmXHUwMDAxXHUwMDA3rqWWNmZcdTAwMTS8oYw5uVx1MDAxYuLD93NaqoolRSeXrV9cdTAwMDfvOZVy/e0nOa5cdTAwMTVarZOA+m7tZVxuj1x1MDAwNqta+tlcdTAwMDHR/dd6Vf/x66js/Osu/DjCXHJcdTAwMTHvsFx1MDAxNUa6//r7t7//XHUwMDA3yoyigSJ9 yxO1138-1-2-3y=x +4x+32y=4x+4

    1. y=4x+4

      f(x)=4x+4

      (0;4), (1;0)

    2. y=x2+4x+3

      f(x)=x2+4x+3

      V(x0;y0)

      x0=b2a=42=2

      y0=(2)2+4(2)+3=1

      V(2;1)

      Kerta Ox, kai y=0

      x2+4x+3=0

      (x+1)(x+3)=0

      x=1; x=3

      (1;0); (3;0)

      Kerta Oy, kai x=0

      02+40+3=3

      (0;3)

      Ats.: (1;0), (1;8)